CN106082789B - 一种sma混合料的配比设计方法 - Google Patents

一种sma混合料的配比设计方法 Download PDF

Info

Publication number
CN106082789B
CN106082789B CN201610421338.3A CN201610421338A CN106082789B CN 106082789 B CN106082789 B CN 106082789B CN 201610421338 A CN201610421338 A CN 201610421338A CN 106082789 B CN106082789 B CN 106082789B
Authority
CN
China
Prior art keywords
weight
parts
sma
aggregate ratio
bitumen aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610421338.3A
Other languages
English (en)
Other versions
CN106082789A (zh
Inventor
朱冀军
闫涛
郭晓华
王笑森
张永利
韩芳
张卫
焦彦利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Communications Planning Design and Research Institute Co Ltd
Original Assignee
HEBEI PROVINCIAL COMMUNICATIONS PLANNING AND DESIGN INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEBEI PROVINCIAL COMMUNICATIONS PLANNING AND DESIGN INSTITUTE filed Critical HEBEI PROVINCIAL COMMUNICATIONS PLANNING AND DESIGN INSTITUTE
Priority to CN201610421338.3A priority Critical patent/CN106082789B/zh
Publication of CN106082789A publication Critical patent/CN106082789A/zh
Application granted granted Critical
Publication of CN106082789B publication Critical patent/CN106082789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

本发明涉及一种SMA混合料的配比设计方法,所述配比设计方法包括:初选初试级配,计算理论最小油石比,确定最大油石比,选定初试油石比,根据初试油石比选定级配,根据选定级配确定最佳油石比。该方法根据理论计算和试验得出油石比的范围确定初试油石比,从而从三个初试级配中确定选定级配,根据选定级配最终确定最佳油石比,所述SMA混合料不掺加纤维,增加了混合料稳定性、施工的经济性和环保性、生产效率。

