CN106091077A - 一种冰源热泵供能系统 - Google Patents

一种冰源热泵供能系统 Download PDF

Info

Publication number
CN106091077A
CN106091077A CN201610647561.XA CN201610647561A CN106091077A CN 106091077 A CN106091077 A CN 106091077A CN 201610647561 A CN201610647561 A CN 201610647561A CN 106091077 A CN106091077 A CN 106091077A
Authority
CN
China
Prior art keywords
water
ice
heat
mixture
preparation facilities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610647561.XA
Other languages
English (en)
Inventor
袁东立
胡志高
沈健
岳玉亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Bo Fu Ming Ming Energy Saving Technology Co Ltd
HUBEI FENGSHEN CLEAN AIR-CONDITIONING EQUIPMENT ENGINEERING Co Ltd
Original Assignee
Beijing Bo Fu Ming Ming Energy Saving Technology Co Ltd
HUBEI FENGSHEN CLEAN AIR-CONDITIONING EQUIPMENT ENGINEERING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Bo Fu Ming Ming Energy Saving Technology Co Ltd, HUBEI FENGSHEN CLEAN AIR-CONDITIONING EQUIPMENT ENGINEERING Co Ltd filed Critical Beijing Bo Fu Ming Ming Energy Saving Technology Co Ltd
Priority to CN201610647561.XA priority Critical patent/CN106091077A/zh
Publication of CN106091077A publication Critical patent/CN106091077A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本发明公开了一种冰源热泵供能系统,包括冰水混合物制备装置及冷凝器;冰水混合物制备装置与所述冷凝器通过热量输送装置连接,使所述冰水混合物制备装置得到的相变潜热热量传输给冷凝器。本发明中的冰源热泵,可以利用江河湖海等地表水、地下水、城市中水、污水以及建筑内蓄存水的相变潜热作为热泵的低温热源为用户提供生活热水、采暖用热源以及供冷用冷源。解决了冬天地表水温度过低易造成常规热泵机组蒸发器结冰而无法使用的问题。不但可以大大减少冬季热泵供热所需的低温热源水量,保护了环境,而且实现了冬季利用室外近冰点低温水源进行生活热水供应以及冬季采暖,节约了能源。

