CN106077703A - 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法 - Google Patents

利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法 Download PDF

Info

Publication number
CN106077703A
CN106077703A CN201610648076.4A CN201610648076A CN106077703A CN 106077703 A CN106077703 A CN 106077703A CN 201610648076 A CN201610648076 A CN 201610648076A CN 106077703 A CN106077703 A CN 106077703A
Authority
CN
China
Prior art keywords
dynamic
hyperbranched polyamine
acylhydrazone key
covalent type
containing acylhydrazone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610648076.4A
Other languages
English (en)
Other versions
CN106077703B (zh
Inventor
石云峰
王军杰
刘雷雷
李婷
赵俊红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Anyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Normal University filed Critical Anyang Normal University
Priority to CN201610648076.4A priority Critical patent/CN106077703B/zh
Publication of CN106077703A publication Critical patent/CN106077703A/zh
Application granted granted Critical
Publication of CN106077703B publication Critical patent/CN106077703B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

本发明是一种化工领域的利用含有酰腙键的共价型动态超支化聚胺作为纳米反应器制备金属纳米晶体的方法。本发明的方法是利用含有酰腙键的共价型动态超支化聚胺在水相体系中制备金属纳米晶体。含有酰腙键的共价型动态超支化聚胺具有环境敏感特性,因此可赋予制备的金属纳米晶体以环境敏感特性。此外,所制备的金属纳米晶体具有较高的催化活性,能够用于催化对硝基苯酚加氢等反应。

