CN106098137A - 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料 - Google Patents

一种a位缺位的a、b位共掺杂钛酸锶混合导体材料 Download PDF

Info

Publication number
CN106098137A
CN106098137A CN201610494526.9A CN201610494526A CN106098137A CN 106098137 A CN106098137 A CN 106098137A CN 201610494526 A CN201610494526 A CN 201610494526A CN 106098137 A CN106098137 A CN 106098137A
Authority
CN
China
Prior art keywords
codope
vacant
mixed conductor
srtio
conductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610494526.9A
Other languages
English (en)
Other versions
CN106098137B (zh
Inventor
单科
翟凤瑞
易中周
刘卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honghe University
Original Assignee
Honghe University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honghe University filed Critical Honghe University
Priority to CN201610494526.9A priority Critical patent/CN106098137B/zh
Publication of CN106098137A publication Critical patent/CN106098137A/zh
Application granted granted Critical
Publication of CN106098137B publication Critical patent/CN106098137B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明是一种A位缺位的A、B位共掺杂钛酸锶的混合导体材料,它是钙钛矿型SrTiO3的A位是30mol%La的掺杂,B位是4mol%Sm的掺杂的产物,共掺杂后的分子式为:(La0.3Sr0.7)1‑ xTi0.96Sm0.04O3−δ,其中x=0.05‑0.09。其制备步骤是:将含镧、钐、锶和钛的化合物按照(La0.3Sr0.7)1‑xTi0.96Sm0.04O3−δ化学计量比配置原料;将配置好的原料采用溶胶‑凝胶法在900‑1200℃、大气气氛中合成A位、B位共掺杂的SrTiO3粉体;将粉体磨成100‑200目的细粉;在细粉中加入10‑50%的可燃性物质压成型,在于1300‑1600℃温度下煅烧2‑12小时,得到混合导体块体。本发明在La掺杂基础上,通过采用不等价金属离子在其B位上掺杂,提高氧离子缺位浓度,改善了La掺杂SrTiO3的离子电导率和综合导电性能。