Description

一种冰源热泵供能系统
技术领域
本发明涉及热泵系统技术领域,尤其是一种利用接近冰点水体相变潜热的一种冰源热泵供能系统。
背景技术
我国为了节能减排,近几年建造了大量的利用地下水的水源热泵,取得了一定的节能减排效果。而利用地下水的水源热泵,随着各地对地下水的监管越来越严和地下水资源的限制,推广起来有一定的困难。为解决上述问题,本领域的技术人员研发了用于地表水的水源热泵,但地表水水源热泵容易受到地表水水源温度的影响,过低的地表水温会导致水源热泵的蒸发器结冰,水源热泵难以工作。如中国北部沿海地带,由于冬季海水水温过低,使得海水水源热泵应用存在技术困难。对于长江沿线,由于长江水水体较大,冬季水温不是很低,作为地表水水源热泵的低温热源尚可,但是在此流域对于一些体量较小、流动性不佳的湖水、河水等温度则比较低,使得利用这些地表水作为水源热泵的低温热源比较困难,项目不能实施。再比如黄河流域及以北,在冬季地表水许多水系是冻结的,不光流动河水冻结,其他静止的湖水、水库也极容易冻结,因此在此区域内很少使用地表水水源热泵。但是这些区域的许多水体不是全部冻结,而是表面冻结,冰盖下面是不冻结的。
科学研究表明,0度水变成0度冰放出的相变潜热的热量为80kcal/kg,而一般进出水源热泵蒸发器的水温差为△t=5℃(热量为5kcal/kg),故同样水量,低温的水相较于正常温度的水,可以多提供15倍的热量。现有的水源热泵不能使用低温水,也就不能合理利用低温水在结冰过程中释放的相变潜热,导致低温水资源的利用率低,浪费资源。
发明内容
为解决现有技术中,水源热泵存在的低温水资源利用率低的技术问题,本发明的技术方案如下:
本发明中的一种冰源热泵供能系统,包括冷凝器、冰水混合物制备装置;所述冰水混合物制备装置与所述冷凝器通过热量输送装置连接,使所述冰水混合物制备装置得到的相变潜热热量传输给冷凝器。
在一种优选的实施方式中,还包括水源泵;所述水源泵的出水口与所述冰水混合物制备装置的进水管连接,所述冰水混合物制备装置的出水管的排出口通入水源地。
在一种优选的实施方式中,还包括供热泵,所述供热泵出水口与所述冷凝器进水管连接,所述冷凝器出水管与冷热末端进水口管连接,所述冷热末端出水管与所述供热泵进水口连接,使冷热末端输出的温度较低的水泵入冷凝器进行循环利用。
在一种优选的实施方式中,还包括沉淀悬浮分离装置,所述沉淀悬浮分离装置的出水管与所述水源泵的进水口连接,所述沉淀悬浮分离装置的进水管与水源地接通。
在一种优选的实施方式中,还包括蒸发器及中介水泵;所述蒸发器通过热量输送装置与所述冷凝器连接,所述蒸发器的出水管与所述冰水混合物制备装置的进水管连接,所述冰水混合物制备装置的出水管与所述蒸发器的进水管连接,所述冰水混合物制备装置的出水管与所述蒸发器的进水管连接管路上设置所述中介水泵,所述冰水混合物制备装置内含有冷冻液,使从冰水混合物制备装置出来的温度升高的冷冻液泵入蒸发器。
在一种优选的实施方式中,还包括冰水分离装置;所述冰水分离装置的进水管与所述冰水混合物制备装置的出水管连接,所述冰水分离装置的出水管与所述水源泵的进水口连接,所述冰水分离装置的出水管还与水源地接通。
在一种优选的实施方式中,还包括跨季节储能槽,所述跨季节储能槽的进水管与所述冰水混合物制备装置的出水管连接,使冰水混合物制备装置制备得到的冰水混合物存储于所述跨季节储能槽中。
在一种优选的实施方式中,还包括供冷换热器,所述供冷换热器进水管与所述跨季节储能槽的出水管连接,供冷换热器进水管与所述跨季节储能槽的出水管连接的管路上设置放冷泵,所述供冷换热器的出水管与所述冷热末端的进水管连接,所述冷热末端的出水管与所述供冷换热器进水管连接,所述冷热末端的出水管与所述供冷换热器进水管连接管路上设置循环泵,所述循环泵将所述冷热末端升温的水泵入所述供冷换热器。
在一种优选的实施方式中,还包括冷却塔;所述冷却塔的输入端与所述冷凝器的出水管连接,所述冷却塔的输出端与所述冷凝器的进水管连接,且连接管路上设置供热泵。
本发明中的一种冰源热泵供能系统,与现有技术相比,其有益效果为:
首先,冰源热泵中包括冰水混合物制备装置,通过水源泵将低温水源水泵送至冰水混合物制备装置中按可控部分比例结冰,冰水混合制冰技术可以保证低温水源水只是部分冻结且不会堵塞热泵机组通道及管道,因此可以用于低温地表水中。然后提取低温水结冰的相变潜热为蒸发器或者冷凝器提供低温热源,该相变潜热的热量很大,可以合理利用资源、节约能源。
