CN106096788A - 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 - Google Patents
基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 Download PDFInfo
- Publication number
- CN106096788A CN106096788A CN201610452075.2A CN201610452075A CN106096788A CN 106096788 A CN106096788 A CN 106096788A CN 201610452075 A CN201610452075 A CN 201610452075A CN 106096788 A CN106096788 A CN 106096788A
- Authority
- CN
- China
- Prior art keywords
- neural network
- value
- pso
- cost
- hidden layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009628 steelmaking Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000007935 neutral effect Effects 0.000 title abstract 3
- 238000013528 artificial neural network Methods 0.000 claims abstract description 113
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 47
- 230000002068 genetic effect Effects 0.000 claims abstract description 27
- 238000010606 normalization Methods 0.000 claims abstract description 12
- 210000002569 neuron Anatomy 0.000 claims description 37
- 230000006870 function Effects 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 238000012549 training Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 238000004088 simulation Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000010079 rubber tapping Methods 0.000 claims description 5
- 235000019738 Limestone Nutrition 0.000 claims description 4
- 239000010459 dolomite Substances 0.000 claims description 4
- 229910000514 dolomite Inorganic materials 0.000 claims description 4
- 230000006872 improvement Effects 0.000 claims description 4
- 210000002364 input neuron Anatomy 0.000 claims description 4
- 239000006028 limestone Substances 0.000 claims description 4
- 230000035772 mutation Effects 0.000 claims description 4
- 230000036284 oxygen consumption Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000003723 Smelting Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/067—Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0206—Price or cost determination based on market factors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Finance (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Accounting & Taxation (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Molecular Biology (AREA)
- Operations Research (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Primary Health Care (AREA)
- Physiology (AREA)
- Evolutionary Biology (AREA)
- Educational Administration (AREA)
- Manufacturing & Machinery (AREA)
- Bioinformatics & Computational Biology (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610452075.2A CN106096788B (zh) | 2016-06-21 | 2016-06-21 | 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610452075.2A CN106096788B (zh) | 2016-06-21 | 2016-06-21 | 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106096788A true CN106096788A (zh) | 2016-11-09 |
CN106096788B CN106096788B (zh) | 2021-10-22 |
Family
ID=57237418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610452075.2A Active CN106096788B (zh) | 2016-06-21 | 2016-06-21 | 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106096788B (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107451651A (zh) * | 2017-07-28 | 2017-12-08 | 杭州电子科技大学 | 一种基于粒子群优化的h‑elm的驾驶疲劳检测方法 |
CN107808241A (zh) * | 2017-10-16 | 2018-03-16 | 山西太钢不锈钢股份有限公司 | 一种不锈钢表面检测结果综合分析系统 |
CN107908927A (zh) * | 2017-10-27 | 2018-04-13 | 福州大学 | 基于改进PSO和ELM的疾病‑lncRNA关系预测方法 |
CN108845501A (zh) * | 2018-09-11 | 2018-11-20 | 东北大学 | 一种基于懒惰学习的高炉铁水质量自适应优化控制方法 |
CN109580007A (zh) * | 2019-02-20 | 2019-04-05 | 福州大学 | 一种机房冷通道微环境立体热力分布监测系统及控制方法 |
CN109635914A (zh) * | 2018-12-17 | 2019-04-16 | 杭州电子科技大学 | 基于混合智能遗传粒子群的优化极限学习机轨迹预测方法 |
CN110009089A (zh) * | 2019-03-15 | 2019-07-12 | 重庆科技学院 | 一种基于pls-pso神经网络的自闭症拥抱机智能设计建模与决策参数优化方法 |
CN110755065A (zh) * | 2019-10-14 | 2020-02-07 | 齐鲁工业大学 | 一种基于pso-elm算法的心电信号分类方法及系统 |
CN111008791A (zh) * | 2019-12-24 | 2020-04-14 | 重庆科技学院 | 基于支持向量机的面包生产建模及决策参数优化方法 |
CN111125908A (zh) * | 2019-12-24 | 2020-05-08 | 重庆科技学院 | 基于极限学习机的面包生产建模及决策参数优化方法 |
CN112100711A (zh) * | 2020-08-10 | 2020-12-18 | 南昌大学 | 一种基于arima和pso-elm的混凝土坝变形组合预报模型构建方法 |
CN114547964A (zh) * | 2021-12-31 | 2022-05-27 | 中南大学 | 基于改进hho优化delm的脱丁烷塔软测量建模方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201209147Y (zh) * | 2008-06-19 | 2009-03-18 | 重庆钢铁(集团)有限责任公司 | 转炉双联炼钢装置 |
US20090182693A1 (en) * | 2008-01-14 | 2009-07-16 | Halliburton Energy Services, Inc. | Determining stimulation design parameters using artificial neural networks optimized with a genetic algorithm |
CN101782743A (zh) * | 2010-02-11 | 2010-07-21 | 浙江大学 | 神经网络建模方法及系统 |
CN102831269A (zh) * | 2012-08-16 | 2012-12-19 | 内蒙古科技大学 | 一种流程工业过程工艺参数的确定方法 |
CN105087914A (zh) * | 2015-08-25 | 2015-11-25 | 贵州万山兴隆锰业有限公司 | 一种软锰矿烧结处理用粘接剂及其制备方法 |
-
2016
- 2016-06-21 CN CN201610452075.2A patent/CN106096788B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090182693A1 (en) * | 2008-01-14 | 2009-07-16 | Halliburton Energy Services, Inc. | Determining stimulation design parameters using artificial neural networks optimized with a genetic algorithm |
CN201209147Y (zh) * | 2008-06-19 | 2009-03-18 | 重庆钢铁(集团)有限责任公司 | 转炉双联炼钢装置 |
CN101782743A (zh) * | 2010-02-11 | 2010-07-21 | 浙江大学 | 神经网络建模方法及系统 |
CN102831269A (zh) * | 2012-08-16 | 2012-12-19 | 内蒙古科技大学 | 一种流程工业过程工艺参数的确定方法 |
CN105087914A (zh) * | 2015-08-25 | 2015-11-25 | 贵州万山兴隆锰业有限公司 | 一种软锰矿烧结处理用粘接剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
