CN106059670A - 一种减小光纤非线性效应的光传输系统及方法 - Google Patents

一种减小光纤非线性效应的光传输系统及方法 Download PDF

Info

Publication number
CN106059670A
CN106059670A CN201610326209.6A CN201610326209A CN106059670A CN 106059670 A CN106059670 A CN 106059670A CN 201610326209 A CN201610326209 A CN 201610326209A CN 106059670 A CN106059670 A CN 106059670A
Authority
CN
China
Prior art keywords
optical
optical signal
signal
phase
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610326209.6A
Other languages
English (en)
Other versions
CN106059670B (zh
Inventor
冯勇华
徐俊波
魏学勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiberhome Telecommunication Technologies Co Ltd
Original Assignee
Fiberhome Telecommunication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiberhome Telecommunication Technologies Co Ltd filed Critical Fiberhome Telecommunication Technologies Co Ltd
Priority to CN201610326209.6A priority Critical patent/CN106059670B/zh
Publication of CN106059670A publication Critical patent/CN106059670A/zh
Application granted granted Critical
Publication of CN106059670B publication Critical patent/CN106059670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect

Abstract

一种减小光纤非线性效应的光传输系统及方法,涉及光通信领域,包括单载波发射机和单载波接收机,单载波发射机将子载波光源发出的连续光信号等分为两路,每一路均设置一个强度调制器和一个相位调制器,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;光开关用于切换两路光信号;单载波接收机用于接收光信号分并为两路;每一路光混频器将该路光信号与中心频率相同且正交连续窄带参考光信号混频,混频后光信号进行光/电转换,将模拟信号转换为数字电信号,数字电信号处理器用于对两路数字电信号进行处理,并提取承载的数据。本发明减小光纤非线性效应的影响,降低成本和控制的复杂程度,减少功耗和时延。