其次,包括沉淀悬浮分离装置及冰水分离装置,沉淀悬浮装置可以将水源的水进行过滤,防止水中的杂物影响冰水混合物制备装置的运行。冰水分离装置将冰水混合物制备装置所得的冰水混合物中的冰和水分离,并可以将所得冰存储于跨季节储能槽之中,冰水混合物中的水回到冰水混合物制备装置,进行循环利用。
再次,跨季节储能槽中所存储的冰,可以在夏季时使用,通过供冷换热器将冷冻水传输给冷热末端进行供冷,提高能源综合利用效率。
本发明中的一种冰源热泵供能系统,可以利用江河湖海等地表水、地下水、城市中水、污水以及建筑内蓄存水的相变潜热作为热泵的低温热源为用户提供生活热水、采暖用热源以及供冷用冷源。不但解决了冬天地表水温度过低易造成常规热泵机组蒸发器结冰而无法使用的问题,同时可以大大减少冬季热泵供热所需的低温热源水量,保护了环境。且将冬季制热时产生的冰进行跨季节蓄存,供建筑夏季空调供冷,达到在制热的时候进行冷回收,提高了系统综合能效,节约能源。
附图说明
图1是直排低浓度冰地表水直接冰源热泵供能系统示意图;
图2是直排低浓度冰地表水间接冰源热泵供能系统示意图;
图3是直排高浓度冰地表水间接冰源热泵供能系统示意图;
图4是机械外运纯冰地表水间接冰源热泵供能系统示意图;
图5是跨季节储能槽冰源热泵供能系统示意图;
具体实施方式
下面结合附图对本发明作进一步说明:
系统设备包括:沉淀悬浮分离装置1、水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6、水源地7、蒸发器8、中介水泵9、冰水分离设备10、清洁水源11、跨季储能槽12、放冷泵13、供冷换热器14、循环泵15、冷却塔16。
1、实施方式1:
参见图1直排低浓度冰地表水直接冰源热泵供能系统示意图。
一种直排低浓度冰地表水直接冰源热泵供能系统,由沉淀悬浮分离装置1、水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6组成。
其中,流体介质类型及流体流动方向见图1所示。
一种冰源热泵供能系统,包括沉淀悬浮分离装置1,沉淀悬浮分离装置1的进水管与水源地7接通,沉淀悬浮分离装置1的出水管与水源泵2的进水口连接。水源泵2的出水口与冰水混合物制备装置3的进水管连接,冰水混合物制备装置3的出水管的排出口通入水源地7。使得经由沉淀悬浮分离装置1及冰水混合物制备装置3的水进行循环。冰水混合物制备装置3中的水变成冰释放的相变潜热热量通过热量输送装置传输给冷凝器4,冷凝器4进水管与供热泵5出水口连接,冷凝器4出水管与冷热末端6进水口管连接,冷热末端6出水管与供热泵5进水口连接,使冷热末端6进行供热后,输出的温度较低的水泵入冷凝器4进行循环利用,不断进行加热、供热的循环利用。
使用时,从水源地7抽取的水经过沉淀悬浮分离装置1简单处理后,进入水源泵2,然后进入冰水混合物制备装置3后部分冻结,最后经管道排放至所取水的水源地7。冰水混合物制备装置3所得相变潜热热量传输给冷凝器4、冷凝器4接收到热量,冷凝器中的水温度升高,从冷凝器4出来的高温水供给冷热末端6,冷热末端6对外界环境加热后,水温降低,温度降低后的供热回水进入供热泵5,然后供给冷凝器4,进行水的重复利用,水量得以循环。
2、实施方式2:
参见图2直排低浓度冰地表水间接冰源热泵供能系统示意图。
一种直排低浓度冰地表水间接冰源热泵供能系统,由沉淀悬浮分离装置1、水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6、蒸发器8、中介水泵9组成。
其中,流体介质类型及流体流动方向见图2所示。
其中,水源地中的水可以是井水、海水、江河湖水、污水、中水等一切可利用之水体。
一种冰源热泵供能系统,包括沉淀悬浮分离装置1,沉淀悬浮分离装置1的进水管与水源地7接通,沉淀悬浮分离装置1的出水管与水源泵2的进水口连接,水源泵2的出水口与冰水混合物制备装置3的进水管连接,冰水混合物制备装置3的出水管的排出口通入水源地7。使得经由沉淀悬浮分离装置1及冰水混合物制备装置3的水进行循环。冰水混合物制备装置3的出水管还与蒸发器8的进水管连接,冰水混合物制备装置3的进水管还与蒸发器8的出水管连接,在冰水混合物制备装置3的出水管与蒸发器8的进水管连接管路上设置中介水泵9,冰水混合物制备装置3内含有冷冻液,使从冰水混合物制备装置3出来的温度升高的冷冻液泵入蒸发器8。冰水混合物制备装置3中的水变成冰释放的相变潜热热量传给冷冻液,冷冻液的温度升高,通过中介水泵9泵入至蒸发器8,蒸发器8温度升高,并经热量输送装置传输给冷凝器4,冷凝器4进水管与供热泵5出水口连接,冷凝器4出水管与冷热末端6进水口管连接,冷热末端6出水管与供热泵5进水口连接,使冷热末端6进行供热后,输出的温度较低的水泵入冷凝器4进行循环利用,不断进行加热、供热的循环利用。