刘威等: "基于实数编码遗传算法的神经网络成本预测模型及其应用", 《控制理论与应用》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107451651A (zh) * | 2017-07-28 | 2017-12-08 | 杭州电子科技大学 | 一种基于粒子群优化的h‑elm的驾驶疲劳检测方法 |
CN107808241A (zh) * | 2017-10-16 | 2018-03-16 | 山西太钢不锈钢股份有限公司 | 一种不锈钢表面检测结果综合分析系统 |
CN107808241B (zh) * | 2017-10-16 | 2021-08-06 | 山西太钢不锈钢股份有限公司 | 一种不锈钢表面检测结果综合分析系统 |
CN107908927A (zh) * | 2017-10-27 | 2018-04-13 | 福州大学 | 基于改进PSO和ELM的疾病‑lncRNA关系预测方法 |
CN108845501B (zh) * | 2018-09-11 | 2021-07-20 | 东北大学 | 一种基于懒惰学习的高炉铁水质量自适应优化控制方法 |
CN108845501A (zh) * | 2018-09-11 | 2018-11-20 | 东北大学 | 一种基于懒惰学习的高炉铁水质量自适应优化控制方法 |
CN109635914A (zh) * | 2018-12-17 | 2019-04-16 | 杭州电子科技大学 | 基于混合智能遗传粒子群的优化极限学习机轨迹预测方法 |
CN109580007A (zh) * | 2019-02-20 | 2019-04-05 | 福州大学 | 一种机房冷通道微环境立体热力分布监测系统及控制方法 |
CN110009089A (zh) * | 2019-03-15 | 2019-07-12 | 重庆科技学院 | 一种基于pls-pso神经网络的自闭症拥抱机智能设计建模与决策参数优化方法 |
CN110755065A (zh) * | 2019-10-14 | 2020-02-07 | 齐鲁工业大学 | 一种基于pso-elm算法的心电信号分类方法及系统 |
CN111008791A (zh) * | 2019-12-24 | 2020-04-14 | 重庆科技学院 | 基于支持向量机的面包生产建模及决策参数优化方法 |
CN111125908A (zh) * | 2019-12-24 | 2020-05-08 | 重庆科技学院 | 基于极限学习机的面包生产建模及决策参数优化方法 |
CN112100711A (zh) * | 2020-08-10 | 2020-12-18 | 南昌大学 | 一种基于arima和pso-elm的混凝土坝变形组合预报模型构建方法 |
CN112100711B (zh) * | 2020-08-10 | 2022-11-08 | 南昌大学 | 一种基于arima和pso-elm的混凝土坝变形组合预报模型构建方法 |
CN114547964A (zh) * | 2021-12-31 | 2022-05-27 | 中南大学 | 基于改进hho优化delm的脱丁烷塔软测量建模方法 |
CN114547964B (zh) * | 2021-12-31 | 2024-09-13 | 中南大学 | 基于改进hho优化delm的脱丁烷塔软测量建模方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106096788B (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106096788B (zh) | 基于pso_elm神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN106119458B (zh) | 基于bp神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN106054836B (zh) | 基于grnn的转炉炼钢工艺成本控制方法及系统 | |
CN109447346B (zh) | 基于灰色预测与神经网络组合模型转炉氧耗量预测方法 | |
CN106096724B (zh) | 基于elm神经网络的转炉炼钢工艺成本控制方法及系统 | |
Yin et al. | Methods to improve prediction performance of ANN models | |
Xie et al. | Robust stochastic configuration network multi-output modeling of molten iron quality in blast furnace ironmaking | |
CN106249724A (zh) | 一种高炉多元铁水质量预测控制方法及系统 | |
CN109359723A (zh) | 基于改进正则化极限学习机的转炉终点锰含量预测方法 | |
CN111915080B (zh) | 一种基于铁水质量约束的原燃料成本最优配比方法 | |
Wang et al. | Strip hardness prediction in continuous annealing using multiobjective sparse nonlinear ensemble learning with evolutionary feature selection | |
CN113761787A (zh) | 基于深度迁移网络的高炉铁水硅含量在线预测方法及系统 | |
CN109359320B (zh) | 基于多采样率自回归分布滞后模型的高炉指标预测方法 | |
Liu et al. | Prediction model of BOF end-point P and O contents based on PCA–GA–BP neural network | |
CN112036081A (zh) | 基于收得率预测的转炉出钢硅锰合金加入量确定方法 | |
Cardoso et al. | Prediction of silicon content in the hot metal using Bayesian networks and probabilistic reasoning | |
CN105574297A (zh) | 自适应高炉铁水硅含量趋势预报方法 | |
Cardoso et al. | Artificial neural networks for modelling and controlling the variables of a blast furnace | |
CN106019940A (zh) | 基于ukf神经网络的转炉炼钢工艺成本控制方法及系统 | |
CN112861276B (zh) | 基于数据与知识双驱动的高炉料面优化方法 | |
CN113656930B (zh) | 采用机器学习算法对单渣法冶炼终点磷含量的预测方法 | |
CN118039015A (zh) | 一种基于动态时序特征的转炉终点元素含量预测方法 | |
CN116127345B (zh) | 基于深度聚类生成对抗网络的转炉炼钢工艺模式设计方法 | |
Wang et al. | Predicting the endpoint phosphorus content of molten steel in BOF by two-stage hybrid method | |
Yang et al. | A multi-objective optimization model based on long short-term memory and non-dominated sorting genetic algorithm II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangzhou Pengyu Building Materials Trade Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040621 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230830 Application publication date: 20161109 Assignee: Guangzhou Ruiming Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040619 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230830 Application publication date: 20161109 Assignee: Guangzhou Xinrong Electric Automation Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040618 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230830 Application publication date: 20161109 Assignee: Guangzhou Senyu automation machinery design Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040566 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230830 Application publication date: 20161109 Assignee: Dongguan Luohan Building Materials Trade Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040557 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230830 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangzhou trump Environmental Protection Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980040995 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230906 Application publication date: 20161109 Assignee: Foshan WanChen Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041007 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230906 Application publication date: 20161109 Assignee: FOSHAN YIQING TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041003 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230906 Application publication date: 20161109 Assignee: Guangzhou Changbai Machinery Design Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041000 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230906 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangzhou Zifeng Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980042004 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Guangzhou Lanao