Description

利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应 器制备金属纳米晶体的方法
技术领域
本发明涉及一种化学合成技术领域,具体涉及一种利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法。
背景技术
共价型动态超支化聚合物是一类含有可逆共价键的超支化聚合物,它不仅具有超支化聚合物分子的三维准球形结构,还具有可逆的共价键,对环境(如pH、温度等)具有响应特性。
经对现有技术的文献检索发现,目前利用超支化聚合物制备纳米晶体已有诸多报道[Sooklal, K.; Hanus, L. H.; Ploehn, H. J.; Murphy, C. J. Adv. Mater. 1998,10, 1083–1087.; Lemon, B.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 12886–12887.; Wu, X. C.; Bittner, A. M.; Kern, K. J. Phys. Chem. B 2005, 109, 230–239.; Aymonier, C.; Schlotterbeck, U.; Antonietti, L.; Zacharias, P.;Thomann, R.; Tiller, J. C.; Mecking, S. Chem. Commun. 2002, 3018–3019.; Shi,Y. F.; Tu, C. L.; Wang, R. B.; Wu, J. Y.; Zhu, X. Y. and Yan, D. Y. Langmuir 2008, 24, 11955.]。在这些报道中所采用的超支化聚合物只含有不可逆共价键或可逆非共价键。还有报道利用含有可逆共价键的共价型动态超支化聚胺制备了CdS量子点[Zhu,L. J,; Shi, Y. F.; Tu, C. L.; Wang, R. B.; Pang, Y.; Qiu, F.; Zhu, X. Y.;Yan, D. Y.; He, L.; Jin, C. Y.; Zhu, B. S. Langmuir 2010, 26, 8875.],但是目前尚未有利用共价型动态超支化聚合物制备金属纳米晶体的报道。利用共价型动态超支化聚合物制备金属纳米晶体,能够赋予金属纳米晶体以环境响应特性。
发明内容
本发明的目的是提供一种利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法。
为实现上述目的,本发明采用的技术方案是,一种利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法,包括以下步骤:
(1)将含有酰腙键的共价型动态超支化聚胺溶解在超纯水中,制成含有酰腙键的共价型动态超支化聚胺的浓度为0.1-200g/L的超支化聚胺溶液;
(2)向步骤(1)得到的超支化聚胺溶液溶液中加入金属前体水溶液,搅拌1-24h,静置,过滤。
优选的,所述步骤(2)中超支化聚胺溶液溶液和金属前体水溶液的体积比为1-25:1。
优选的,所述金属前体水溶液为0.057-11.42 g/L的氯金酸水溶液(pH值调至大于5.5)、0.059-11.89 g/L的氯铂酸水溶液(pH值调至大于5.5)、0.023-4.64 g/L的硫酸铜水溶液或0.047-9.47 g/L的四氯钯酸钾水溶液。
所述含有酰腙键的共价型动态超支化聚胺的结构式如下:
n取 8-455,该结构式中的七个结构的n值可以取相同,也可以取不相同;该结构的含有酰腙键的共价型动态超支化聚胺可以采用现有技术合成,如“Construction and Application of a pH-Sensitive Nanoreactor viaa Double-Hydrophilic Multiarm Hyperbranched Polymer”(Zhu, L. J,; Shi, Y. F.; Tu, C.L.; Wang, R. B.; Pang, Y.; Qiu, F.; Zhu, X. Y.; Yan, D. Y.; He, L.; Jin, C.Y.; Zhu, B. S. Langmuir 2010, 26, 8875.)中公开的方法合成。
本发明产生的有益效果是:本发明利用含有酰腙键的共价型动态超支化聚胺作为纳米反应器,封装金属离子,继而通过内部的胺基还原金属离子,从而得到金属纳米晶体。含有酰腙键的共价型动态超支化聚胺在此既作为纳米反应器合成金属纳米晶体,又作为稳定剂对合成的金属纳米晶体起稳定作用。使用本发明的方法合成的金属纳米晶体具有尺寸分布窄和稳定性较好等特点。
附图说明
图1为实施例1-4制备的Au (a)、Cu (b)、Pd (c)和Pt(d)金属纳米晶体的紫外可见光光谱图;
图2为实施例1制备的Au金属纳米晶体透射电镜图;
图3为实施例2制备的Cu金属纳米晶体透射电镜图;
图4为实施例3制备的Pd金属纳米晶体透射电镜图;
图5为实施例4制备的Pt金属纳米晶体透射电镜图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。以下实施例中所用的含有酰腙键的共价型动态超支化聚胺的结构式如下:
n取 8-455,该结构式中的七个结构的n值可以取相同,也可以取不相同;该结构的含有酰腙键的共价型动态超支化聚胺采用现有技术“Construction and Application of a pH-Sensitive Nanoreactor viaa Double-Hydrophilic Multiarm Hyperbranched Polymer”(Zhu, L. J,; Shi, Y. F.; Tu, C.L.; Wang, R. B.; Pang, Y.; Qiu, F.; Zhu, X. Y.; Yan, D. Y.; He, L.; Jin, C.Y.; Zhu, B. S. Langmuir 2010, 26, 8875.)中公开的方法合成。
实施例1
(1)在25毫升反应瓶中加入含有酰腙键的共价型动态超支化聚胺5毫克,溶解于5毫升超纯水中;
(2)取2毫升浓度为0.57g/L的氯金酸水溶液,调pH至6.5,然后加入到步骤(1)制备的超支化聚胺溶液中,磁力搅拌24小时后静置存放1h,采用220 nm水相过滤头过滤。
本实施例中制备的Au纳米晶体的紫外可见光光谱如图1中所示, Au纳米晶体的吸收峰位于529纳米。Au纳米晶体的透射电镜图如图2所示,由图2可知Au纳米晶体尺寸分布较为均一。
实施例2
(1)在25毫升反应瓶中加入含有酰腙键的共价型动态超支化聚胺5毫克,溶解于5毫升超纯水中;
(2)取2毫升浓度为0.23 g/L的硫酸铜水溶液,加入到步骤(1)制备的超支化聚胺溶液中,磁力搅拌24小时后静置存放1h,采用220 nm水相过滤头过滤。
本实施例中制备的Cu纳米晶体的透射电镜图如图3所示,由图3可知Cu纳米晶体尺寸分布较为均一。
实施例3
(1)在25毫升反应瓶中加入含有酰腙键的共价型动态超支化聚胺5毫克,溶解于5毫升超纯水中;
(2)取2毫升浓度为0.47g/L的四氯钯酸钾水溶液,加入到步骤(1)制备的超支化聚胺溶液中,磁力搅拌24小时后静置存放1h,采用220 nm水相过滤头过滤。
本实施例中制备的Pd纳米晶体的透射电镜图如图4所示,由图4可知Pd纳米晶体尺寸分布较为均一。
实施例4
(1)在25毫升反应瓶中加入含有酰腙键的共价型动态超支化聚胺5毫克,溶解于5毫升超纯水中;
(2)取2毫升浓度为0.57毫克/毫升的氯铂酸水溶液,调pH至6.5,然后加入到步骤(1)制备的超支化聚胺溶液中,磁力搅拌24小时后静置存放1h,采用220 nm水相过滤头过滤。
本实施例中制备的Pt纳米晶体的透射电镜图如图5所示,由图5可知Pt纳米晶体尺寸分布较为均一。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (4)