使用时,从水源地7抽取的水经过沉淀悬浮分离装置1简单处理后进入水源泵2,然后进入冰水混合物制备装置3后部分冻结,最后管道排放至于所取水源地7处。冰水混合物制备装置3所得相变潜热热量传输给冷冻液,冷冻液输送至蒸发器8中,蒸发器8将热量传输给冷凝器4,则蒸发器8内的冷冻液温度降低,温度降低的防冻液进入冰水混合物制备装置3后升温,由中介水泵9供给蒸发器8循环放热。冷凝器4接收到热量,冷凝器中的水温度升高,从冷凝器4出来的高温水供给冷热末端6,冷热末端6对外界环境加热后,水温降低,温度降低后的供热回水进入供热泵5,然后供给冷凝器4,进行水的重复利用,水量得以循环。
3、实施方式3:
参见图3直排高浓度冰地表水间接冰源热泵供能系统示意图。
一种直排高浓度冰地表水间接冰源热泵供能系统,由沉淀悬浮分离装置1、水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6、蒸发器8、中介水泵9、冰水分离装置10组成。
其中,流体介质类型及流体流动方向见图3所示。
一种冰源热泵供能系统,包括沉淀悬浮分离装置1,沉淀悬浮分离装置1的进水管与水源地7接通,沉淀悬浮分离装置1的出水管与水源泵2的进水口连接,水源泵2的出水口与冰水混合物制备装置3的进水管连接,冰水混合物制备装置3的出水管与冰水分离装置10的进水管连接,冰水分离装置10的出水管分为两个,其中一个出水管与水源泵2的进水口连接,另一个出水管通向水源地7。冰水混合物制备装置3的出水管还与蒸发器8的进水管连接,冰水混合物制备装置3的进水管还与蒸发器8的出水管连接,在冰水混合物制备装置3的出水管与蒸发器8的进水管连接管路上设置中介水泵9,冰水混合物制备装置3内含有冷冻液,使从冰水混合物制备装置3出来的温度升高的冷冻液泵入蒸发器8。冰水混合物制备装置3中的水变成冰释放的相变潜热热量传给冷冻液,冷冻液的温度升高,通过中介水泵9泵入至蒸发器8,蒸发器8温度升高,并经热量输送装置传输给冷凝器4,冷凝器4进水管与供热泵5出水口连接,冷凝器4出水管与冷热末端6进水口管连接,冷热末端6出水管与供热泵5进水口连接,使冷热末端6进行供热后,输出的温度较低的水泵入冷凝器4进行循环利用,不断进行加热、供热的循环利用。
使用时,从水源地7抽取的水经过沉淀悬浮分离装置1简单处理后进入水源泵2,然后进入冰水混合物制备装置3后部分冻结,然后一部分冰水混合物进入冰水分离装置10,分离出的冰存储起来,以备后续使用;分离出来的高浓度冰水混合物一部分直接排放于所取水源地、另一部分传输至水源泵2进行循环利用。冰水混合物制备装置3所得相变潜热热量传输给冷冻液,冷冻液输送至蒸发器8中,蒸发器8将热量传输给冷凝器4,则蒸发器8内的冷冻液温度降低,温度降低的防冻液进入冰水混合物制备装置3后升温,由中介水泵9供给蒸发器8循环放热。冷凝器4接收到热量,冷凝器中的水温度升高,从冷凝器4出来的高温水供给冷热末端6,冷热末端6对外界环境加热后,水温降低,温度降低后的供热回水进入供热泵5,然后供给冷凝器4,进行水的重复利用,水量得以循环。
4、实施方式4:
参见图4机械外运纯冰地表水间接冰源热泵供能系统示意图。
一种机械外运纯冰地表水间接冰源热泵供能系统,由水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6、蒸发器8、中介水泵9、冰水分离装置10组成。
其中,流体介质类型及流体流动方向见图4所示。