Description

一种SMA混合料的配比设计方法
技术领域
本发明涉及道桥工程技术领域,尤其涉及一种SMA混合料的配比设计方法。
背景技术
SMA(沥青玛蹄脂碎石混合料)作为一种高性能沥青路面材料,基于其优良的抗滑性能、较高的抗车辙性能和耐久性,被国内外广泛应用。传统的SMA混合料是一种由沥青、纤维稳定剂、矿粉及少量的细集料组成的沥青玛蹄脂填充间断级配的粗集料骨架间隙的沥青混合料。SMA中纤维的首要功能是起吸附和稳定沥青的作用,其能够减少SMA沥青混合料在搅拌、运输、摊铺过程中沥青粘结剂的滴、漏、损现象,从而避免高沥青用量的混合料产生离析和泛油,因此很久以来纤维被认为是SMA中不可或缺的组分之一。但实际工程应用中发现在混合料中掺加纤维存在的一些问题:首先市场上存在的木质素纤维良莠不齐,纤维吸水性强,混合料中纤维一旦结团严重影响SMA性能的稳定性;同时,纤维增大了沥青玛蹄脂的稠度,为了保证压实效果要求出料温度达到175~185℃之间,不仅大大增加了能源消耗和污染气体的排放,而且加剧了混合料的短期老化程度;纤维的存在使混合料拌合中增加一道纤维投放工序,降低了混合料的生产效率。
随着我国交通事业的发展,对高性能路面材料SMA的需求越来越大,需要从技术手段出发解决因组成材料品质和施工复杂造成的SMA混合料质量稳定性差的问题,降低SMA应用的门槛。同时,我国当前面临巨大的环保压力,降低SMA混合料生产中的能量消耗和废气排放,具有巨大的社会效益和经济效益。
发明内容
鉴于上述的分析,本发明旨在提供一种SMA混合料的配比设计方法,该SMA混合料中不添加纤维,解决了现有SMA混合料中纤维质量参差不齐,混合料中纤维结团分布不均导致的SMA混合料质量不稳定,施工要求高造成的不经济、不环保等阻碍SMA大规模应用的问题。
本发明的目的主要是通过以下技术方案实现的:
本发明一方面还提供一种SMA混合料的配比设计方法,包括以下步骤:
步骤1:调整矿料比例,初选3个粗细不同的初试级配;
步骤2:根据3%~4%的目标空隙率、大于等于16.5%的矿料间隙率和实测各组成材料的体积参数,按照以下公式计算理论最小油石比;
其中,V1为矿料体积,V2为沥青体积,V3为空隙体积,m1为矿料重量,Pa为油石比,γb为沥青相对密度,γsb为矿料合成毛体积相对密度;
步骤3:在混合料中添加表面活性剂后在目标拌合出料温度150℃下进行不同油石比混合料的析漏实验,确定满足析漏条件的最大油石比;
步骤4:根据步骤2所述理论最小油石比和步骤3所述的最大油石比确定油石比范围,并在所述油石比范围内确定初试油石比;
步骤5:配合步骤4确定的初试油石比,采用马歇尔试验方法从步骤1中的3个初试级配选择VMA≥16.5%、VCAmix<VCADRC的级配作为选定级配;其中VMA为矿料间隙率,所述VCAmix为粗集料骨架间隙率,所述VCADRC为捣实状态下粗集料骨架间隙率;
步骤6:针对选定级配拟定不少于3个的油石比,采用马歇尔方法确定最佳油石比。
进一步地,步骤1中3个所述初试级配的初选范围为:
其中所述矿料包括集料和石灰石矿粉;
所述集料是用于配制混凝土或砂浆的颗粒状松散石料,也称骨料;
所述空隙率是混合料试件中空气占试件总体积的比值,计算式=(1-试件毛体积相对密度/最大理论密度)×100%,单位%;
所述矿料间隙率是指矿料外的体积占试件总体积百分率,计算式=(1-试件毛体积相对密度/矿料合成毛体积相对密度×各种矿料占沥青混合料总质量的比例之和)×100,单位%;
所述油石比为混合料中沥青与矿料质量比的百分数;
对于SMA-16,SMA-19粗集料是指粒径大于4.75mm的集料,对于SAM-13,SMA-10是指粒径大于2.36mm的集料。
进一步地,所述SMA混合料包括1重量份的SBS改性沥青、13-19重量份的集料、1.2-2.4重量份的石灰石矿粉和0.002-0.009重量份的表面活性剂。
更近一步地,所述SMA混合料包括1重量份的SBS改性沥青、13-19重量份的集料、1.2-2.4重量份的石灰石矿粉和0.005-0.006重量份的表面活性剂。
进一步地,所述SMA混合料包括1重量份的SBS改性沥青、15重量份的集料、1.6重量份的石灰石矿粉和0.005重量份的表面活性剂。