1.一种利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法,其特征在于,包括以下步骤:
(1)将含有酰腙键的共价型动态超支化聚胺溶解在超纯水中,制成含有酰腙键的共价型动态超支化聚胺的浓度为0.1-200g/L的超支化聚胺溶液;
(2)向步骤(1)得到的超支化聚胺溶液溶液中加入金属前体水溶液,搅拌1-24h,静置,过滤。
2.如权利要求1所述的利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法,其特征在于:所述步骤(2)中超支化聚胺溶液溶液和金属前体水溶液的体积比为1-25:1。
3.如权利要求1所述的利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法,其特征在于:所述金属前体水溶液为0.057-11.42 g/L的氯金酸水溶液、0.059-11.89 g/L的氯铂酸水溶液、0.023-4.64 g/L的硫酸铜水溶液或0.047-9.47g/L的四氯钯酸钾水溶液。
4.如权利要求1所述的利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法,其特征在于:所述含有酰腙键的共价型动态超支化聚胺的结构式如下:
CN201610648076.4A 2016-08-10 2016-08-10 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法 Expired - Fee Related CN106077703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610648076.4A CN106077703B (zh) 2016-08-10 2016-08-10 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610648076.4A CN106077703B (zh) 2016-08-10 2016-08-10 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法

Publications (2)

Publication Number Publication Date
CN106077703A true CN106077703A (zh) 2016-11-09
CN106077703B CN106077703B (zh) 2018-11-06

Family

ID=57457021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610648076.4A Expired - Fee Related CN106077703B (zh) 2016-08-10 2016-08-10 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法

Country Status (1)

Country Link
CN (1) CN106077703B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202165A (zh) * 2019-06-16 2019-09-06 南通大学 一种对纤维具有亲和性的纳米铂金溶液及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223912A1 (en) * 2005-03-31 2006-10-05 3M Innovative Properties Company Templated metal particles and methods of making
CN101318224A (zh) * 2008-06-17 2008-12-10 苏州大学 纳米银水溶液的制备方法
US20090203196A1 (en) * 2007-07-12 2009-08-13 National Institute Of Aerospace Associates Fabrication of metallic hollow nanoparticles
JP2009191320A (ja) * 2008-02-14 2009-08-27 Ne Chemcat Corp パラジウムサブナノ粒子の製造方法
CN101607316A (zh) * 2009-06-19 2009-12-23 东华大学 羟基化树状大分子稳定的金/银纳米粒子的制备方法
US8815996B2 (en) * 2011-06-01 2014-08-26 The United States Of America As Represented By The Secretary Of The Army Surface segregating additives for enhanced chemical agent resistant topcoats
CN104209539A (zh) * 2014-09-28 2014-12-17 中南大学 基于聚酰胺胺超分子超支化聚合物制备金纳米粒子的方法
CN105288620A (zh) * 2015-10-16 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种用于肿瘤靶向治疗的金纳米花的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223912A1 (en) * 2005-03-31 2006-10-05 3M Innovative Properties Company Templated metal particles and methods of making
US20090203196A1 (en) * 2007-07-12 2009-08-13 National Institute Of Aerospace Associates Fabrication of metallic hollow nanoparticles
JP2009191320A (ja) * 2008-02-14 2009-08-27 Ne Chemcat Corp パラジウムサブナノ粒子の製造方法
CN101318224A (zh) * 2008-06-17 2008-12-10 苏州大学 纳米银水溶液的制备方法
CN101607316A (zh) * 2009-06-19 2009-12-23 东华大学 羟基化树状大分子稳定的金/银纳米粒子的制备方法
US8815996B2 (en) * 2011-06-01 2014-08-26 The United States Of America As Represented By The Secretary Of The Army Surface segregating additives for enhanced chemical agent resistant topcoats
CN104209539A (zh) * 2014-09-28 2014-12-17 中南大学 基于聚酰胺胺超分子超支化聚合物制备金纳米粒子的方法
CN105288620A (zh) * 2015-10-16 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种用于肿瘤靶向治疗的金纳米花的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIJUAN ZHU .ETC: "Construction and Application of a pH-Sensitive Nanoreator via a Double-Hydrophilic Multiarm Hyperbranched Polymer", 《LANGMUIR THE ACS JOURNAL OF SURFACES & COLLOIDS》 *
刘辉: "树状大分子辅助的金属纳米颗粒的合成、功能化及其生物医学应用", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202165A (zh) * 2019-06-16 2019-09-06 南通大学 一种对纤维具有亲和性的纳米铂金溶液及其制备方法

