CN106081911B - 一种塔式起重机在线监测系统 - Google Patents

一种塔式起重机在线监测系统 Download PDF

Info

Publication number
CN106081911B
CN106081911B CN201610745220.6A CN201610745220A CN106081911B CN 106081911 B CN106081911 B CN 106081911B CN 201610745220 A CN201610745220 A CN 201610745220A CN 106081911 B CN106081911 B CN 106081911B
Authority
CN
China
Prior art keywords
sensor
feature vector
signal
module
control centre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610745220.6A
Other languages
English (en)
Other versions
CN106081911A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIZHOU TENGDA CONSTRUCTION MACHINERY CO., LTD.
Original Assignee
TAIZHOU TENGDA CONSTRUCTION MACHINERY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIZHOU TENGDA CONSTRUCTION MACHINERY CO Ltd filed Critical TAIZHOU TENGDA CONSTRUCTION MACHINERY CO Ltd
Priority to CN201610745220.6A priority Critical patent/CN106081911B/zh
Publication of CN106081911A publication Critical patent/CN106081911A/zh
Application granted granted Critical
Publication of CN106081911B publication Critical patent/CN106081911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • B66C15/065Arrangements or use of warning devices electrical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明提供了一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接。本发明将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患。

Description

一种塔式起重机在线监测系统
技术领域
本发明涉及起重机安全监测领域,具体涉及一种塔式起重机在线监测系统。
背景技术
相关技术中,塔式起重机的安全监控一般都是采用在塔式起重机上以及塔式起重机的作业范围内安装若干的摄像头,摄像头通过数据线与监控室的电脑连接,工作人员通过观测电脑上的作业情况来判断作业环境是否危险,因此不能准确、全面、及时的监控到塔式起重机作业时的隐患。
发明内容
为解决上述问题,本发明旨在提供一种塔式起重机在线监测系统。
本发明的目的采用以下技术方案来实现:
一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接。
本发明的有益效果为:将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明结构示意图;
图2是本发明传感器故障诊断装置的示意图。
附图标记:
信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6、健康记录模块7。
具体实施方式
结合以下实施例对本发明作进一步描述。
应用场景1
参见图1、图2,本应用场景的一个实施例的一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器。
优选的,所述控制中心连接有数据库。
本发明上述实施例将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
优选的,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
本优选实施例采用各种报警灯显示不同的报警信号,便于工作人员查看,提高了系统的安全性。
优选的,所述现场监测装置还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6和健康记录模块7。
本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快速搭建,有利于在监测起重机作业的同时监测各传感器,保证监测系统的监测执行。
优选的,所述信号采集滤波模块1用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取模块2用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取模块3用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选模块4分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别模块5用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别间的分离性测度;
(2)输出最小分离性测度对应的
