CN106082105A - 用于加速度传感器的微机械结构 - Google Patents

用于加速度传感器的微机械结构 Download PDF

Info

Publication number
CN106082105A
CN106082105A CN201610269963.0A CN201610269963A CN106082105A CN 106082105 A CN106082105 A CN 106082105A CN 201610269963 A CN201610269963 A CN 201610269963A CN 106082105 A CN106082105 A CN 106082105A
Authority
CN
China
Prior art keywords
substrate
electrode
mechanical structure
micro mechanical
oscillating mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610269963.0A
Other languages
English (en)
Inventor
G·N·C·乌尔希里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN106082105A publication Critical patent/CN106082105A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/015Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being integrated on the same substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system
    • G01P2015/0882Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system for providing damping of vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

一种用于加速度传感器的微机械结构(100),所述微机械结构具有:振动质量(20),其借助中央连接元件(13)连接到衬底(10)上;布置在所述衬底(10)上的定义数量的电极(11a,12a);其中相对于感测轴线在所述连接元件(13)的两侧分别布置有一个弹簧元件(21)。

Description

用于加速度传感器的微机械结构
技术领域
本发明涉及一种用于加速度传感器的微机械结构。本发明还涉及一种用于制造用于加速度传感器的微机械结构的方法。
背景技术
现代的用于测量加速度的传感器通常包括由硅制成的微机械结构(“传感器核”)和分析处理电子部件。
用于平面内(英语:in-plane)运动的加速度传感器是已知的。所述加速度传感器包括可运动的(“振动”)质量和电极。在质量运动时,电极的距离变化,由此可以探测加速度。
发明内容
本发明的任务是,提供一种用于加速度传感器的改进的微机械结构。
根据第一方面,所述任务通过一种用于加速度传感器的微机械结构解决,所述微机械结构具有:
-振动质量,其借助中央连接元件连接到衬底上;
-布置在衬底上的定义数量的电极;其中
-相对于感测轴线在连接元件的两侧上分别布置有一个弹簧元件。
以这种方式,电极布置地更接近感测轴线,由此这种布置可以对衬底垂直于感测轴线的弯曲更不敏感。由于弹簧元件直接布置在至衬底的连接部上,可以在振动质量中为另外的阻尼结构或弹簧创造空间。
根据另一方面,所述任务通过一种用于制造用于加速度传感器的微机械结构的方法解决,所述方法具有以下步骤:
-构造衬底,该衬底具有构造在该衬底上的电极;
-构造振动质量;
-借助中央连接元件将振动质量连接到衬底上;以及
-相对于振动质量的感测轴线在连接元件的两侧构造两个弹簧元件。
所述微机械结构的一种优选的扩展方案的特征在于,在所述两个弹簧元件之间,在振动质量上布置有至少一个阻尼元件。以这种方式可以有利地将两个弹簧元件之间的可用空间用于微机械结构的结构细节。
所述微机械结构的另一种优选的扩展方案的特征在于,在两个弹簧元件之间,在衬底上布置有至少一个另外的电极对。以这种方式也可以有利地充分利用两个弹簧元件之间的可用空间。
所述微机械结构的另一种优选的扩展方案的特征在于,能够在第一电极上施加第一电势,在第二电极上施加第二电势并且在连接元件上施加第三电势。以这种方式合适地接线用于微机械加速度传感器的检测结构。
附图说明
以下借助多个附图以其他特征和优点详细说明本发明。相同的或功能相同的元件具有相同的附图标记。附图不必然按照真实比例绘制。
在附图中示出了:
图1:传统的用于加速度传感器的微机械结构的俯视图;
图2:具有电势标示的图1的微机械结构的俯视图;
图3:根据本发明的用于加速度传感器的微机械结构的一种实施方式的俯视图;
图4:根据本发明的方法的一种实施方式的原理流程图。
具体实施方式
图1示出传统的用于加速度传感器的微机械结构100的俯视图,该微机械结构具有所谓的“半中央悬挂”。微机械结构100包括振动质量20,所述振动质量20借助中央布置的连接元件13功能性地连接到布置在振动质量20下方的衬底10上。第一电极11a布置在衬底10上,所述第一电极11a互相连接并且通过连接元件11置于第一电势P1上。在衬底10上还布置有第二电极12a,所述第二电极12a互相连接并且通过连接元件12置于第二电势P2上。振动质量20借助第二弹簧元件21可运动地悬挂,其中,弹簧元件21通过长形构造的、穿孔的梁元件或接片元件(Stegelement)22分别与连接元件13连接。机械止挡元件14设置用于限界振动质量20的偏移。
振动质量20以这种方式具有向下至衬底10的两个连接元件13,由此振动质量20很大程度上独立于衬底翘曲以这种方式,衬底翘曲能够几乎不影响传感器信号或使传感器信号失真。所提及的衬底翘曲具有不利的后果:布置在衬底10上的电极11a、12a随着衬底10一起转动或一起偏移。由此可能产生电极11a、12a互相之间的相对运动,由此产生加速度误差信号。
对于图1的传统的结构,缺点主要是:电极11a、12a在两侧放置在穿孔的接片元件22周围并且由此相对于衬底10尤其在z方向上的弯曲具有提高的敏感度,其中,所述敏感度随着距感测轴线的距离增大而升高,所述感测轴线延伸穿过两个止挡元件14和两个连接元件13。
图2示出图1的结构100,具有电极11a、12a的和连接元件13的电势的标示。所有第一电极11a和所有第二电极12a分别互相功能性地电连接并且以这种方式和方法分别具有相同的电势P1或P2。连接元件13置于地电势PM上。能看出,对于电极11a和12a的连接以及对于电极11a和12a到衬底10上的连接需要相对较多的空间。这主要因为存在穿孔的接片元件22。还能看出,所述电极11a、12a相对于结构100的总尺寸布置地远离具有连接元件13的中央,并且以这种方式对于衬底10的机械弯曲或翘曲是敏感的,因为衬底10的翘曲起的作用越大,则电极11a、12a离感测轴线就越远。
提出所述两个弹簧元件21的特别的构型或布置,从而以这种方式实现振动质量20的“中央悬挂”。
图3示出根据本发明的用于微机械加速度传感器的微机械结构100的一种实施方式的俯视图。能看出,相对于振动质量20的感测轴线在连接元件13的两侧分别布置一个弹簧元件21。以这种方式,传统的穿孔的接片元件22是多余的,由此对于所述结构100存在额外的空间可供使用。电极11a、12a相对靠中央地连接到衬底10上,从而对于结构100可以期待与尤其在z方向上的衬底弯曲或衬底翘曲的更小相关性。多个连接接片通过振动质量20的横向区域构造,由此可以提高振动质量20的机械稳健性。
在两个弹簧元件21之间的被释放的空间中可以设有至少一个另外的电极对11a、12a(未示出)。可选地,在此也可以设有用于结构100的优化的机械阻尼的其他结构。
图4示出用于制造用于加速度传感器的微机械结构100的方法的一种实施方式的原理流程图。
在步骤200中构造衬底10,该衬底10具有构造在该衬底10上的电极11a、12a。
在步骤210中构造振动质量20。
在步骤220中借助中央连接元件13实施振动质量20到衬底10的连接。
最后在步骤230中相对于振动质量20的感测轴线在连接元件13的两侧实施两个弹簧元件21的构造。
总而言之,以本发明提出一种用于加速度传感器的微机械结构,该微机械结构有利地提供对衬底的机械翘曲(例如由于所述结构在传感器中的安装工艺)的更低敏感度。由于两个弹簧直接布置在振动质量到衬底的连接元件上,可以以简单的方式实现这种效果。结果,由此对于微机械加速度传感器实现改进的感测特性。
有利地,可以将所说明的原理应用到其他传感器技术上,例如压阻微机械加速度传感器。
尽管借助具体的实施方式说明了本发明,然而本发明绝不受限于所述实施方式。本领域技术人员将看出,以上未说明或只部分地说明了的多种多样的变型方面都是可能的,而不偏离本发明的核心。