Electronic Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980042003 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Wanma (Guangzhou) cloud Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980042002 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Guangzhou Hezhong Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041996 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Guangzhou Yuankai Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041994 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Guangzhou xuzhuo Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041992 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 Application publication date: 20161109 Assignee: Yichang Dae Urban and Rural Construction Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980041988 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20230922 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangzhou Ruizhi Computer Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045205 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: Tianhui Intelligent Technology (Guangzhou) Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045203 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: Guangzhou chuangyixin Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045200 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: Guangzhou nuobi Electronic Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045198 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: GUANGZHOU YIJUN TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045196 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: GUANGZHOU XIAOYI TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045193 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: Guangzhou Xiangyun Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045191 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: GUANGZHOU LUNMEI DATA SYSTEM CO.,LTD. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980045188 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231103 Application publication date: 20161109 Assignee: Guangzhou Linfeng Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980044562 Denomination of invention: Based on PSO_ ELM neural network based cost control method and system for converter steelmaking process Granted publication date: 20211022 License type: Common License Record date: 20231031 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangzhou Yuming Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047712 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: Yajia (Guangzhou) Electronic Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047706 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: Guangzhou Yibo Yuntian Information Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047705 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: GUANGZHOU XIAONAN TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047703 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: GUANGZHOU YIDE INTELLIGENT TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047702 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: Lingteng (Guangzhou) Electronic Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047701 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: Guangzhou Taipu Intelligent Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047700 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 Application publication date: 20161109 Assignee: Yuxin (Guangzhou) Electronic Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980047695 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231124 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Guangxi GaoMin Technology Development Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980053986 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20231227 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Yuao Holdings Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980000642 Denomination of invention: Based on PSO_ Cost control method and system for converter steelmaking process using ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20240119 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Foshan chopsticks Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980003017 Denomination of invention: Cost control method and system for converter steelmaking process based on PSO-ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20240322 Application publication date: 20161109 Assignee: Foshan qianshun Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980003012 Denomination of invention: Cost control method and system for converter steelmaking process based on PSO-ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20240322 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Foshan helixing Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980004524 Denomination of invention: Cost control method and system for converter steelmaking process based on PSO-ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20240419 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20161109 Assignee: Yantai Lingju Network Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980008100 Denomination of invention: Cost control method and system for converter steelmaking process based on PSO-ELM neural network Granted publication date: 20211022 License type: Common License Record date: 20240701 |