进一步地,所述SMA混合料包括1重量份的SBS改性沥青、14重量份的集料、2.0重量份的石灰石矿粉和0.006重量份的表面活性剂。
进一步地,所述SMA混合料包括1重量份的SBS改性沥青、17重量份的集料、2.2重量份的石灰石矿粉和0.005重量份的表面活性剂。
本发明有益效果如下:
本发明所述SMA混合料的配比设计方法根据理论计算和试验得出油石比的范围确定初试油石比,从而从三个初试级配中确定选定级配,根据选定级配最终确定最佳油石比,所述SMA混合料与现有混合料相比具有以下优点:
1)在不掺加纤维的条件下实现SMA混合料的正常施工,有效的避免了纤维品质不一,拌合生产中结团等对混合料的不利影响,显著增加了混合料的均匀性和稳定性,
2)常用的木质素纤维吸水性强,取消纤维能够有效提高混合料的水稳定性;
3)没有纤维对沥青的吸附,沥青用量可降低5%~10%,提高混合料的经济性;
4)降低施工温度30~50℃,有效降低了施工过程对混合料的短期老化,同时降低温室气体排放50%以上,减少沥青烟排放75%以上,能源消耗降低30%以上;
5)简化了拌合生产工艺,生产效率提高14%左右;
6)在不掺加纤维的条件下,SMA混合料的高温性能、低温性能、水稳定性及路面实测性能指标均满足《公路沥青路面施工技术规范》(JTG F40-2004)要求。
具体实施方式
下面结合优选实施例来进一步详述本发明,应当理解,本发明优选实施例仅对本发明技术方案的进一步解释,并不构成对本发明技术方案的限制。
实施例1
本发明实施例提供一种SMA混合料的配比设计方法,包括以下步骤:
步骤1:调整矿料比例,从表1初选级配范围中初选3个粗细不同的初试级配,所述初试级配如表2所示;
表1 初选级配范围
表2 初选级配
筛孔(mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
1#级配 100 89.7 63.9 30.3 24.1 20.3 14.5 13.2 11.9 11.4
2#级配 100 90 64.7 28.7 22.3 19.1 14 12.9 11.7 11.2
3#级配 100 90.8 67.3 26.5 19.7 17.2 13.2 12.4 11.5 11.1
步骤2:以4%目标空隙率,大于等于16.5%的矿料间隙率和实测矿料及沥青体积数按照以下公式计算理论最小油石比;
其中,V1为矿料体积,V2为沥青体积,V3为空隙体积,m1为矿料重量,Pa为油石比,γb为沥青相对密度,γsb为矿料合成毛体积相对密度;
计算的理论最小油石比为5.5%;
步骤3:在SBS改性沥青中添加0.006份的表面活性剂后,在目标拌合出料温度150℃下进行5.5%、5.7%、5.9%、6.1%、6.3%油石比的析漏试验,确定最大油石比为5.9%;
步骤4:根据步骤2所述理论最小油石比和步骤3所述满足析漏要求的最大油石比确定油石比范围为5.5-5.9%,选取初试油石比为5.6%。
步骤5:根据步骤4确定的初试油石比,采用马歇尔方法从步骤1中的3个初试级配中选择满足VMA≥16.5%、VCAmix<VCADRC的2#级配作为选定级配;
步骤6:根据步骤5选定的2#级配拟定3个油石比,如表3所示,根据马歇尔方法确定的最佳油石比为5.6%
表3 SMA混合料马歇尔试验结果
实施例2
本发明实施例提供一种SMA混合料,包括:1重量份的SBS改性沥青(I-D)、16.07重量份的集料、1.79重量份的石灰石矿粉(油石比=SBS改性沥青/(集料+石灰石矿粉)=5.6%)和0.005重量份的Evotherm M1表面活性剂;其中集料取自河北承德地区产玄武岩的,级配如表4所示。
所述SMA混合料是采用以下方法制备的:步骤1:称取一定量的SBS改性沥青,称取与所述SBS改性沥青(I-D)的称取量0.5%的表面活性剂加入到所述SBS改性沥青中搅拌5min,然后置于165℃的烘箱中烘干备用;步骤2:称取与步骤1所述SBS改性沥青称取量16.07倍的所述集料于155℃的烘干箱中恒温4h,然后加入到150℃的拌合锅中干拌90s;步骤3:将步骤1中烘干备用的所述沥青加入到步骤2所述的拌合锅中,搅拌180s;步骤4:称取与步骤1所述SBS改性沥青的称取量1.79倍的矿粉加入到步骤3所述的拌合锅中,搅拌90s,形成混合料;步骤5:将步骤4所述混合料在145-150℃下出料,在120-135℃下双面75次击实。
