CN106058384A - 一种动力电池的加热方法及装置 - Google Patents

一种动力电池的加热方法及装置 Download PDF

Info

Publication number
CN106058384A
CN106058384A CN201610644877.3A CN201610644877A CN106058384A CN 106058384 A CN106058384 A CN 106058384A CN 201610644877 A CN201610644877 A CN 201610644877A CN 106058384 A CN106058384 A CN 106058384A
Authority
CN
China
Prior art keywords
electrokinetic cell
rear portion
anterior
heating plate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610644877.3A
Other languages
English (en)
Other versions
CN106058384B (zh
Inventor
王婷
张宇
沈帅
刘晖
陈春洪
郑国微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Hyundai Motor Co Ltd
Original Assignee
Beijing Hyundai Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hyundai Motor Co Ltd filed Critical Beijing Hyundai Motor Co Ltd
Priority to CN201610644877.3A priority Critical patent/CN106058384B/zh
Publication of CN106058384A publication Critical patent/CN106058384A/zh
Application granted granted Critical
Publication of CN106058384B publication Critical patent/CN106058384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种动力电池的加热方法及装置,包括:通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。本发明缩短了动力电池加热时间,并减少了动力电池的温差。

Description

一种动力电池的加热方法及装置
技术领域
本发明涉及动力电池热管理技术领域,特别涉及一种动力电池的加热方法及装置。
背景技术
电动汽车续驶里程不足、动力电池使用寿命短等难题一直是电动汽车发展的制约因素,这些因素受环境温度影响较为明显,具体表现为:动力电池在高温环境下工作时,循环寿命减少;低温环境下工作时,充放电容量降低。然而,动力电池温度特性在短时间内较难取得突破性改善,这是由动力电池本身化学特性决定的。为弥补动力电池化学特性的短板,需对动力电池的工作温度进行有效控制,使动力电池工作在较为理想的工作温度范围内,减少温度对动力电池工作性能的影响。
目前,由于纯电动轿车电池包布置空间小,增加动力热管理系统受限于纯电动轿车的布置空间,所以设计热管理系统时应兼顾动力电池特性与纯电动轿车布置空间。从磷酸铁锂电池温度特性知:该动力电池易受低温影响,但充放电生热较少,且具有优异的高温热稳定性。为此,开发一种动力电池热管系统,该系统能使动力电池在低温环境工作时进行加热保温,高温环境工作时采用自然散热的方式。
由于大多动力电池位于电动汽车底部,底盘形状会影响动力电池包的电池分布,动力电池的质量分布不同,与之对应的加热板功率分布会发生变化。在设计之初,加热板的功率分布根据动力电池质量分布不同进行变化,然而,对于串联分布的加热板,动力电池的温度场分布不能实现独立控制,造成动力电池之间存在一定的温差,影响动力电池一致性及循环寿命。而且,加热装置的布置位置与动力电池分离,造成加热时间较长。
发明内容
根据本发明实施例提供的方案解决的技术问题是电动车动力电池低温加热时间长及温度不均。
根据本发明实施例提供的一种动力电池的加热方法,包括:
通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;
根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;
根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
优选地,所述的对所述前部加热板或后部加热板进行加热包括:
根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比;
根据所确定的加热信号的占空比,对前部加热板或后部加热板进行加热。
优选地,所述的根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比包括:
建立包含温度变化值、温度变化率以及加热信号占空比的加热模糊控制表;