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新模块6用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新模块6,以提高模型的适应能力和应用范围。
优选的,所述健康记录模块7包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录模块7,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.96,传感器故障诊断装置的监测速度相对提高了10%,传感器故障诊断装置的监测精度相对提高了12%。
应用场景2
参见图1、图2,本应用场景的一个实施例的一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器。
优选的,所述控制中心连接有数据库。
本发明上述实施例将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
优选的,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
本优选实施例采用各种报警灯显示不同的报警信号,便于工作人员查看,提高了系统的安全性。
优选的,所述现场监测装置还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6和健康记录模块7。
本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快速搭建,有利于在监测起重机作业的同时监测各传感器,保证监测系统的监测执行。
优选的,所述信号采集滤波模块1用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取模块2用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取模块3用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选模块4分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别模块5用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别间的分离性测度;
(2)输出最小分离性测度对应的
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新模块6用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新模块6,以提高模型的适应能力和应用范围。
优选的,所述健康记录模块7包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录模块7,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.95,传感器故障诊断装置的监测速度相对提高了11%,传感器故障诊断装置的监测精度相对提高了11%。
应用场景3
参见图1、图2,本应用场景的一个实施例的一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器。
优选的,所述控制中心连接有数据库。
本发明上述实施例将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
优选的,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
本优选实施例采用各种报警灯显示不同的报警信号,便于工作人员查看,提高了系统的安全性。
优选的,所述现场监测装置还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6和健康记录模块7。
本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快速搭建,有利于在监测起重机作业的同时监测各传感器,保证监测系统的监测执行。
优选的,所述信号采集滤波模块1用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取模块2用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取模块3用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选模块4分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别模块5用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别间的分离性测度;
(2)输出最小分离性测度对应的
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新模块6用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新模块6,以提高模型的适应能力和应用范围。
优选的,所述健康记录模块7包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录模块7,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.94,传感器故障诊断装置的监测速度相对提高了12%,传感器故障诊断装置的监测精度相对提高了10%。
应用场景4
参见图1、图2,本应用场景的一个实施例的一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器。
优选的,所述控制中心连接有数据库。
本发明上述实施例将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
优选的,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
本优选实施例采用各种报警灯显示不同的报警信号,便于工作人员查看,提高了系统的安全性。