表4 具体实施例矿料级配
筛孔 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
级配上限 100 100 75 34 26 24 20 16 15 12
级配下限 100 90 50 20 15 14 12 10 9 8
实施例2 100 97.4 68.4 29.3 21.8 18.7 15.4 14 12.6 11.9
实施例3 100 89.7 63.9 30.3 24.1 20.3 14.5 13.2 11.9 11.4
实施例4 100 91.9 67.0 28.8 24.2 19.6 14.9 13.0 12.3 11.9
实施例3
本发明实施例提供一种SMA混合料,包括:1重量份的SBS改性沥青(I-D)、16.43重量份的集料、1.43重量份的石灰石矿粉(油石比=SBS改性沥青/(集料+石灰石矿粉)=5.6%)和0.006重量份的Evotherm M1表面活性剂;其中集料取自山东产玄武岩,级配如表4所示。
所述SMA混合料是采用以下方法制备的:步骤1:称取一定量的SBS改性沥青,称取与所述SBS改性沥青(I-D)的称取量0.6%的表面活性剂加入到所述SBS改性沥青中搅拌10min,然后置于155℃的烘箱中烘干备用;步骤2:称取与步骤1所述SBS改性沥青称取量16.43倍的所述集料于145℃的烘干箱中恒温4h,然后加入到145℃的拌合锅中干拌90s;步骤3:将步骤1中恒温备用的所述沥青加入到步骤2所述的拌合锅中,搅拌180s;步骤4:称取与步骤1所述SBS改性沥青的称取量1.43倍的矿粉加入到步骤3所述的拌合锅中,搅拌90s,形成混合料;步骤5:将步骤4所述混合料在145-155℃下出料,在120-135℃下双面75次击实。
实施例4
本发明实施例提供一种SMA混合料,包括:1重量份的SBS改性沥青(I-D)、15.43重量份的集料、2.11重量份的石灰石矿粉(油石比=SBS改性沥青/(集料+石灰石矿粉)=5.7%)和0.005-0.006重量份的表面活性剂;其中集料取自山东产玄武岩,级配如表4所示。
所述SMA混合料是通过现场拌合制备的,并进行现场施工:步骤1:取SBS改性沥青质量的0.5%-0.6%表面活性剂加入沥青罐中搅拌备用;步骤2:称取与步骤1中所述SBS改性沥青的15.43倍所述集料(油石比为5.7%)加热至145~155℃,加入拌合楼中进行干拌;步骤3:将步骤1所述备用的所述沥青的温度控制在160-170℃,然后称取步骤1所述SBS改性沥青的称取量2.11倍的矿粉加入到步骤2所述拌合楼中拌合45s;步骤4:将步骤3的混合料在温度145-155℃下出料;步骤5:步骤4混合料施工现场摊铺温度115-135℃,其中初碾温度为100-130℃,终碾温度大于等于90℃;步骤6:步骤5摊铺碾压完毕路面温度小于50℃时开方交通。
将实施例2-实施例4各混合料进行低温弯曲及车辙实验,结果如表5所示,各混合料的马歇尔残留稳定度及冻融劈裂强度实验结果如表6所示,实施例4的SMA混合料施工后的路面检测指标如表7所示。由表5-表7可知,本发明实施例SMA混合料的高温性能、低温性能和水稳定性及路面实测性能指标均满足《公路沥青路面施工技术规范》(JTG F40-2004)要求。
综上所述,本发明实施例提供了一种SMA混合料的配比设计方法,根据理论计算各实验计算油石比的范围,从而从三个初级级配中选择级配,最终确定最佳油石比,所述SMA混合料不掺杂纤维,解决了现有SMA混合料中纤维质量参差不齐,混合料中纤维结团分布不均导致的SMA混合料质量不稳定,施工要求高造成的不经济、不环保等阻碍SMA大规模应用的问题,同时满足《公路沥青路面施工技术规范》(JTG F40-2004)要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
表5 SMA混合料低温弯曲及车辙试验结果
表6 SMA混合料马歇尔残留稳定度及冻融劈裂强度试验结果
表7 实施例4路面检测指标
参数 空隙率(%) 压实度 渗水(mL/min) 构造深度(mm) BPN摆值
实施例4 5.9 98.20% 5 1 60