一种冰源热泵供能系统,包括沉淀悬浮分离装置1,沉淀悬浮分离装置1的进水管与清洁水源11接通,沉淀悬浮分离装置1的出水管与水源泵2的进水口连接,水源泵2的出水口与冰水混合物制备装置3的进水管连接,冰水混合物制备装置3的出水管与冰水分离装置10的进水管连接,冰水分离装置10的出水管分为两个,其中一个出水管与水源泵2的进水口连接,另一个出水管排出的水输送至机器设备中,运输到需要使用低温水或者冰块的地方。冰水混合物制备装置3的出水管还与蒸发器8的进水管连接,冰水混合物制备装置3的进水管还与蒸发器8的出水管连接,在冰水混合物制备装置3的出水管与蒸发器8的进水管连接管路上设置中介水泵9,冰水混合物制备装置3内含有冷冻液,使从冰水混合物制备装置3出来的温度升高的冷冻液泵入蒸发器8。冰水混合物制备装置3中的水变成冰释放的相变潜热热量传给冷冻液,冷冻液的温度升高,通过中介水泵9泵入至蒸发器8,蒸发器8温度升高,并经热量输送装置传输给冷凝器4,冷凝器4进水管与供热泵5出水口连接,冷凝器4出水管与冷热末端6进水口管连接,冷热末端6出水管与供热泵5进水口连接,使冷热末端6进行供热后,输出的温度较低的水泵入冷凝器4进行循环利用,不断进行加热、供热的循环利用。
使用时,从水源地7供给的水进入水源泵2,然后进入冰水混合物制备装置3后部分冻结,然后进入冰水分离设备10,由此分离出来的纯冰由汽车或其他方式外运,分离出来的纯水供系统回用。冰水混合物制备装置3所得相变潜热热量传输给冷冻液,冷冻液输送至蒸发器8中,蒸发器8将热量传输给冷凝器4,则蒸发器8内的冷冻液温度降低,温度降低的防冻液进入冰水混合物制备装置3后升温,由中介水泵9供给蒸发器8循环放热。冷凝器4接收到热量,冷凝器中的水温度升高,从冷凝器4出来的高温水供给冷热末端6,冷热末端6对外界环境加热后,水温降低,温度降低后的供热回水进入供热泵5,然后供给冷凝器4,进行水的重复利用,水量得以循环。
5、实施方式5:
参见图5跨季节蓄能冰源热泵供能系统示意图。
一种跨季节蓄能冰源热泵供能系统,由沉淀悬浮分离装置1、水源泵2、冰水混合物制备装置3、冷凝器4、供热泵5、冷热末端6、蒸发器8、中介水泵9、冰水分离装置10、跨季节储能槽12、放冷泵13、供冷换热器14、循环泵15、冷却塔16组成。
其中,流体介质类型及流体流动方向见图5所示。
一种冰源热泵供能系统,包括水源泵2的进水口与跨季节储能槽12连接,水源泵2的出水口与冰水混合物制备装置3的进水管连接,冰水混合物制备装置3的出水管与跨季节储能槽12的进水管连接,冰水混合物制备装置3的出水管还与蒸发器8的进水管连接。冰水混合物制备装置3的进水管还与蒸发器8的出水管连接,在冰水混合物制备装置3的出水管与蒸发器8的进水管连接管路上设置中介水泵9。冰水混合物制备装置3内含有冷冻液,使从冰水混合物制备装置3出来的温度升高的冷冻液泵入蒸发器8。冰水混合物制备装置3中的水变成冰释放的相变潜热热量传给冷冻液,冷冻液的温度升高,通过中介水泵9泵入至蒸发器8。蒸发器8温度升高,并经热量输送装置传输给冷凝器4,冷凝器4进水管与供热泵5出水口连接,冷凝器4出水管与冷热末端6进水口管连接,冷热末端6出水管与供热泵5进水口连接,使冷热末端6进行供热后,输出的温度较低的水泵入冷凝器4进行循环利用,不断进行加热、供热的循环利用。
供冷换热器14进水管与跨季节储能槽12的出水管连接,供冷换热器14进水管与跨季节储能槽12的出水管连接的管路上设置放冷泵13,供冷换热器14的出水管与冷热末端6的进水管连接,冷热末端6的出水管与供冷换热器14进水管连接,冷热末端6的出水管与供冷换热器14进水管连接管路上设置循环泵15,所述循环泵15将冷热末端升温的水泵入所述供冷换热器。其中跨季节储能槽12中冰水混合物可以从冷凝器4中获得。
其中冬季时,从跨季储能槽12供给的水进入水源泵2,然后进入冰水混合物制备装置3后部分冻结,然后进入跨季储能槽12,冰水混合物在跨季储能槽12内进行冰水自然分离,冰上浮水下沉。冰水混合物制备装置3所得相变潜热热量传输给冷冻液,冷冻液输送至蒸发器8中,蒸发器8将热量传输给冷凝器4,则蒸发器8内的冷冻液温度降低,温度降低的防冻液进入冰水混合物制备装置3后升温,由中介水泵9供给蒸发器8循环放热。冷凝器4接收到热量,冷凝器中的水温度升高,从冷凝器4出来的高温水供给冷热末端6,冷热末端6对外界环境加热后,水温降低,温度降低后的供热回水进入供热泵5,然后供给冷凝器4,进行水的重复利用,水量得以循环。
其中夏季时,由放冷泵13抽取跨季储能槽12内下部的水供给供冷换热器14,升温后的回水至跨季储能槽12内。由冷热末端6回来的高温水通过循环泵15送入到供冷换热器14,温度降低后供给冷热末端6。系统也可以实现由水源泵2、冰水混合物制备装置3、蒸发器8、中介水泵9、供热泵5、冷凝器4、冷却塔/16运行供冷。
以上所述的实施方式仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的保护范围内。