优选的,所述现场监测装置还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6和健康记录模块7。
本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快速搭建,有利于在监测起重机作业的同时监测各传感器,保证监测系统的监测执行。
优选的,所述信号采集滤波模块1用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取模块2用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取模块3用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选模块4分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别模块5用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别间的分离性测度;
(2)输出最小分离性测度对应的
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新模块6用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新模块6,以提高模型的适应能力和应用范围。
优选的,所述健康记录模块7包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录模块7,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.93,传感器故障诊断装置的监测速度相对提高了13%,传感器故障诊断装置的监测精度相对提高了9%。
应用场景5
参见图1、图2,本应用场景的一个实施例的一种塔式起重机在线监测系统,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器。
优选的,所述控制中心连接有数据库。
本发明上述实施例将现有的设备和软件应用到塔式起重机在线监测系统,其中现场监测装置能够实时准确的监测到塔机作业的全部过程和步骤,并且将所监测到的信号通过无线传感器网络传入到控制中心,控制中心会通过分析接受到的信号的类别以及信号是否在安全范围之内,从而判断是否启动异常告警模块,从而实现了塔式起重机作业被全面,实时地监控,消除塔式起重机作业的安全隐患,从而解决了上述的技术问题。
优选的,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
本优选实施例采用各种报警灯显示不同的报警信号,便于工作人员查看,提高了系统的安全性。
优选的,所述现场监测装置还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块1、故障特征提取模块2、在线特征提取模块3、特征向量优选模块4、故障分类识别模块5、故障种类更新模块6和健康记录模块7。
本发明上述实施例设置传感器故障诊断装置并实现了传感器故障诊断装置的快速搭建,有利于在监测起重机作业的同时监测各传感器,保证监测系统的监测执行。
优选的,所述信号采集滤波模块1用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;
本优选实施例设置组合形态滤波器,可有效的去除信号的各种噪声干扰,较好的保留信号的原始特征信息。
优选的,所述故障特征提取模块2用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量,包括:
(1)将采集的历史传感器信号分为正常工况信号和多种类别的故障信号;
(2)对所述历史传感器信号进行集成经验模态分解(EEMD)处理,获得所述历史传感器信号的本征模态函数和余项函数;
(3)计算所述历史传感器信号的本征模态函数和余项函数的能量熵;
(4)对历史传感器信号的能量熵进行归一化处理,提取归一化后的能量熵作为训练特征向量;
所述在线特征提取模块3用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量,包括:
(1)对所述在线传感器测试信号进行EEMD处理,获得所述在线传感器测试信号的本征模态函数和余项函数;
(2)计算所述在线传感器测试信号的本征模态函数和余项函数的能量熵;
(3)对在线传感器测试信号的能量熵进行归一化处理,提取归一化后的能量熵作为待测特征向量。
本优选实施例对采集的传感器信号进行集成经验模态分解(EEMD)处理,能够有效的消除模态混叠现象,分解的效果较好。
优选的,所述特征向量优选模块4分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
本优选实施例通过相似度度量来筛选特征向量,能够减少计算量,提高效率。
优选的,所述故障分类识别模块5用于采用优化的最小二乘支持向量机对所述待测特征向量进行故障分类识别,包括参数选择优化子模块、训练子模块和识别子模块,具体为:
所述参数选择优化子模块用于构造最小二乘支持向量机的核函数,并对最小二乘支持向量机的结构参数采用多群体协同混沌粒子群优化算法进行优化;
所述训练子模块,用于采用改进的最优二叉树结构的最小二乘向量机的多分类方法,以得到的训练特征向量作为训练样本对结构参数优化后的最小二乘支持向量机进行训练,并构建传感器故障诊断模型;
所述识别子模块用于采用所述传感器故障诊断模型对所述待测特征向量进行故障分类识别;
其中,考虑多项式核函数和RBF核函数的优异性,所述最小二乘支持向量机的核函数构造为:
K=(1-δ)(xxi+1)p+δexp(-‖x-xi22)
式中,δ为综合调整因子,δ的取值范围设定为[0.45,0.55],p为多项式核函数的阶数,σ2为RBF核函数参数。
其中,所示采用多群体协同混沌粒子群优化算法进行优化,包括:
(1)分别对主粒子群和从粒子群进行初始化,随机产生一组参数作为粒子的初始位置和初始速度,定义适应度函数为:
式中,N为训练样本总个数,W为故障错误分类数目,T为故障正确分类数目,qi为自设定的权重系数,qi的取值范围设定为[0.4,0.5];
(2)进行从粒子群的更新,在每一代更新过程中,根据适应度函数,从粒子群分别更新粒子的速度和位置,然后对每个粒子将其历史最优适应度值与主粒子群体内所经历的最好位置的适应度值比较,若更好,则将其作为当前的全局最优位置;
(3)对所述全局最优位置进行混沌优化,并迭代当前序列中的最优粒子位置和速度,生成最优粒子序列;
(4)在每一代主粒子群中选取从粒子群中最优的粒子,并更新粒子的位置和速度,直至达到最大迭代次数或者满足适应度函数的误差要求。
其中,所述改进的最优二叉树结构的最小二乘向量机的多分类方法具体包括:
(1)计算所有训练样本的标准方差和两个类别间的分离性测度;
(2)输出最小分离性测度对应的
(3)在对最小二乘支持向量机的结构参数进行优化后,建立二分类的最小二乘支持向量机用以训练第j类和第类的训练样本,形成最优二分类最小二乘支持向量机,输出判别函数的参数,把类的训练样本合并到j类内,构成新的j类训练样本;
(4)把所有的类别按照(1)-(3)进行循环训练,直至输出最优一个根节点;
(5)根据以上输出结果组成最小二乘支持向量机的分类决策树,然后对余下的训练样本进行分类效果测试。
本优选实施例为了提高故障诊断的精度,采用训练速度快、泛化能力强和鲁棒性较好的最小二乘向量机作为分类器,并提出了改进最优二叉树结构的多分类方法,以类间分离性测度替代二叉树结构中的权值,提高了的分类精度和分类速度;考虑到RBF核函数是局部核函数,多项式核函数是全局核函数,局部核函数学习能力强,泛化性能相对较弱,而全局核函数泛化性能强,学习能力相对较弱,在综合上述两类核函数的优点的基础上进行最小二乘支持向量机的核函数构造,优化了最小二乘支持向量机的分类性能和泛化性能;设计的多群体协同混沌粒子群优化算法,具有较好的收敛速度,且具有较好的全局和局部寻优性能,能够及时的跳出局部极值点,寻找全局的最优值,从而采用多群体协同混沌粒子群优化算法对最小二乘支持向量机的结构参数进行优化,优化效果好。
优选地,所述故障种类更新模块6用于对训练集进行更新,不断优化传感器故障诊断模型,包括:
(1)传感器故障诊断模型无法对待测特征向量进行有效故障分类时,将待测特征向量作为新的训练特征向量;
(2)新的训练特征向量对训练样本进行更新,对结构参数优化后的最小二乘支持向量机进行训练,并构建出新的传感器故障诊断模型;
(3)采用新的传感器故障诊断模型对所述待测特征向量进行故障分类识别,完成故障种类更新。
本优选实施例设置故障种类更新模块6,以提高模型的适应能力和应用范围。
优选的,所述健康记录模块7包括存储子模块和安全访问子模块,所述存储子模块采用基于云存储的存储模型,具体地,将故障信息进行压缩后进行加密,上传至云存储器,所述安全访问子模块用于对信息进行访问,具体地,对应于存储子模块,将数据下载到本地,采用相应密钥进行解锁后,再进行解压以读取信息。
本优选实施例设置健康记录模块7,一方面保证了信息安全,另一方面能够随时对故障进行访问,便于查找问题。
在此应用场景中,设定阈值T1的取值为0.92,传感器故障诊断装置的监测速度相对提高了14%,传感器故障诊断装置的监测精度相对提高了8%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种塔式起重机在线监测系统,其特征是,包括现场监测装置、异常告警装置和控制中心,所述异常告警装置与控制中心连接,所述现场监测装置通过无线传感器网络与控制中心连接,所述控制中心通过网络接口与网络通信连接;所述现场监测装置包括作业安全监测仪,作业安全监测仪连接有显示屏、角度传感器、幅度传感器、倾度传感器、风速传感器、以及起重传感器;还包括对各传感器进行诊断的传感器故障诊断装置,所述传感器故障诊断装置包括信号采集滤波模块、故障特征提取模块、在线特征提取模块、特征向量优选模块、故障分类识别模块;所述信号采集滤波模块用于采集历史传感器信号和在线传感器测试信号,并采用组合形态滤波器对信号进行滤波处理;所述故障特征提取模块用于对滤波后的历史传感器信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为训练特征向量;所述在线特征提取模块用于对滤波后的在线传感器测试信号进行集成经验模态分解(EEMD)处理,并提取集成经验模态分解(EEMD)的能量熵作为待测特征向量;所述特征向量优选模块分别对训练特征向量和待测特征向量进行相似性度量,对于相似度高的特征向量进行剔除;所述故障分类识别模块用于对所述待测特征向量进行故障分类识别;其中,所述对于相似度高的特征向量进行剔除,包括:
(1)定义两向量相似度函数S(X,Y):
式中,X、Y分别表示两个特征向量,cov(X,Y)为X与Y的协方差,为X、Y标准差;
对于任意两个训练特征向量X1、X2,和任意两个待测特征向量D1、D2,分别采用相似度函数对其相似度进行度量,得到S(X1,X2)和S(D1,D2);
(2)对于S(X1,X2)和S(D1,D2),若S(X1,X2)>T1,T1∈(0.9,1),只选取X1作为训练特征向量,若S(D1,D2)>T2,T2∈(0.95,1),只选取D1作为待测特征向量。
2.根据权利要求1所述的一种塔式起重机在线监测系统,其特征是,所述控制中心连接有数据库。
3.根据权利要求2所述的一种塔式起重机在线监测系统,其特征是,所述异常告警装置上连接有角度抱紧指示灯、幅度报警指示灯、倾度报警指示灯、风速报警指示灯、以及起重报警指示灯。
CN201610745220.6A 2016-08-29 2016-08-29 一种塔式起重机在线监测系统 Active CN106081911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610745220.6A CN106081911B (zh) 2016-08-29 2016-08-29 一种塔式起重机在线监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610745220.6A CN106081911B (zh) 2016-08-29 2016-08-29 一种塔式起重机在线监测系统