Description

一种减小光纤非线性效应的光传输系统及方法
技术领域
本发明涉及光通信领域,具体来讲涉及一种减小光纤非线性效应的光传输系统及方法。
背景技术
随着网络传输容量需求的激增,光传输系统其单通道传输速率在经历了从2.5Gbit/s→10Gbit/s→40Gbit/s→100Gbit/s的提升,正在酝酿下一代的超100G光传输系统。超100Gbit/s光传输在可用频带资源不变的情况下,进一步提升单根光纤的传输容量,其关键在于提高频谱资源的利用率和频谱效率。然而,由于光纤非线性效应的限制,超100G光传输距离和频谱效率之间的矛盾非常显著。选择更复杂的调制格式提高频谱效率和传输速率,其传输性能可能无法满足长距离光传输的应用场景,更好的方式是减小光纤非线性效应的限制。
光脉冲信号沿光纤通道传播过程中,因CD(Chromatic Dispersion,色度色散)、PMD(Polarization Mode Dispersion,偏振模色散)以及与ASE(Amplified SpontaneousEmission,放大的自发辐射噪声)相互作用,引起脉冲形状发生改变,经光纤非线性效应引起NPN(Nonlinear Phase Noise,非线性相位噪声),对相位调制的信号影响严重,并随着相位调制级数增加而恶化。
NLSE(Non-Linear Schrodinger Equation,基于非线性薛定谔方程)的主动补偿技术,可以减小非线性效应的影响,其典型代表为OPC(Optical Phase Conjugate,光学相位共轭)和DBP(Digital Back Propagation,数字反向传播)法。在光域,OPC利用四波混频效应,将光信号的相位变换为共轭相位,使其在后半截输链路上反转传克尔效应的符号,抵消实现前半截输链路上的克尔效应,以补偿色度色散、相位调制和四波混频等引起的非线性相位噪声。在电域,DBP可根据克尔效应在获得光功率强度偏移的情况下,通过数字电信号处理逆向估计相位调制所引起的非线性相位偏移。但是,实际应用中,光学相位共轭需要采用精密的光学共轭器件和复杂的控制算法,成本高且控制复杂,又因前后链路传输特性不对称,使其对性能改善不显著;而数字反向传播法反复迭代过程非常复杂,功耗和时延较大。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种减小光纤非线性效应的光传输系统及方法,减小光纤非线性效应的影响,降低成本和控制的复杂程度,减少功耗和时延。
为达到以上目的,本发明采取一种减小光纤非线性效应的光传输系统,包括单载波发射机和单载波接收机,单载波发射机包括一个3dB的1×2光分波器,用于将子载波光源发出的连续光信号等分为两路,每一路上均设置一个强度调制器和一个相位调制器,强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;单载波发射机还包括一个光开关,用于切换两路光信号;单载波接收机包括一个3dB的1×2光分波器,用于接收单载波发射机的光信号分并为两路;每一路均设有一个光混频器、平衡接收机和模数转换器,光混频器用于将该路光信号与单载波接收机提供的中心频率相同且正交连续窄带参考光信号混频,平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为数字电信号,单载波接收机还包括一个数字电信号处理器,用于对两路数字电信号进行处理,并提取承载的数据。
在上述技术方案的基础上,单载波发射机中,光开关等周期交替输出调制后的两路光信号,其交替的周期设置为T/2,其中T为光信号的一个周期;且光开关状态切换到稳定的时间小于T/20。
本发明还提供所述系统的减小光纤非线性效应的光传输方法,包括:单载波发射机将子载波光源发出的连续光信号等分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出;单载波接收机接收单载波发射机发来的光信号,通过1×2光分波器分为两路,每一路都和一个连续窄带参考光信号混频,所述连续窄带参考光信号与1×2光分波器分出的该路光信号中心频率相同且相互正交;混频后的光信号通过平衡接收机进行光/电转换,再通过模数转换器转换为数字电信号,最后两路数字电信号通过一个数字电信号处理器处理,提取承载的数据。
在上述技术方案的基础上,所述模数转换器转换后的数字电信号的时间离散、幅度量化。