Claims (9)

1.一种冰源热泵供能系统,包括冷凝器;其特征在于:还包括冰水混合物制备装置;所述冰水混合物制备装置与所述冷凝器通过热量输送装置连接,使所述冰水混合物制备装置得到的相变潜热热量传输给冷凝器。
2.根据权利要求1所述的一种冰源热泵供能系统,其特征在于:还包括水源泵;所述水源泵的出水口与所述冰水混合物制备装置的进水管连接,所述冰水混合物制备装置的出水管的排出口通入水源地。
3.根据权利要求2所述的一种冰源热泵供能系统,其特征在于:还包括供热泵,所述供热泵出水口与所述冷凝器进水管连接,所述冷凝器出水管与冷热末端进水口管连接,所述冷热末端出水管与所述供热泵进水口连接,使冷热末端输出的温度较低的水泵入冷凝器进行循环利用。
4.根据权利要求3所述的一种冰源热泵供能系统,其特征在于:还包括沉淀悬浮分离装置,所述沉淀悬浮分离装置的出水管与所述水源泵的进水口连接,所述沉淀悬浮分离装置的进水管与水源地接通。
5.根据权利要求1-4任一项所述的一种冰源热泵供能系统,其特征在于:还包括蒸发器及中介水泵;所述蒸发器通过热量输送装置与所述冷凝器连接,所述蒸发器的出水管与所述冰水混合物制备装置的进水管连接,所述冰水混合物制备装置的出水管与所述蒸发器的进水管连接,所述冰水混合物制备装置的出水管与所述蒸发器的进水管连接管路上设置所述中介水泵,所述冰水混合物制备装置内含有冷冻液,使从冰水混合物制备装置出来的温度升高的冷冻液泵入蒸发器。
6.根据权利要求5所述的一种冰源热泵供能系统,其特征在于:还包括冰水分离装置;所述冰水分离装置的进水管与所述冰水混合物制备装置的出水管连接,所述冰水分离装置的出水管与所述水源泵的进水口连接,所述冰水分离装置的出水管还与水源地接通。
7.根据权利要求1、2、3、4或6所述的一种冰源热泵供能系统,其特征在于:还包括跨季节储能槽,所述跨季节储能槽的进水管与所述冰水混合物制备装置的出水管连接,使冰水混合物制备装置制备得到的冰水混合物存储于所述跨季节储能槽中。
8.根据权利要求7所述的一种冰源热泵供能系统,其特征在于:还包括供冷换热器,所述供冷换热器进水管与所述跨季节储能槽的出水管连接,供冷换热器进水管与所述跨季节储能槽的出水管连接的管路上设置放冷泵,所述供冷换热器的出水管与所述冷热末端的进水管连接,所述冷热末端的出水管与所述供冷换热器进水管连接,所述冷热末端的出水管与所述供冷换热器进水管连接管路上设置循环泵,所述循环泵将所述冷热末端升温的水泵入所述供冷换热器。
9.根据权利要求8所述的一种冰源热泵供能系统,其特征在于:还包括冷却塔;所述冷却塔的输入端与所述冷凝器的出水管连接,所述冷却塔的输出端与所述冷凝器的进水管连接,且连接管路上设置供热泵。
CN201610647561.XA 2016-08-09 2016-08-09 一种冰源热泵供能系统 Pending CN106091077A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610647561.XA CN106091077A (zh) 2016-08-09 2016-08-09 一种冰源热泵供能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610647561.XA CN106091077A (zh) 2016-08-09 2016-08-09 一种冰源热泵供能系统

