CN106096327A - 基于Torch监督式深度学习的基因性状识别方法 - Google Patents
基于Torch监督式深度学习的基因性状识别方法 Download PDFInfo
- Publication number
- CN106096327A CN106096327A CN201610399255.9A CN201610399255A CN106096327A CN 106096327 A CN106096327 A CN 106096327A CN 201610399255 A CN201610399255 A CN 201610399255A CN 106096327 A CN106096327 A CN 106096327A
- Authority
- CN
- China
- Prior art keywords
- gene
- data
- degree
- torch
- character
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 9
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 26
- 238000013136 deep learning model Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 4
- 241000577218 Phenes Species 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 4
- 210000002700 urine Anatomy 0.000 abstract description 5
- 238000002869 basic local alignment search tool Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000004899 motility Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 1
- 241001269238 Data Species 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Public Health (AREA)
- Bioethics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610399255.9A CN106096327B (zh) | 2016-06-07 | 2016-06-07 | 基于Torch监督式深度学习的基因性状识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610399255.9A CN106096327B (zh) | 2016-06-07 | 2016-06-07 | 基于Torch监督式深度学习的基因性状识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106096327A true CN106096327A (zh) | 2016-11-09 |
CN106096327B CN106096327B (zh) | 2018-08-17 |
Family
ID=57228957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610399255.9A Active CN106096327B (zh) | 2016-06-07 | 2016-06-07 | 基于Torch监督式深度学习的基因性状识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106096327B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025386A (zh) * | 2017-03-22 | 2017-08-08 | 杭州电子科技大学 | 一种基于深度学习算法进行基因关联分析的方法 |
CN109948703A (zh) * | 2019-03-20 | 2019-06-28 | 上海交通大学 | 基于深度学习的基因图像处理估计方法、系统、介质及设备 |
CN110400597A (zh) * | 2018-04-23 | 2019-11-01 | 成都二十三魔方生物科技有限公司 | 一种基于深度学习的基因型预测方法 |
CN113593635A (zh) * | 2021-08-06 | 2021-11-02 | 上海市农业科学院 | 一种玉米表型预测方法及系统 |
CN115331732A (zh) * | 2022-10-11 | 2022-11-11 | 之江实验室 | 基于图神经网络的基因表型训练、预测方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204921A1 (en) * | 2009-02-06 | 2010-08-12 | Syngenta Participitations Ag | Method for selecting statistically validated candidate genes |
CN101921857A (zh) * | 2010-08-18 | 2010-12-22 | 西北农林科技大学 | 一种中国地方黄牛Pax7基因的单核苷酸多态性的PCR-RFLP检测方法 |
CN103146821A (zh) * | 2013-02-25 | 2013-06-12 | 安徽农业大学 | 一种snp位点对性状遗传效应的评价方法及应用 |
CN104298651A (zh) * | 2014-09-09 | 2015-01-21 | 大连理工大学 | 一种基于深度学习的生物医学命名实体识别和蛋白质交互关系抽取在线系统 |
CN104611407A (zh) * | 2013-11-04 | 2015-05-13 | 常熟市董浜镇北港蔬菜专业合作社 | 运用比较基因组学快速鉴定草莓白粉病基因 |
-
2016
- 2016-06-07 CN CN201610399255.9A patent/CN106096327B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100204921A1 (en) * | 2009-02-06 | 2010-08-12 | Syngenta Participitations Ag | Method for selecting statistically validated candidate genes |
CN101921857A (zh) * | 2010-08-18 | 2010-12-22 | 西北农林科技大学 | 一种中国地方黄牛Pax7基因的单核苷酸多态性的PCR-RFLP检测方法 |
CN103146821A (zh) * | 2013-02-25 | 2013-06-12 | 安徽农业大学 | 一种snp位点对性状遗传效应的评价方法及应用 |
CN104611407A (zh) * | 2013-11-04 | 2015-05-13 | 常熟市董浜镇北港蔬菜专业合作社 | 运用比较基因组学快速鉴定草莓白粉病基因 |