本发明还提供一种减小光纤非线性效应的光传输系统,包括多载波发射机和多载波接收机,多载波发射机包括多个单载波发射机,每个单载波发射机包括一个3dB的1×2光分波器,用于接收N个并行的子载波光信号中的一个,其中N>1,并分为两路,每一路上均设置一个强度调制器和一个相位调制器,强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;单载波发射机还包括一个光开关,用于切换两路光信号;多载波发射机还包括一个合波器或光复用器,每个单载波发射机发出的光信号通过所述合波器或光复用器合波后发出;多载波接收机包括一个1×2N光分波器,用于将接收的光信号分为2N路,每2路为一组,一组中的每一路均设有一个光混频器、平衡接收机和模数转换器,光混频器用于将该组中的一路光信号与一个中心频率相同且正交连续窄带参考光信号混频,平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为数字电信号,多载波接收机还包括一个数字信号处理器,用于对每组输出的数字电信号进行处理,并提取承载的数据。
在上述技术方案的基础上,单载波发射机的每一个光开关都为2×1光开关,等周期交替输出调制后的两路光信号,其交替的周期设置为T/2,其中T为光信号的一个周期;且光开关状态切换到稳定的时间小于T/20。
本发明还提供一种所述系统的减小光纤非线性效应的光传输方法,包括:多载波发射机的每个3dB的1×2光分波器接收一个光信号并分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出,所有光开关发出的光信号通过合波器或光复用器合波后发出;多载波接收机接收多载波发射机发来的光信号,通过1×2N光分波器分为2N路,每2路为一组,一组中的每一路都和一个连续窄带参考光信号混频,所述连续窄带参考光信号与对应的该路光信号中心频率相同且相互正交;混频后的光信号通过平衡接收机进行光/电转换,再通过模数转换器转换为数字电信号,最后所有组中的两路数字电信号通过一个数字电信号处理器处理,提取承载的数据。
在上述技术方案的基础上,所述模数转换器转换后的数字电信号的时间离散、幅度量化。
本发明的有益效果在于:采用数字信号处理的方法,对线路传输损伤及进行均衡补偿,以及载波恢复和数据判决,避免控制复杂、功耗和时延较大的问题,有效的提升高速光传输系统传输性能和传输距离,简化传输链路设计,降低成本。
附图说明
图1为本发明两路光信号中心频率相同、强度比值恒定、以及相位相反的示意图;
图2为本发明第一实施例单载波发射机的实现示意图;
图3为本发明第一实施例单载波接收机的实现示意图;
图4为本发明第二实施例多载波发射机的实现示意图;
图5为本发明第二实施例多载波接收机的实现示意图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
第一实施例:
本实施例中,减小光纤非线性效应的光传输系统,包括单载波发射机和单载波接收机。
如图2所示,单载波发射机包括一个3dB的1×2光分波器(1*2SP)、两个强度调制器(AM0和AM1)、两个相位调制器(PM0和PM1)和一个2×1的光开关(2*1SW)。其中,1×2光分波器用于将子载波光源λ发出的连续光信号等分为两路,每一路均设置一个强度调制器和一个相位调制器,如图2中其中一路设置AM0和PM0,另一路设置AM1和PM1,强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值α恒定、以及相位相反;光开关用于切换两路光信号。
具体的,如图1所示,单载波发射机中,对每一个子载波光源λ在单位周期T内,通过AM0和PM0调制出光信号S0,通过AM1和PM1调制出光信号S1,光信号S0和S1中心频率相同,强度比值α恒定,相位相反(相位之和为2π的整数倍),其中 其中A表示光信号的幅度,ω表示光信号的频率,表示光信号的相位;光开关状态切换到稳定的时间小于T/20。
如图3所示,单载波接收机包括一个3dB的1×2光分波器(1*2SP)、两个光混频器(2*2光混频器)、两个平衡接收机、两个模数转换器和一个数字信号处理器。1×2光分波器用于接收来自单载波发射机的输入光信号,并分为两路,每一路均设有一个光混频器、平衡接收机和模数转换器;光混频器用于将该路光信号与单载波接收机提供的中心频率相同、且正交的连续窄带参考光信号混频,平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为时间离散、幅度量化的数字电信号;数字信号处理器用于对两路数字电信号进行处理,恢复和提取单载波接收机接收到光信号中所承载的数据。