Description

一种A位缺位的A、B位共掺杂钛酸锶混合导体材料
技术领域
本发明涉及一种混合导体材料,特别涉及一种A位缺位的A、B位共掺杂钛酸锶的混合导体材料。
背景技术
氧化物混合导体具有较高的电子电导、离子电导及选择透氧能力, 在多相催化、固体氧化物燃料电池、传感器、氧离子透过膜等方面均有重要应用, 是近年来迅速发展起来的一种功能材料。混合导体膜材料的研究在国际上目前正处于迅速发展阶段,发现了多种透氧量较大的材料,但其氧传输机制、氧传输量与电导的关系、体相性质及表面性质对氧传输的影响等方面均有待于进一步研究。一般认为这种材料的透氧量直接与材料的电子和离子导电能力有关。
ABO3型混合导体膜材料表现出更高的氧渗透性能,在氧分离等领域具有较大的应用潜力。ABO3型混合导体致密透氧膜同时具有氧离子电导和电子电导,它不仅具有催化活性,在中高温下还能选择性透氧,因而在燃料电池,纯氧制备以及化学反应器方面具有出较大的应用前景。
掺杂的SrTiO3是一种很有发展前途的SOFC阳极材料、透氧膜材料以及氧气传感器材料。根据文献Jung W C, Tuller H L. Impedance study of SrTi1-xFexO3-δ (x=0.05 to0.80) mixed ionic-electronic conducting model cathode. Solid State Ionics,2009, 180(11-13): 843-847和Jeffrey W F. Perovskite oxides for semiconductor-based gas sensors. Sensors and Actuators B, 2007, 123: 1169-1179和Balachandran U, Ma B, Maiya P S, et al. Development of mixed-conductingoxides for gas separation. Solid State Ionics, 1998, 108: 363-370(Jung W C,Tuller H L. SrTi1-xFexO3-δ (x=0.05 to 0.80) 电子-离子混合导电阴极材料的阻抗研究.固态离子, 2009, 180(11-13): 843-847和Jeffrey W F.钙钛矿氧化物半导体基气体传感器. 传感器与器件 B, 2007, 123: 1169-1179和Balachandran U, Ma B, Maiya P S, etal. 混合导电氧化物在气体分离上的进展.固态离子, 1998, 108: 363-370)报道,钛酸锶具有ABO3型钙钛矿结构,具有良好的热稳定性和结构稳定性。未掺杂的钛酸锶电导率较低,不能应用,但是其A、B位有很强的掺杂能力,通过对A、B位进行不等价离子的掺杂,可以提高材料的电子电导和离子电导能力,因而成为固体氧化物燃料电池,透氧膜以及氧气传感器的优选材料之一。
Ni-YSZ由于具有较高的电子-离子混合导电性和催化活性,因此,是目前常用的SOFC阳极材料,由于储氢问题没有解决,因此,使用碳氢石化气体作为燃料是SOFC发展的趋势。但是,当以碳氢气体为燃料时,Ni-YSZ存在碳沉积和硫中毒等问题,使催化性能降低,进而造成电池性能的衰减。因此,寻找能够替代Ni-YSZ的阳极材料是迫切需要解决的问题。
掺杂的钛酸锶氧化物是一种具有电子-离子混合导电的材料,能够避免Ni-YSZ的使用问题,因此,是一种较好的SOFC阳极材料。根据文献Fergus J W. Oxide anodematerials for solid oxide fuel cells. Solid State Ionics, 2006, 177: 1529-1541(Fergus J W. 固态燃料电池的氧化物阳极材料. 固态离子, 2006, 177: 1529-1541)报道:La掺杂可以提高SrTiO3的电子电导率,但是其离子电导率还比较差。如何提高离子导电能力,从而大幅度提度这种材料的导电性能,目前,人们还没有找到有效的解决办法。
发明内容
本发明的目的就是针对上述问题,提出一种性能稳定、电导率高的混合导体材料,即A位缺位的A、B位共掺杂钛酸锶的混合导体材料及其制备方法,以此克服现有技术的不足。
本发明提出的这种A位缺位的A、B位共掺杂钛酸锶的混合导体材料,其特征在于它是钙钛矿型SrTiO3的A位是30mol%La的掺杂,B位是4mol%Sm的掺杂的产物,共掺杂后的分子式为:(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ,其中x=0.05-0.09。(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ。该材料在800℃时的电导率为0.0893 S·cm-1,离子电导率为0.00172 S·cm-1;950℃时的电导率为0.149 S·cm-1,离子电导率为0.0144 S·cm-1,δ代表氧空位浓度。
A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于它有如下步骤:
(1)将含镧、钐、锶和钛的化合物按照(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ化学计量比配置原料;
(2)将配置好的原料采用溶胶-凝胶法在900-1200℃、大气气氛中合成A位、B位共掺杂的SrTiO3粉体;
(3)将步骤(2)所得到的粉体湿磨或干磨和过筛后得到粒度为100-200目的A位缺位的A位、B位共掺杂的SrTiO3细粉;
(4)在A位、B位共掺杂的SrTiO3细粉中加入10-50%的可燃性物质,然后干压或半干压成型,在于1300-1600℃温度下煅烧2-12小时,得到多孔A位缺位的A、B位共掺杂SrTiO3混合导体块体。
步骤(1)所述的含镧、含锶、含钐和含钛的化合物选自下列化合物:
La2O3、La(NO3)3、La2(CO3)3、Sr(NO3)2、SrAc2、Sr(CO3)2、Sm2O3、Sm(NO3)3、SmCl3、TiO2、TiCl4和Ti(CH3CH2CH2CH2O)4
步骤(1)化学式中x=0.05、0.07或0.09。
步骤(4)所述的可燃物质包括碳粉、淀粉、玉米粉和树脂中的一种或多种。