根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,从所建立的加热模糊控制表中确定用于加热的加热信号的占空比。
优选地,所述通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差包括:
通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池温度和后部动力电池温度;
通过对前部动力电池温度与后部动力电池温度进行减法计算,得到前部动力电池与后部动力电池的动力电池温差。
优选地,所述根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值包括:
当所述前部动力电池与后部动力电池的动力电池温差大于第一温差阈值时,利用前部加热板的设定温度计算用于对前部动力电池进行加热的前部加热板的目标温度值;
当所述前部动力电池与后部动力电池的动力电池温差小于第二温差阈值时,利用后部加热板的设定温度计算用于对后部动力电池进行加热的后部加热板的目标温度值;
当所述前部动力电池与后部动力电池的动力电池温差小于第一温差阈值且大于第二温差阈值时,则将前部加热板的设定温度值作为目标温度值、后部加热板的设定温度值作为目标温度值。
优选地,所述根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热包括:
根据所述前部加热板的目标温度值和所确定加热信号的占空比,对前部加热板进行加热;
根据所述后部加热板的目标温度值和所确定加热信号的占空比,对后部加热板进行加热。
优选地,还包括:
通过降低动力电池的充电电流或降低动力电池的放电电流的方式对所述前部动力电池或后部动力电池进行降热。
优选地,所述通过降低动力电池的充电电流的方式对所述前部动力电池或后部动力电池进行降热包括:
建立包含动力电池温度和充电电流大小的充电电流关系表;
根据前部动力电池或后部动力电池的当前动力电池温度,在所述充电电流关系表中查找充电电流;
根据所查找到的充电电流进行充电,以便对所述前部动力电池或后部动力电池进行降热。
优选地,所述通过降低动力电池的放电电流对所述前部动力电池或后部动力电池进行降热包括:
建立包含动力电池温度和放电电流大小的放电电流关系表;
根据前部动力电池或后部动力电池的当前动力电池温度,在所述放电电流关系表中查找放电电流;
根据所查找到的放电电流进行放电,以便对所述前部动力电池或后部动力电池进行降热。
根据本发明实施例提供的一种动力电池的加热装置,包括:
获取动力电池温差模块,用于通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;
计算目标温度值模块,用于根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;
动力电池加热模块,用于根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
根据本发明实施例提供的方案,
附图说明
图1是本发明实施例提供的一种动力电池的加热方法的流程图;
图2是本发明实施例提供的一种动力电池的加热装置的示意图;
图3是本发明实施例提供的动力电池的分布示意图;
图4是本发明实施例提供的动力电池箱的结构图;
图5是本发明实施例提供的控制系统电路原理图;
图6是本发明实施例提供的加热板控制设定温度的原理图;
图7是本发明实施例提供的E、△E、U隶属度函数曲线图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1是本发明实施例提供的一种动力电池的加热方法的流程图,如图1所示,包括:
步骤S101:通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;
步骤S102:根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;
步骤S103:根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
其中,所述的对所述前部加热板或后部加热板进行加热包括:根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比;根据所确定的加热信号的占空比,对前部加热板或后部加热板进行加热。具体地说,所述的根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比包括:建立包含温度变化值、温度变化率以及加热信号占空比的加热模糊控制表;根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,从所建立的加热模糊控制表中确定用于加热的加热信号的占空比。
其中,所述通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差包括:通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池温度和后部动力电池温度;通过对前部动力电池温度与后部动力电池温度进行减法计算,得到前部动力电池与后部动力电池的动力电池温差。