Claims (10)

1.一种用于加速度传感器的微机械结构(100),所述微机械结构具有:振动质量(20),其借助中央连接元件(13)连接到衬底(10)上;布置在所述衬底(10)上的定义数量的电极(11a,12a);
其中,相对于感测轴线在所述连接元件(13)的两侧分别布置有一个弹簧元件(21)。
2.根据权利要求1所述的微机械结构(100),其特征在于,在所述两个弹簧元件(21)之间,在所述振动质量(20)上布置有至少一个阻尼元件。
3.根据权利要求1或2所述的微机械结构(100),其特征在于,在所述两个弹簧元件(21)之间,在所述衬底(10)上布置有至少一个另外的电极对(11a,12a)。
4.根据以上权利要求中任一项所述的微机械结构(100),其特征在于,在第一电极(11a)上能够施加第一电势(P1),在第二电极(12a)上能够施加第二电势(P2)并且在所述连接元件(13)上能够施加第三电势(P3)。
5.一种加速度传感器,其具有根据权利要求1至4中任一项所述的微机械结构(100)。
6.一种用于制造用于加速度传感器的微机械结构(100)的方法,所述方法具有以下步骤:
构造衬底(10),所述衬底(10)具有构造在该衬底(10)上的电极(11a,12a);
构造振动质量(20);
借助中央连接元件(13)将所述振动质量(20)连接到所述衬底(10)上;以及
相对于所述振动质量(20)的感测轴线在所述连接元件(13)的两侧构造两个弹簧元件(21)。
7.根据权利要求6所述的方法,其中,将第一电极(11a)置于第一电势(P1)上,其中,将第二电极(12a)置于第二电势(P2)上,其中,将所述连接元件(13)置于第三电势(P3)上。
8.根据权利要求6或7所述的方法,其中,在所述两个弹簧元件(21)之间,在所述振动质量(20)上布置至少一个另外的阻尼元件。
9.根据权利要求6至8中任一项所述的方法,其中,在所述两个弹簧元件(21)之间,在所述衬底(10)上布置至少两个另外的电极(11a,12a)。
10.一种根据权利要求1至4中任一项所述的微机械结构(100)的应用,用于微机械加速度传感器。
CN201610269963.0A 2015-04-27 2016-04-27 用于加速度传感器的微机械结构 Pending CN106082105A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015207637.7 2015-04-27
DE102015207637.7A DE102015207637A1 (de) 2015-04-27 2015-04-27 Mikromechanische Struktur für einen Beschleunigungssensor