Publications (1)

Publication Number Publication Date
CN106091077A true CN106091077A (zh) 2016-11-09

Family

ID=57455999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610647561.XA Pending CN106091077A (zh) 2016-08-09 2016-08-09 一种冰源热泵供能系统

Country Status (1)

Country Link
CN (1) CN106091077A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766358A (zh) * 2016-12-22 2017-05-31 中国科学院理化技术研究所 一种太阳能冰源热泵供热系统
CN106969536A (zh) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 地水气三源一体热泵机组
CN108489154A (zh) * 2018-04-20 2018-09-04 杨胜东 一种冰水源热泵换热器及其系统
CN108870511A (zh) * 2018-08-05 2018-11-23 青岛美克热源塔热泵研究有限公司 水汽悬浮冷凝热源塔热泵供热站
CN109737640A (zh) * 2019-01-14 2019-05-10 江苏河海新能源股份有限公司 一种水源热泵系统和制热方法
CN110345665A (zh) * 2019-06-10 2019-10-18 湖北风神净化空调设备工程有限公司 一种含冰率可控的冰源热泵系统
CN110986443A (zh) * 2020-01-19 2020-04-10 重庆大学 联合制冰机的热源塔热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201662279U (zh) * 2010-01-22 2010-12-01 湖北风神净化空调设备工程有限公司 开式江水源热泵区域供冷供热系统
CN102003837A (zh) * 2009-09-03 2011-04-06 施国梁 利用水的相变热作热泵系统热源的方法及装置
CN201973958U (zh) * 2011-01-12 2011-09-14 李正春 省水式水源热泵
EP2645005A1 (en) * 2012-03-28 2013-10-02 VGE bvba A heat pump system using latent heat
CN104654573A (zh) * 2015-02-09 2015-05-27 大连理工大学 一种回收废热热融式凝固潜热热泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003837A (zh) * 2009-09-03 2011-04-06 施国梁 利用水的相变热作热泵系统热源的方法及装置
CN201662279U (zh) * 2010-01-22 2010-12-01 湖北风神净化空调设备工程有限公司 开式江水源热泵区域供冷供热系统
CN201973958U (zh) * 2011-01-12 2011-09-14 李正春 省水式水源热泵
EP2645005A1 (en) * 2012-03-28 2013-10-02 VGE bvba A heat pump system using latent heat
CN104654573A (zh) * 2015-02-09 2015-05-27 大连理工大学 一种回收废热热融式凝固潜热热泵