Publications (2)

Publication Number Publication Date
CN106081911A CN106081911A (zh) 2016-11-09
CN106081911B true CN106081911B (zh) 2018-08-03

Family

ID=57224077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610745220.6A Active CN106081911B (zh) 2016-08-29 2016-08-29 一种塔式起重机在线监测系统

Country Status (1)

Country Link
CN (1) CN106081911B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112357768B (zh) * 2020-10-26 2023-05-12 国网福建省电力有限公司建设分公司 塔材起吊情况的监测装置及其监测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104555740A (zh) * 2014-11-19 2015-04-29 成都嵌智捷科技有限公司 实时监测塔机作业的安全管理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8431619V0 (it) * 1984-06-13 1984-06-13 Fiumefreddo Carmelo Sistema supplementare di sicurezza per gru a torre telescopica costituito da funi regibracci e gabbia di sostegno del telescopaggio braccio e controbraccio
CN1079078C (zh) * 1999-06-30 2002-02-13 西安建筑科技大学 塔式起重机运行状态监测安全保护系统及其方法
CN202529757U (zh) * 2012-02-01 2012-11-14 尹义军 Gprs塔机安全监控管理装置
CN202808226U (zh) * 2012-07-11 2013-03-20 上海建工五建集团有限公司 一种塔吊智能安全监控系统
CN204138225U (zh) * 2014-09-24 2015-02-04 西安吉宝电子科技有限公司 塔机安全监控系统
CN106081958B (zh) * 2016-07-26 2018-01-16 广州穗监施工机具检测有限公司 一种塔式起重机在线监测系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104555740A (zh) * 2014-11-19 2015-04-29 成都嵌智捷科技有限公司 实时监测塔机作业的安全管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
动车组制动控制系统故障诊断方法研究;丁国君;《中国博士学位论文全文数据库·工程科技Ⅱ辑》;20131031;C033-17 *

Also Published As

Publication number Publication date
CN106081911A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN107808139B (zh) 一种基于深度学习的实时监控威胁分析方法及系统
CN106323635B (zh) 一种滚动轴承故障在线检测与状态评估方法
CN112819207B (zh) 基于相似性度量的地质灾害空间预测方法、系统及存储介质
CN110351244A (zh) 一种基于多卷积神经网络融合的网络入侵检测方法及系统
CN108833409A (zh) 基于深度学习和半监督学习的webshell检测方法及装置
CN107231267A (zh) 一种通讯网络巡检的方法、装置及巡检客户端
CN108764047A (zh) 群体情绪行为分析方法和装置、电子设备、介质、产品
CN106777622A (zh) 基于人工智能的机电设备在线故障诊断的方法及系统
CN112613454A (zh) 一种电力基建施工现场违章识别方法及系统
CN110378427A (zh) 风电叶片的叶根螺栓的故障检测方法、系统、设备及介质
CN107609948A (zh) 风险订单的检测方法及其系统、存储介质、电子设备
CN110379036A (zh) 变电站智能巡检识别方法、系统、装置及存储介质
Zhang Safety management of civil engineering construction based on artificial intelligence and machine vision technology
CN106292282A (zh) 基于大数据的智能农业环境监控系统
CN111723217A (zh) 一种工程建设管理机器人控制系统、管理方法及机器人
CN115145788A (zh) 一种针对智能运维系统的检测数据生成方法和装置
CN115330129A (zh) 一种企业安全风险预警分析方法及系统
CN106081911B (zh) 一种塔式起重机在线监测系统
CN106081958B (zh) 一种塔式起重机在线监测系统
CN117114420B (zh) 一种基于图像识别的工贸安全事故风险管控系统和方法
CN108776453B (zh) 一种基于计算机的建筑安全监控系统
CN106404055A (zh) 一种输电网塔杆的监控系统
CN113593605A (zh) 一种基于深度神经网络的工业音频故障监测系统和方法
CN116502171B (zh) 一种基于大数据分析算法的网络安全信息动态检测系统
CN106982209A (zh) 工业控制网络接入设备识别方法、装置、以及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180614

Address after: No. 5, Zhejiang Road, Hailing District, Taizhou, Jiangsu

Applicant after: TAIZHOU TENGDA CONSTRUCTION MACHINERY CO., LTD.

Address before: 315200 No. 555 north tunnel road, Zhenhai District, Ningbo, Zhejiang

Applicant before: Meng Ling

GR01 Patent grant