Publications (1)

Publication Number Publication Date
CN106082105A true CN106082105A (zh) 2016-11-09

Family

ID=57110680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610269963.0A Pending CN106082105A (zh) 2015-04-27 2016-04-27 用于加速度传感器的微机械结构

Country Status (4)

Country Link
US (1) US20160313365A1 (zh)
CN (1) CN106082105A (zh)
DE (1) DE102015207637A1 (zh)
TW (1) TW201638588A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983721A (en) * 1996-09-27 1999-11-16 Robert Bosch Gmbh Micromechanical component having closely spaced apart anchoring areas for a surface structure disposed thereon
US20100147077A1 (en) * 2008-12-12 2010-06-17 Guenther-Nino-Carlo Ullrich Acceleration sensor
CN102030302A (zh) * 2009-10-06 2011-04-27 罗伯特·博世有限公司 微机械结构和用于制造微机械结构的方法
CN102449488A (zh) * 2009-05-26 2012-05-09 罗伯特·博世有限公司 微机械结构
CN103213934A (zh) * 2012-01-23 2013-07-24 罗伯特·博世有限公司 微机械结构和用于制造微机械结构的方法
WO2013187018A1 (ja) * 2012-06-13 2013-12-19 株式会社デンソー 静電容量式物理量センサ
CN104422786A (zh) * 2013-08-26 2015-03-18 罗伯特·博世有限公司 微机械传感器和用于制造微机械传感器的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200740B4 (de) * 2011-10-27 2024-03-21 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
US9547095B2 (en) * 2012-12-19 2017-01-17 Westerngeco L.L.C. MEMS-based rotation sensor for seismic applications and sensor units having same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983721A (en) * 1996-09-27 1999-11-16 Robert Bosch Gmbh Micromechanical component having closely spaced apart anchoring areas for a surface structure disposed thereon
US20100147077A1 (en) * 2008-12-12 2010-06-17 Guenther-Nino-Carlo Ullrich Acceleration sensor
CN102449488A (zh) * 2009-05-26 2012-05-09 罗伯特·博世有限公司 微机械结构
CN102030302A (zh) * 2009-10-06 2011-04-27 罗伯特·博世有限公司 微机械结构和用于制造微机械结构的方法
CN103213934A (zh) * 2012-01-23 2013-07-24 罗伯特·博世有限公司 微机械结构和用于制造微机械结构的方法
WO2013187018A1 (ja) * 2012-06-13 2013-12-19 株式会社デンソー 静電容量式物理量センサ
CN104422786A (zh) * 2013-08-26 2015-03-18 罗伯特·博世有限公司 微机械传感器和用于制造微机械传感器的方法

Also Published As

Publication number Publication date
US20160313365A1 (en) 2016-10-27
DE102015207637A1 (de) 2016-10-27
TW201638588A (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
CN102602875B (zh) 具有折叠扭力弹簧的mems传感器
CN102608354B (zh) 具有双检验块的mems传感器
EP3121605B1 (en) Multi-axis inertial sensor with dual mass and integrated damping structure
CN102046513B (zh) Mems传感器
US20130205899A1 (en) Combo Transducer and Combo Transducer Package
CN105699693B (zh) 具有减少漂移功能的z轴微机电检测结构
TWI762816B (zh) 經提升靈敏度之z軸加速度計
US11060937B2 (en) Micromechanical pressure sensor
US9903884B2 (en) Parallel plate capacitor and acceleration sensor comprising same
US8424383B2 (en) Mass for use in a micro-electro-mechanical-system sensor and 3-dimensional micro-electro-mechanical-system sensor using same
CN106915721A (zh) 具有中央固定座的微机电装置
CN104817051A (zh) 一种应力隔离的mems惯性传感器
Liu et al. Analysis and design for piezoresistive accelerometer geometry considering sensitivity, resonant frequency and cross-axis sensitivity
US10571268B2 (en) MEMS sensor with offset anchor load rejection
CN104950137B (zh) 具有应力隔离结构的横向敏感加速度传感器芯片
CN104849493A (zh) 用于微机械z传感器的摆杆装置
CN109073673B (zh) 微机械传感器和用于制造微机械传感器的方法
CN102680738A (zh) 具有抗横向干扰的硅纳米带巨压阻效应微加速度计
CN107271720B (zh) 低轴间耦合度的八梁三轴加速度传感器
CN106082105A (zh) 用于加速度传感器的微机械结构
TWI732056B (zh) 用於感測器元件的微機械彈簧
JP5292600B2 (ja) 加速度センサ
CN108061546A (zh) 四质量双解耦陀螺仪
US10598686B2 (en) Micromechanical z-acceleration sensor
US20170219619A1 (en) Accelerometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161109

WD01 Invention patent application deemed withdrawn after publication