具体的,图3中,R0与R1是单载波接收机提供的一对中心频率相同、且正交的连续窄带参考光信号,上面一路光信号S0与参考光信号R0混频,下面一路光信号S1与参考光信号R1混频。
本实施例减小光纤非线性效应的光传输方法,包括:
单载波发射机将一个子载波光源λ发出的连续光信号,通过1×2光分波器等分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出。
具体的,发射机发射的子载波在每个单位周期T内,由前后两个等周期(T/2)的光信号S0和S1构成,S0和S1强度比值α≠1时,可用于得加辅助信息,相位相反(相位之和为2π的整数倍),便于接收机补偿光信号在传输过程中的线性和非线性损伤。
单载波接收机接收单载波发射机发来的光信号,通过1×2光分波器分为两路,每一路都和一个连续窄带参考光信号混频,连续窄带参考光信号与1×2光分波器分出的该路光信号中心频率相同且相互正交;混频后的光信号先通过平衡接收机进行光/电转换,再通过模数转换器转换为数字电信号;最后两路数字电信号通过一个数字电信号处理器进行分析和处理,恢复和提取单载波接收机接收到光信号中所承载的数据。
第二实施例:
本实施例中,减小光纤非线性效应的光传输系统,包括多载波发射机和多载波接收机。
如图4所示,多载波发射机可以发射N个(N为>1的自然数)并行的子载波光信号,包括多个单载波发射机。每个单载波发射机括一个3dB的1×2光分波器(1*2SP),用于接收N个并行的子载波光信号中的一个,并将接收的光信号分为两路,每一路上均设置一个强度调制器(AM0 N和AM1 N)和一个相位调制器(PM0 N和PM1 N),强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;单载波发射机还包括一个2×1的光开关(2*1SW),用于切换两路光信号。所述多载波发射机包括一个合波器或光复用器,本实施例中为合波器(CP),N个光开关输出的光信号通过合波器合波,作为多载波发射机的输出。
具体的,编号为N的子载波在一个周期T内的两个子符号S0 N、S1 N中心频率相同,其中AN、ωN分别表示光信号的幅度、频率和相位。S0 N、S1 N强度比值αN≠1时可用于叠加辅助信息。S0 N和S1 N相位相反(相位之和为2π的整数倍)便于接收机补偿符号在传输过程中的线性和非线性损伤。等周期交替输出调制后的两路光信号,其交替的周期设置为T/2,且光开关状态切换到稳定的时间小于T/20。
多载波接收机包括一个1×2N光分波器(1*2N SP),用于将接收的光信号分为2N路,每2路为一组,一组中的每一路均设有一个光混频器(2*2光混频器)、平衡接收机和模数转换器,光混频器用于将该组中的一路光信号与一个中心频率相同且正交连续窄带参考光信号混频,例如,将S0 N与连续窄带参考光信号R0 N混频,S1 N与连续窄带参考光信号R1 N混频;以便于后续恢复和提取该子载波中所调制的数据。平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为时间离散、幅度量化的光信号,多载波接收机还包括一个数字信号处理器,用于对每组输出的数字电信号进行处理,并提取承载的数据。
与第一实施例原理相同,本实施例减小光纤非线性效应的光传输方法,包括:
多载波发射机的每个3dB的1×2光分波器接收一个光信号并分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出,所有光开关发出的光信号通过合波器合波后发出。
多载波接收机接收多载波发射机发来的光信号,通过1×2N光分波器分为2N路,每2路为一组,一组中的每一路都和一个连续窄带参考光信号混频,所述连续窄带参考光信号与对应的该路光信号中心频率相同且相互正交。混频后的光信号先通过平衡接收机进行光/电转换,再通过模数转换器转换为时间离散、幅度量化的数字电信号,最后所有组中的两路数字电信号,都通过同一个数字电信号处理器进行分析和处理,恢复和提取单载波接收机接收到光信号中所承载的数据。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (8)