步骤(4)所述的半干压成型是在A位、B位共掺杂的SrTiO3细粉中加入淀粉溶液或玉米粉等液体做成膏状物,然后再压制成型。
本发明在La掺杂的基础上,通过采用不等价金属离子在其B位上进行受主掺杂,低价掺杂提高氧离子空位浓度,改善了La掺杂SrTiO3的离子电导率和综合导电性能。
本发明的优越性具体表现在如下几个方面:
所得(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ材料没有任何杂质出现,材料为单一的立方相钙钛矿结构,使钙钛矿型(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ材料的A位为缺位,从而增加氧空位浓度;
所得A位缺位的(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ材料的总电导率优于现有同类材料;
随A位缺位量的增加,(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ (x=0.05,0.07,0.09)的离子电导率增大,在950℃下,(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ的离子电导率为0.0102 S·cm-1,(La0.3Sr0.7)0.91Ti0.96Sm0.04O3−δ的离子电导率为0.0144 S·cm-1,使(La0.3Sr0.7)1- xTi0.96Sm0.04O3−δ成为一类钙钛矿结构的高导电性的混合导体材料。
附图说明
图1为本发明溶胶-凝胶法合成的(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ(x=0.05)的XRD图。合成温度为1400℃。图中的XRD:X射线衍射,用于看晶体结构。如图1所示,(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ材料的X-射线衍射图没有任何杂质出现,材料为单一的立方相钙钛矿结构。
图2为本发明合成的(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ (x=0.05,0.07,0.09)样品的总电导率随温度变化曲线图。烧结温度为1400℃。如图2所示,A位缺位的(La0.3Sr0.7)1- xTi0.96Sm0.04O3−δ材料的总电导率都比较高。
图3为本发明合成的(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ (x=0.05,0.07,0.09)样品的离子电导率随温度变化曲线图。烧结温度为1400℃。如图3所示,随A位缺位量的增加,(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ (x=0.05,0.07,0.09)的离子电导率增大,在950℃下,(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ的离子电导率为0.0102 S·cm-1,(La0.3Sr0.7)0.91Ti0.96Sm0.04O3−δ的离子电导率为0.0144 S·cm-1,使钙钛矿型(La0.3Sr0.7)1- xTi0.96Sm0.04O3−δ材料的A位为缺位,从而增加氧空位浓度,使(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ成为一类钙钛矿结构的高导电性的混合导体材料。
具体实施方式
下面用实例进一步说明本发明积极有益技术效果。
实施例1:(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ的固相反应法合成
以La2O3,Sr(CO3)2,,Sm2O3,TiO2为原料,按照 (La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ的元素比例配置混合物,以无水乙醇为介质,在玛瑙球球磨罐中球磨8小时,混合均匀后,在烘箱中烘干,将烘干的粉体淹没过筛(100目),过筛后的粉体盛在刚玉坩埚中,于空气气氛中,1100℃保温10小时合成。将合成的粉体过筛(100目),加入50体积%碳粉,5体积%PVA溶液,混合干压成型,将制好的样品在1500℃下保温5小时,制成多孔混合导体材料。
实施例2:(La0.3Sr0.7)0.93Ti0.96Sm0.04O3−δ的水热法合成
将原料以La(NO3)3,Sr(NO3)2, Sm(NO3)3,TiCl4为原料,按照(La0.3Sr0.7)0.93Ti0.96Sm0.04O3−δ的计量比配置混合物,以1 mol/L的KOH溶液为溶剂,在密封的高压釜中进行反应,将高压釜升温至150℃保温半小时。高压釜自然冷却后,将沉淀洗涤后进行干燥,得到合成粉体。合成的粉体过筛(200目),加入10 wt%的可溶性淀粉和5体积%的PVA溶液,混合干压成型,将制好的样品在1450℃下保温10小时,制成多孔混合导体材料。
实施例3:(La0.3Sr0.7)0.91Ti0.96Sm0.04O3−δ的溶胶-凝胶法合成
以La2O3,SrAc2,Sm2O3,Ti(CH3CH2CH2CH2O)4按照(La0.3Sr0.7)0.91Ti0.96Sm0.04O3−δ的化学计量比称量,将醋酸锶溶于去离子水中,再将钛酸丁酯溶入异丙醇与无水乙醇的混合溶液中,充分搅拌后加入La2O3和Sm2O3。取醋酸锶溶液,在磁力快速搅拌下,加入钛酸四丁酯与La2O3和Sm2O3的混合溶液中,室温下磁力搅拌30min后,静置12h,放入烘箱中于50 ℃烘干,形成蓬松的干凝胶。干凝胶粉料经研磨后,在1100℃预烧12h以脱除有机物,得到粉体。
将1100℃合成的共掺杂钛酸锶粉体,50MPa下干压成型,大气气氛中、1400℃保温5小时致密化烧结,采用交流阻抗法测定材料的总电导率,电子阻塞电极法测材料的离子电导,该材料950℃的电导率为0.149 S·cm-1,离子电导率为0.0144S·cm-1,如图3所示,A位缺位量为0.09时,材料在各温度下的离子电导率均高于其他样品。在950℃下,与(La0.3Sr0.7)0.95Ti0.96Sm0.04O3−δ相比,(La0.3Sr0.7)0.91Ti0.96Sm0.04O3−δ的离子电导率提高了141%。
完全能够替代Ni-YSZ作为阳极材料。