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766358A (zh) * 2016-12-22 2017-05-31 中国科学院理化技术研究所 一种太阳能冰源热泵供热系统
CN106766358B (zh) * 2016-12-22 2020-07-24 中国科学院理化技术研究所 一种太阳能冰源热泵供热系统
CN106969536A (zh) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 地水气三源一体热泵机组
CN108489154A (zh) * 2018-04-20 2018-09-04 杨胜东 一种冰水源热泵换热器及其系统
CN108870511A (zh) * 2018-08-05 2018-11-23 青岛美克热源塔热泵研究有限公司 水汽悬浮冷凝热源塔热泵供热站
CN108870511B (zh) * 2018-08-05 2023-12-19 青岛美克热源塔热泵研究有限公司 水汽悬浮冷凝热源塔热泵供热站
CN109737640A (zh) * 2019-01-14 2019-05-10 江苏河海新能源股份有限公司 一种水源热泵系统和制热方法
CN110345665A (zh) * 2019-06-10 2019-10-18 湖北风神净化空调设备工程有限公司 一种含冰率可控的冰源热泵系统
CN110986443A (zh) * 2020-01-19 2020-04-10 重庆大学 联合制冰机的热源塔热泵系统
CN110986443B (zh) * 2020-01-19 2024-03-08 重庆大学 联合制冰机的热源塔热泵系统

Similar Documents

Publication Publication Date Title
CN106091077A (zh) 一种冰源热泵供能系统
CN103075841B (zh) 基于热泵新型低温热电冷联供系统
CN106288571A (zh) 一种过冷水动态冰浆制造系统
CN106500204A (zh) 一种空调系统
CN205156209U (zh) 带辅助冷源的海洋冷冻水集中供冷装置
CN202551927U (zh) 海水养殖热泵冷热水机组及其系统
CN108395876A (zh) 一种复合融雪剂及其制备方法
CN105783547B (zh) 抗冻剂水自动分离热源塔及疏水性流体热源塔热泵系统
CN206420075U (zh) 一种空调系统
CN206037200U (zh) 一种冰源热泵供能系统
CN105953289B (zh) 一种利用凝固潜热的热泵系统
CN209877408U (zh) 一种兼有蓄能和溶液再生功能的能源塔热泵系统
CN105444309B (zh) 一种lng船用空调及冻库系统
CN102578027A (zh) 海水养殖热泵冷热水机组及其系统
CN103034221B (zh) 热电厂循环水系统
CN106152612A (zh) 一种提取凝固热或制冰的热泵供热供冷系统
CN206739681U (zh) 基于热源塔与地埋管联合运行的大温差双机头热泵系统
CN107024049A (zh) 新型造雪装置
CN102410670B (zh) 一种煤矿废弃冻结管利用装置及其使用方法
CN107036359A (zh) 一种冷水相变能热泵供热分流式排冰装置及系统
CN209165841U (zh) 一种双效冷水机组冷热联供系统
CN205957541U (zh) 一种提取凝固热或制冰的热泵供热供冷系统
CN207871592U (zh) 一种实现结晶工艺过程能量梯级利用的装置
CN205481481U (zh) 超大温差单管远距离输送水蓄冷供冷系统
CN209147494U (zh) 一种带全自动冰水分离装置的冰源热泵供能系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109