1.一种减小光纤非线性效应的光传输系统,包括单载波发射机和单载波接收机,其特征在于:
单载波发射机包括一个3dB的1×2光分波器,用于将子载波光源发出的连续光信号等分为两路,每一路上均设置一个强度调制器和一个相位调制器,强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;单载波发射机还包括一个光开关,用于切换两路光信号;
单载波接收机包括一个3dB的1×2光分波器,用于接收单载波发射机的光信号分并为两路;每一路均设有一个光混频器、平衡接收机和模数转换器,光混频器用于将该路光信号与单载波接收机提供的中心频率相同且正交连续窄带参考光信号混频,平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为数字电信号,单载波接收机还包括一个数字电信号处理器,用于对两路数字电信号进行处理,并提取承载的数据。
2.如权利要求1所述的减小光纤非线性效应的光传输系统,其特征在于:单载波发射机中,光开关等周期交替输出调制后的两路光信号,其交替的周期设置为T/2,其中T为光信号的一个周期;且光开关状态切换到稳定的时间小于T/20。
3.一种基于权利要求1所述系统的减小光纤非线性效应的光传输方法,其特征在于,包括:
单载波发射机将子载波光源发出的连续光信号等分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出;
单载波接收机接收单载波发射机发来的光信号,通过1×2光分波器分为两路,每一路都和一个连续窄带参考光信号混频,所述连续窄带参考光信号与1×2光分波器分出的该路光信号中心频率相同且相互正交;混频后的光信号通过平衡接收机进行光/电转换,再通过模数转换器转换为数字电信号,最后两路数字电信号通过一个数字电信号处理器处理,提取承载的数据。
4.如权利要求3所述的减小光纤非线性效应的光传输方法,其特征在于:所述模数转换器转换后的数字电信号的时间离散、幅度量化。
5.一种减小光纤非线性效应的光传输系统,包括多载波发射机和多载波接收机,其特征在于:
多载波发射机包括多个单载波发射机,每个单载波发射机包括一个3dB的1×2光分波器,用于接收N个并行的子载波光信号中的一个,其中N>1,并分为两路,每一路上均设置一个强度调制器和一个相位调制器,强度调制器用于调制光信号的幅度,相位调制器用于调制光信号的相位,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反;单载波发射机还包括一个光开关,用于切换两路光信号;多载波发射机还包括一个合波器或光复用器,每个单载波发射机发出的光信号通过所述合波器或光复用器合波后发出;
多载波接收机包括一个1×2N光分波器,用于将接收的光信号分为2N路,每2路为一组,一组中的每一路均设有一个光混频器、平衡接收机和模数转换器,光混频器用于将该组中的一路光信号与一个中心频率相同且正交连续窄带参考光信号混频,平衡接收机用于混频后光信号的进行光/电转换,模数转换器用于将模拟信号转换为数字电信号,多载波接收机还包括一个数字信号处理器,用于对每组输出的数字电信号进行处理,并提取承载的数据。
6.如权利要求5所述的减小光纤非线性效应的光传输系统,其特征在于:单载波发射机的每一个光开关都为2×1光开关,等周期交替输出调制后的两路光信号,其交替的周期设置为T/2,其中T为光信号的一个周期;且光开关状态切换到稳定的时间小于T/20。
7.一种基于权利要求5所述系统的减小光纤非线性效应的光传输方法,其特征在于,包括:
多载波发射机的每个3dB的1×2光分波器接收一个光信号并分为两路,每一路光信号都经过强度调制器和相位调制器调制,调制后的两路光信号中心频率相同、强度比值恒定、以及相位相反,调制后的两路光信号通过光开关等周期交替发出,所有光开关发出的光信号通过合波器或光复用器合波后发出;
多载波接收机接收多载波发射机发来的光信号,通过1×2N光分波器分为2N路,每2路为一组,一组中的每一路都和一个连续窄带参考光信号混频,所述连续窄带参考光信号与对应的该路光信号中心频率相同且相互正交;混频后的光信号通过平衡接收机进行光/电转换,再通过模数转换器转换为数字电信号,最后所有组中的两路数字电信号通过一个数字电信号处理器处理,提取承载的数据。
8.如权利要求7所述的减小光纤非线性效应的光传输方法,其特征在于:所述模数转换器转换后的数字电信号的时间离散、幅度量化。
CN201610326209.6A 2016-05-17 2016-05-17 一种减小光纤非线性效应的光传输系统及方法 Active CN106059670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610326209.6A CN106059670B (zh) 2016-05-17 2016-05-17 一种减小光纤非线性效应的光传输系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610326209.6A CN106059670B (zh) 2016-05-17 2016-05-17 一种减小光纤非线性效应的光传输系统及方法