Claims (6)

1.一种SMA混合料的配比设计方法,其特征在于,包括以下步骤:
步骤1:调整矿料比例,初选3个粗细不同的初试级配,其中矿料包括集料和石灰石矿粉;
步骤2:根据3%~4%的目标空隙率、大于等于16.5%的矿料间隙率和实测各组成材料的体积参数,按照以下公式计算理论最小油石比;
其中,V1为矿料体积,V2为沥青体积,V3为空隙体积,m1为矿料重量,Pa为油石比,γb为沥青相对密度,γsb为矿料合成毛体积相对密度;
步骤3:在混合料中添加表面活性剂后在目标拌合出料温度150℃下进行不同油石比混合料的析漏实验,确定满足析漏条件的最大油石比;
步骤4:根据步骤2所述理论最小油石比和步骤3所述的最大油石比确定油石比范围,并在所述油石比范围内确定初试油石比;
步骤5:配合步骤4确定的初试油石比,采用马歇尔试验方法从步骤1中的3个初试级配选择VMA≥16.5%、VCAmix<VCADRC的级配作为选定级配;其中VMA为矿料间隙率,所述VCAmix为粗集料骨架间隙率,所述VCADRC为捣实状态下粗集料骨架间隙率;
步骤6:针对选定级配拟定不少于3个的油石比,采用马歇尔方法确定最佳油石比;
所述SMA混合料中不添加纤维,所述SMA混合料包括1重量份的SBS改性沥青、13-19重量份的集料、1.2-2.4重量份的石灰石矿粉和0.002-0.009重量份的表面活性剂;所述表面活性剂为Evotherm M1表面活性剂;
所述SMA混合料是通过现场拌合制备的,施工现场摊铺温度115-135℃,其中初碾温度为100-130℃,终碾温度大于等于90℃。
2.根据权利要求1所述SMA混合料的配比设计方法,其特征在于,步骤1中3 个所述初试级配的初选范围为:
3.根据权利要求1所述SMA混合料的配比设计方法,其特征在于,所述SMA混合料包括1重量份的SBS改性沥青、13-19重量份的集料、1.2-2.4重量份的石灰石矿粉和0.005-0.006重量份的表面活性剂。
4.根据权利要求1所述SMA混合料的配比设计方法,其特征在于,所述SMA混合料包括1重量份的SBS改性沥青、15.23重量份的集料、1.6重量份的石灰石矿粉和0.005重量份的表面活性剂。
5.根据权利要求1所述SMA混合料的配比设计方法,其特征在于,所述SMA混合料包括1重量份的SBS改性沥青、14.52重量份的集料、2.0重量份的石灰石矿粉和0.006重量份的表面活性剂。
6.根据权利要求1所述SMA混合料的配比设计方法,其特征在于,所述SMA混合料包括1重量份的SBS改性沥青、17.46重量份的集料、2.2重量份的石灰石矿粉和0.005重量份的表面活性剂。
CN201610421338.3A 2016-06-15 2016-06-15 一种sma混合料的配比设计方法 Active CN106082789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610421338.3A CN106082789B (zh) 2016-06-15 2016-06-15 一种sma混合料的配比设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610421338.3A CN106082789B (zh) 2016-06-15 2016-06-15 一种sma混合料的配比设计方法

Publications (2)

Publication Number Publication Date
CN106082789A CN106082789A (zh) 2016-11-09
CN106082789B true CN106082789B (zh) 2019-03-15

Family

ID=57845696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610421338.3A Active CN106082789B (zh) 2016-06-15 2016-06-15 一种sma混合料的配比设计方法

Country Status (1)