Claims (8)

1.一种A位缺位的A、B位共掺杂钛酸锶的混合导体材料,其特征在于它是钙钛矿型SrTiO3的A位是30mol%La的掺杂,B位是4mol%Sm的掺杂的产物,共掺杂后的分子式为:(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ,其中x=0.05-0.09。
2.根据权利要求1所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料,其特征在于分子式中的x=0.05、0.07或0.09。
3.A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于它有如下步骤:
(1)将含镧、钐、锶和钛的化合物按照(La0.3Sr0.7)1-xTi0.96Sm0.04O3−δ化学计量比配置原料;
(2)将配置好的原料采用溶胶-凝胶法在900-1200℃、大气气氛中合成A位、B位共掺杂的SrTiO3粉体;
(3)将步骤(2)所得到的粉体湿磨或干磨和过筛后得到细度为100-200目的A位缺位的A位、B位共掺杂的SrTiO3细粉;
(4)在A位、B位共掺杂的SrTiO3细粉中加入10-50%的可燃性物质,可燃性物质,然后干压或半干压成型,在于1300-1600℃温度下煅烧2-12小时,得到多孔A位缺位的A、B位共掺杂SrTiO3混合导体块体。
4.根据权利要求3所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于步骤(1)的含镧、含锶、含钐和含钛的化合物选自下列化合物:
La2O3、La(NO3)3、La2(CO3)3、Sr(NO3)2、SrAc2、Sr(CO3)2、Sm2O3、Sm(NO3)3、SmCl3、TiO2、TiCl4和Ti(CH3CH2CH2CH2O)4
5.根据权利要求3所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于步骤(1)化学式中x=0.05-0.09。
6.根据权利要求5所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于步骤(1)化学式中x=0.05、0.07或0.09。
7.根据权利要求3所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于步骤(4)所述的可燃物质包括碳粉、淀粉、玉米粉和树脂中的一种或多种。
8.根据权利要求3所述A位缺位的A、B位共掺杂钛酸锶的混合导体材料的制备方法,其特征在于步骤(4)所述的半干压成型是在A位、B位共掺杂的SrTiO3细粉中加入淀粉溶液或玉米粉等液体做成膏状物,然后再压制成型。
CN201610494526.9A 2016-06-30 2016-06-30 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料 Expired - Fee Related CN106098137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610494526.9A CN106098137B (zh) 2016-06-30 2016-06-30 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610494526.9A CN106098137B (zh) 2016-06-30 2016-06-30 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料

Publications (2)

Publication Number Publication Date
CN106098137A true CN106098137A (zh) 2016-11-09
CN106098137B CN106098137B (zh) 2018-05-11

Family

ID=57214463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610494526.9A Expired - Fee Related CN106098137B (zh) 2016-06-30 2016-06-30 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料

Country Status (1)