Publications (2)

Publication Number Publication Date
CN106059670A true CN106059670A (zh) 2016-10-26
CN106059670B CN106059670B (zh) 2018-06-15

Family

ID=57177015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610326209.6A Active CN106059670B (zh) 2016-05-17 2016-05-17 一种减小光纤非线性效应的光传输系统及方法

Country Status (1)

Country Link
CN (1) CN106059670B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204805A (zh) * 2017-04-25 2017-09-26 上海交通大学 用于多模多电平调制短距光通信系统幅度域及时间域均衡方法
WO2018187911A1 (zh) * 2017-04-10 2018-10-18 华为技术有限公司 一种色散消除方法及装置
CN112671470A (zh) * 2020-12-15 2021-04-16 北京邮电大学 光纤稳定射频传输系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417968A (zh) * 2001-11-11 2003-05-14 华为技术有限公司 一种用于高速传输系统的光信号调节方法及光传输系统
CN1458759A (zh) * 2002-05-15 2003-11-26 华为技术有限公司 光信号调制方法、波分复用光传输系统中传输方法及系统
US7613396B2 (en) * 2004-09-02 2009-11-03 Nec Corporation Multiplexing communication system and crosstalk elimination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417968A (zh) * 2001-11-11 2003-05-14 华为技术有限公司 一种用于高速传输系统的光信号调节方法及光传输系统
CN1458759A (zh) * 2002-05-15 2003-11-26 华为技术有限公司 光信号调制方法、波分复用光传输系统中传输方法及系统
US7613396B2 (en) * 2004-09-02 2009-11-03 Nec Corporation Multiplexing communication system and crosstalk elimination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187911A1 (zh) * 2017-04-10 2018-10-18 华为技术有限公司 一种色散消除方法及装置
CN107204805A (zh) * 2017-04-25 2017-09-26 上海交通大学 用于多模多电平调制短距光通信系统幅度域及时间域均衡方法
CN107204805B (zh) * 2017-04-25 2019-08-02 上海交通大学 用于多模多电平调制短距光通信系统幅度域及时间域均衡方法
CN112671470A (zh) * 2020-12-15 2021-04-16 北京邮电大学 光纤稳定射频传输系统和方法
CN112671470B (zh) * 2020-12-15 2022-04-01 北京邮电大学 光纤稳定射频传输系统和方法

Also Published As

Publication number Publication date
CN106059670B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
JP5404925B2 (ja) 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ
Li et al. Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation
EP2144383B1 (en) A generating device and method of dispersion compensation signal
US20120201546A1 (en) Pre-equalization optical transmitter and pre-equalization optical fiber transmission system
CN108566250B (zh) 一种基于载波正交偏置单边带信号的调制解调方法及系统
US10270632B2 (en) Modulator, modulation system, and method for implementing higher order modulation
CN101582721B (zh) 多载波产生装置、光发射机以及多载波产生方法
CN111355536B (zh) 一种co-ofdm传输系统非线性损伤补偿系统及方法
CN103297169B (zh) 基于梳状光源再生技术的ofdm-pon长距离传输方法
CN102238127A (zh) 一种基于相干光正交频分复用系统降低峰均比的方法
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
Geisler et al. Experimental nonlinear frequency division multiplexed transmission using eigenvalues with symmetric real part
CN106059670A (zh) 一种减小光纤非线性效应的光传输系统及方法
CN103229439A (zh) 光通信系统、光发送器及转发器
CN105610754A (zh) 基于多级调制的高速率oofdm信号发射系统和方法
CN101867435A (zh) 一种全光正交频分复用符号发生器
Wang et al. All-optical aggregation and de-aggregation of 4× BPSK-16QAM using nonlinear wave mixing for flexible optical network
Hewitt Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation
WO2020015109A1 (zh) 多调制格式兼容的高速激光信号产生系统与方法
Matsumoto et al. All-optical PAM4 to 16QAM modulation format conversion using nonlinear optical loop mirror and 1: 2 coupler
CN109804574B (zh) 用于光传输的编码
JP4940564B2 (ja) 光送信器及び位相変調方法
Ishimura et al. Power-fading-free IF-over-fiber transmission with DEMZM using simple chirp control for high-capacity mobile fronthaul links
Shi et al. Silicon photonic modulators for high-capacity coherent transmissions
CN103516428A (zh) 光纤传输系统与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Feng Yonghua

Inventor after: Zhao Zisen

Inventor after: Xu Junbo

Inventor after: Wei Xueqin

Inventor before: Feng Yonghua

Inventor before: Xu Junbo

Inventor before: Wei Xueqin

GR01 Patent grant