Country Link
CN (1) CN106082789B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109896777B (zh) * 2019-04-23 2021-11-05 哈尔滨工业大学 一种路用环氧树脂混凝土的制备方法
CN110438866B (zh) * 2019-08-10 2022-06-03 深圳市市政工程总公司 温拌沥青混合料的最佳油石比设计方法
CN111747682B (zh) * 2020-03-12 2022-03-15 北京铁科特种工程技术有限公司 用于高速铁路基床的沥青级配碎石及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125956A (zh) * 2006-08-18 2008-02-20 深圳市海川实业股份有限公司 一种铺筑降噪排水性路面用的高粘彩色沥青胶结料
CN101244911A (zh) * 2008-01-16 2008-08-20 武汉理工大学 排水性沥青混合料材料组成设计方法
CN102515628A (zh) * 2011-12-06 2012-06-27 长安大学 一种多孔沥青混合料的沥青用量确定方法
CN104631283A (zh) * 2014-12-19 2015-05-20 重庆鹏方交通科技股份有限公司 一种浇注式沥青混合料沥青用量设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125956A (zh) * 2006-08-18 2008-02-20 深圳市海川实业股份有限公司 一种铺筑降噪排水性路面用的高粘彩色沥青胶结料
CN101244911A (zh) * 2008-01-16 2008-08-20 武汉理工大学 排水性沥青混合料材料组成设计方法
CN102515628A (zh) * 2011-12-06 2012-06-27 长安大学 一种多孔沥青混合料的沥青用量确定方法
CN104631283A (zh) * 2014-12-19 2015-05-20 重庆鹏方交通科技股份有限公司 一种浇注式沥青混合料沥青用量设计方法

Also Published As

Publication number Publication date
CN106082789A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN104844082B (zh) 掺入工业废渣的透水性混凝土及其生产方法
CN106009719A (zh) 厂拌温热再生沥青混合料及其制备方法
CN106082789B (zh) 一种sma混合料的配比设计方法
CN102234188B (zh) 一种环保型温拌沥青混合料的制备方法
CN103556560A (zh) 一种高性能温拌再生沥青混合料制备方法
CN103204644B (zh) 一种沥青温拌改性剂及其制备方法
CN102531471A (zh) 乳化沥青、含有其的混合料以及由该混合料形成的路面
CN105837096B (zh) 一种混凝土生产工艺
CN103558111A (zh) 一种乳化沥青冷再生混合料含水量的快速检测方法
CN103134712B (zh) 适于集料公称最大粒径<26.5mm沥青混合料试件的垂直振动成型方法
CN106951721A (zh) 一种厚层摊铺冷拌大空隙乳化沥青混合料及其设计方法
CN106431145B (zh) 水泥稳定碎石混合料设计方法
CN103864352B (zh) 一种耐久性高模量热再生混合料、配制方法及应用
CN107188461A (zh) 一种掺入北美孚玄武岩纤维透水沥青混合料的制备方法
CN105036613A (zh) 裂缝压敏固化自愈合沥青混凝土、制备方法及使用方法
CN107200512A (zh) 一种复合改性沥青混合料
CN104140223B (zh) 一种直投活化橡胶沥青混合料及其制备方法
Zhao et al. Life cycle assessment and multi-index performance evaluation of semi-flexible pavement after composite modification by using fly ash, rubber particles, warm mixing asphalt and recycled asphalt pavement
CN106083177A (zh) 泡沫温拌sma‑13沥青混合料、制备方法及性能评价方法
CN103833267B (zh) 一种易施工的耐久性高强热再生沥青混合料、配制方法及应用
CN103482924B (zh) 一种保水降温路面材料及其应用
CN107265926A (zh) 一种掺入北美孚玄武岩纤维透水沥青混合料
CN106146028B (zh) 一种泡沫沥青混合料及其制备方法
CN102305849A (zh) 基于路面芯样的沥青混合料结构类型的评价方法
CN105777010B (zh) 一种橡胶钢丝沥青玛蹄脂碎石混合料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 050011 No.36 Jianshe South Street, Qiaoxi District, Shijiazhuang City, Hebei Province

Patentee after: Hebei transportation planning and Design Institute Co.,Ltd.

Address before: 050011 No.36 Jianshe South Street, Shijiazhuang City, Hebei Province

Patentee before: HEBEI PROVINCIAL COMMUNICATIONS PLANNING AND DESIGN INSTITUTE