Also Published As

Publication number Publication date
CN106077703B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
Zhu et al. Palladium nanoclusters confined in MOF@ COP as a novel nanoreactor for catalytic hydrogenation
Zhu et al. Exploring stereoselectivity of Au25 nanoparticle catalyst for hydrogenation of cyclic ketone
Kuang et al. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal–organic framework
Wang et al. Organic-inorganic hybrid pillarene-based nanomaterial for label-free sensing and catalysis
Schrinner et al. Mechanism of the formation of amorphous gold nanoparticles within spherical polyelectrolyte brushes
Hoang et al. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet-and ionic liquid-assisted microfluidic system
Jambovane et al. Continuous, one-pot synthesis and post-synthetic modification of nanoMOFs using droplet nanoreactors
Han et al. Chiral fluorescent silicon nanoparticles for aminopropanol enantiomer: fluorescence discrimination and mechanism identification
CN104985193A (zh) 一种基于蛋白还原法的合金纳米颗粒制备方法
FR2895289B1 (fr) Synthese de particules dans des structures dendritiques en milieux fluides supercritiques
CN104262487A (zh) 一种功能纳米材料/金属有机框架物复合物及其制备方法
Hu et al. Interfacial hydroxyl promotes the reduction of 4-nitrophenol by Ag-based catalysts confined in dendritic mesoporous silica nanospheres
US20180055083A1 (en) Process for forming a solution containing gold nanoclusters binding with ligands
WO2022016741A1 (zh) 一种尺寸可调的金纳米粒子的制备方法
Watanabe et al. Characterization of mixing performance in a microreactor and its application to the synthesis of porous coordination polymer particles
Li et al. In situ growth of gold nanoparticles on hydrogen-bond supramolecular structures with high peroxidase-like activity at neutral pH and their application to one-pot blood glucose sensing
CN106040307B (zh) 一步水热法合成Fe3O4(PAA)@C-Au核壳结构微球的制备方法
CN106872438B (zh) 一种自组装三维铜拉曼增强基底及其制备方法与应用
Guntern et al. Synthetic tunability of colloidal covalent organic framework/nanocrystal hybrids
Ganguly et al. Intriguing fluorescence behavior of diiminic Schiff bases in the presence of in situ produced noble metal nanoparticles
Wang et al. Encapsulating electron-rich Pd NPs with lewis acidic MOF: reconciling the electron-preference conflict of the catalyst for cascade condensation via nitro reduction
CN106077703A (zh) 利用含有酰腙键的共价型动态超支化聚胺作为分子纳米反应器制备金属纳米晶体的方法
Guo et al. Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
Lin et al. Microfluidic plasma-based continuous and tunable synthesis of Ag–Au nanoparticles and their SERS properties
CN108568519A (zh) 一种银纳米复合材料的制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181106

Termination date: 20190810

CF01 Termination of patent right due to non-payment of annual fee