CN104298651A (zh) * | 2014-09-09 | 2015-01-21 | 大连理工大学 | 一种基于深度学习的生物医学命名实体识别和蛋白质交互关系抽取在线系统 |
Non-Patent Citations (4)
Title |
---|
DANIELLE WELTER,ET AL.: "《The NHGRI GWAS Catalog,a curated resource of SNP-trait associations》", 《NUCLEIC ACIDS RESEARCH》 * |
DAVID R.KELLEY,ET AL.: "《Basset:learning the regulatory code of the accessible genome with deep convolutional neural networks》", 《GENOME RESEARCH》 * |
张兰: "《小麦落粒性与产量性状基因功能鉴定》", 《中国博士学位论文全文数据库 农业科技辑》 * |
李渊,等: "《生物医学数据分析中的深度学习方法应用》", 《生物化学与生物物理进展》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107025386A (zh) * | 2017-03-22 | 2017-08-08 | 杭州电子科技大学 | 一种基于深度学习算法进行基因关联分析的方法 |
CN110400597A (zh) * | 2018-04-23 | 2019-11-01 | 成都二十三魔方生物科技有限公司 | 一种基于深度学习的基因型预测方法 |
CN109948703A (zh) * | 2019-03-20 | 2019-06-28 | 上海交通大学 | 基于深度学习的基因图像处理估计方法、系统、介质及设备 |
CN113593635A (zh) * | 2021-08-06 | 2021-11-02 | 上海市农业科学院 | 一种玉米表型预测方法及系统 |
CN115331732A (zh) * | 2022-10-11 | 2022-11-11 | 之江实验室 | 基于图神经网络的基因表型训练、预测方法及装置 |
WO2023217290A1 (zh) * | 2022-10-11 | 2023-11-16 | 之江实验室 | 基于图神经网络的基因表型预测 |
JP7522936B2 (ja) | 2022-10-11 | 2024-07-25 | 之江実験室 | グラフニューラルネットワークに基づく遺伝子表現型予測 |
Also Published As
Publication number | Publication date |
---|---|
CN106096327B (zh) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106096327A (zh) | 基于Torch监督式深度学习的基因性状识别方法 | |
CN110070909B (zh) | 一种基于深度学习的融合多特征的蛋白质功能预测方法 | |
CN106021990A (zh) | 一种将生物基因以特定的性状进行分类与自我识别的方法 | |
CN107577924A (zh) | 一种基于深度学习的长链非编码rna亚细胞位置预测算法 | |
CN113723312B (zh) | 基于视觉transformer的水稻病害识别方法 | |
CN113764037B (zh) | 模型训练、抗体改造和结合位点预测的方法与装置 | |
Li et al. | Protein loop modeling using deep generative adversarial network | |
CN112562791A (zh) | 基于知识图谱的药物靶标作用深度学习预测系统、计算机设备、存储介质 | |
CN116386899A (zh) | 基于图学习的药物疾病关联关系预测方法及相关设备 | |
CN115472221A (zh) | 一种基于深度学习的蛋白质适应度预测方法 | |
CN113223609B (zh) | 基于异质信息网络的药物靶标相互作用预测方法 | |
CN117093260B (zh) | 一种基于决策树分类算法的融合模型网站结构解析方法 | |
CN106203321A (zh) | 一种步态识别方法及系统 | |
CN113192108A (zh) | 一种针对视觉跟踪模型的人在回路训练方法及相关装置 | |
CN116797832A (zh) | 一种基于混合深度学习模型的大球盖菇分级检测方法 | |
CN114999566B (zh) | 基于词向量表征和注意力机制的药物重定位方法及系统 | |
CN114783519A (zh) | 一种利用宏基因组分析土壤生物复合污染的方法 | |
CN106874927A (zh) | 一种随机强分类器的构建方法和系统 | |
CN116978464A (zh) | 数据处理方法、装置、设备以及介质 | |
CN105224826A (zh) | 一种基于s-pcnn与霍夫曼编码的dna序列相似性分析方法 | |
CN110490876A (zh) | 一种用于图像分割的轻量级神经网络 | |
CN115588463A (zh) | 基于深度学习挖掘蛋白质相互作用类型的预测方法 | |
CN105335626A (zh) | 一种基于网络分析的群lasso特征分群方法 | |
Wang et al. | The application of evolutionary computation in generative adversarial networks (GANs): a systematic literature survey | |
CN114758721A (zh) | 一种基于深度学习的转录因子结合位点定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 510670 17 / F, building 3, Yunsheng Science Park, No. 11, puyuzhong Road, Huangpu District, Guangzhou City, Guangdong Province Patentee after: GUANGZHOU MELUX INFORMATION TECHNOLOGY Co.,Ltd. Address before: No.205-7, 79 Ruihe Road, Guangzhou Economic and Technological Development Zone, Guangdong 510665 Patentee before: GUANGZHOU MELUX INFORMATION TECHNOLOGY Co.,Ltd. |
|
PP01 | Preservation of patent right | ||
PP01 | Preservation of patent right |
Effective date of registration: 20231120 Granted publication date: 20180817 |
|
PD01 | Discharge of preservation of patent | ||
PD01 | Discharge of preservation of patent |
Date of cancellation: 20231219 Granted publication date: 20180817 |