Country Link
CN (1) CN106098137B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346703A (zh) * 2018-10-30 2019-02-15 肇庆市华师大光电产业研究院 一种锂离子电池用镍镧共掺杂钛酸锶负极材料及其制备方法
CN113330612A (zh) * 2019-01-30 2021-08-31 日本碍子株式会社 电化学电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237046A (zh) * 2008-01-22 2008-08-06 北京科技大学 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
CN102731090A (zh) * 2012-06-29 2012-10-17 华南师范大学 一种直接碳氢化合物固体氧化物燃料电池阳极材料及其制备方法
US20130122393A1 (en) * 2011-06-15 2013-05-16 Lg Fuel Cell Systems, Inc. Fuel cell system with interconnect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237046A (zh) * 2008-01-22 2008-08-06 北京科技大学 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
US20130122393A1 (en) * 2011-06-15 2013-05-16 Lg Fuel Cell Systems, Inc. Fuel cell system with interconnect
CN102731090A (zh) * 2012-06-29 2012-10-17 华南师范大学 一种直接碳氢化合物固体氧化物燃料电池阳极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹志群: ""稀土元素Sm掺杂 SrTiO3输运以及热电性能的研究"", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346703A (zh) * 2018-10-30 2019-02-15 肇庆市华师大光电产业研究院 一种锂离子电池用镍镧共掺杂钛酸锶负极材料及其制备方法
CN113330612A (zh) * 2019-01-30 2021-08-31 日本碍子株式会社 电化学电池

Also Published As

Publication number Publication date
CN106098137B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
Ding et al. Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance
Zając et al. Applicability of Gd-doped BaZrO3, SrZrO3, BaCeO3 and SrCeO3 proton conducting perovskites as electrolytes for solid oxide fuel cells
Nguyen et al. Preparation and evaluation of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells
Hu et al. Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance
Yang et al. Synthesis, sintering behavior and electrical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ and Ba (Zr0. 1Ce0. 7Y0. 1Yb0. 1) O3− δ proton conductors
Almar et al. Improved phase stability and CO2 poisoning robustness of Y-doped Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ SOFC cathodes at intermediate temperatures
Chen et al. Designing Fe-based oxygen catalysts by density functional theory calculations
Balamurugan et al. Enhancing gas response characteristics of mixed metal oxide gas sensors
Song et al. High performance BaFe1− xBixO3− δ as cobalt-free cathodes for intermediate temperature solid oxide fuel cells
Luo et al. Hexagonal perovskite Ba0. 9Sr0. 1Co0. 8Fe0. 1Ir0. 1O3− δ as an efficient electrocatalyst towards the oxygen evolution reaction
Hoedl et al. Interdependence of oxygenation and hydration in mixed-conducting (Ba, Sr) FeO3− δ perovskites studied by density functional theory
Yin et al. Ionic conduction in BaCe0. 85− xZrxEr0. 15O3-α and its application to ammonia synthesis at atmospheric pressure
CN109637694A (zh) 一种a、b位共掺杂钛酸锶导体材料及其制备方法
Demizu et al. Oxygen Storage Property and Chemical Stability of SrFe1–x Ti x O3− δ with Robust Perovskite Structure
Wu et al. Proton conduction and fuel cell using the CuFe-oxide mineral composite based on CuFeO2 structure
Lü et al. SmBaCoCuO5+ x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells
CN101967057B (zh) 汽车氧传感器用的氧化锆基固体电解质粉料及其制备方法
Li et al. Electrochemical characterization of gradient Sm0. 5Sr0. 5CoO3− δ cathodes on Ce0. 8Sm0. 2O1. 9 electrolytes for solid oxide fuel cells
Wang et al. Chemical stability, ionic conductivity of BaCe0. 9− xZrxSm0. 10O3− α and its application to ammonia synthesis at atmospheric pressure
Tan et al. Rational design of mixed ionic–electronic conducting membranes for oxygen transport
CN105989908B (zh) 一种a、b位共掺杂钛酸锶混合导体材料
CN101237046A (zh) 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
CN106098137B (zh) 一种a位缺位的a、b位共掺杂钛酸锶混合导体材料
He et al. Codoping strategy to improve stability and permeability of Ba0. 6Sr0. 4FeO3− δ-based perovskite membranes
Yang et al. Sr-substituted SmBa0. 75Ca0. 25CoFeO5+ δ as a cathode for intermediate-temperature solid oxide fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180511

Termination date: 20190630

CF01 Termination of patent right due to non-payment of annual fee