其中,所述根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值包括:当所述前部动力电池与后部动力电池的动力电池温差大于第一温差阈值时,利用前部加热板的设定温度计算用于对前部动力电池进行加热的前部加热板的目标温度值;当所述前部动力电池与后部动力电池的动力电池温差小于第二温差阈值时,利用后部加热板的设定温度计算用于对后部动力电池进行加热的后部加热板的目标温度值;当所述前部动力电池与后部动力电池的动力电池温差小于第一温差阈值且大于第二温差阈值时,则将前部加热板的设定温度值作为目标温度值、后部加热板的设定温度值作为目标温度值。
其中,所述根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热包括:根据所述前部加热板的目标温度值和所确定加热信号的占空比,对前部加热板进行加热;根据所述后部加热板的目标温度值和所确定加热信号的占空比,对后部加热板进行加热。
本发明还包括:通过降低动力电池的充电电流或降低动力电池的放电电流的方式对所述前部动力电池或后部动力电池进行降热。具体地说,所述通过降低动力电池的充电电流的方式对所述前部动力电池或后部动力电池进行降热包括:建立包含动力电池温度和充电电流大小的充电电流关系表;根据前部动力电池或后部动力电池的当前动力电池温度,在所述充电电流关系表中查找充电电流;根据所查找到的充电电流进行充电,以便对所述前部动力电池或后部动力电池进行降热。所述通过降低动力电池的放电电流对所述前部动力电池或后部动力电池进行降热包括:建立包含动力电池温度和放电电流大小的放电电流关系表;根据前部动力电池或后部动力电池的当前动力电池温度,在所述放电电流关系表中查找放电电流;根据所查找到的放电电流进行放电,以便对所述前部动力电池或后部动力电池进行降热。
图2是本发明实施例提供的一种动力电池的加热装置的示意图,如图2所示,包括:获取动力电池温差模块201,用于通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;计算目标温度值模块202,用于根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;动力电池加热模块203,用于根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
如图4所示,动力电池箱主要由箱体、保温棉、加热板、导热材料、上表面温度传感器、下表面温度传感器、模组框、动力电池等组成。箱体内部为保温棉,加热板位于动力电池箱底部的保温棉上表面,加热板与上下动力电池之间为导热材料,即单体电池与加热板、单体电池之间为导热材料,上表面温度传感器位于动力电池上表面,下表面温度传感器位于动力电池下表面。
如图3所示,电池箱底部加热板由前后两部分组成。(加热板形状和个数由模组的形状和个数决定,不同的箱体可以由不同的组成方式。)根据传热功率及实际经验计算加热板功率。加热功率由式(1)(2)计算得。
Q S i = Δt m R 0 - - - ( 1 )
q=k*Q (2)
式中,Q为动力电池传热功率,单位为w;Si为前部或后部模组底部总面积(即加热板总面积),单位为m2;△tm为加热板表面温度与动力电池中心温度的差值(因加热板表面温度为45℃,动力电池中心温度值会随周围环境温度变化而变化,取当地气候冬季最低温度值);R0为加热板表面与动力电池中心的平均热阻;q为加热板功率,式(2)中k为系数,该值可根据需求的加热时间进行调节,约为2~3。
保温材料的厚度h,由式(3)(4)计算获得,式(3)中,W是电池包温度降低1℃所释放的能量。若环境温度是-20℃,电池的初始温度是25℃,则动力电池与环境温差是45℃,取44.5℃代表温差从45℃降到44℃,以此类推,0.5℃代表温差从1℃降到0℃,则电池组温度从45℃降到0℃所需的时间约为:
t = t 44.5 + t 43.5 + ...... + t 0.5 = WR 0 S ( 1 44.5 + 1 43.5 + ...... + 1 0.5 ) - - - ( 3 )
因实车在设计过程中,需考虑电池箱因搁置造成的热量损失,所以当保温时间t小于某一时间时,可由式(3)计算得保温材料热阻R0,进而由式(4)计算得材料比热容λ。
R0=h/λ (4)
电池箱前后加热板电路连接采取串并混合方式(前后加热板采取先串联后并联方式),可独立控制电池包前后部加热板的开启与关闭。对于加热的控制,采取比例-模糊控制方法。利用比例控制方法改变加热板设定温度值,控制动力电池包前后部温差大小。加热板控制方法采用模糊控制。通过模糊控制,控制加热板表面的温度值为设定温度值,这一设定值的改变是由前后箱动力电池的温差决定。若前箱动力电池温度大于后箱动力电池温度,则减少前箱加热板温度设定值。反之亦然,通过模糊控制使加热板温度控制到新的设定值,加热板继续以该新设定值进行加热,使前后箱动力电池温度控制在设定的温度范围内。
图5是本发明实施例提供的控制系统电路原理图,如图5所示,BMS(BatteryManagement System,电池管理系统)控制若干单体电池的充电与放电及加热板加热。加热板布置于动力电池底部,当动力电池温度达不到充电要求时,BMS通过加热继电器控制加热板加热,以使动力电池能够安全有效地进行充电。即前后加热板进行独立控制,采取并联方式(因前部和后部加热板分别由若干片加热板组成,先将其进行串联之后再进行并联连接,加热板的功率分布与其面积成正比)。前部加热板由前部加热继电器控制,后部加热板由后部加热继电器控制。电池组总正总负由总正继电器和总负继电器控制。
图6是本发明实施例提供的加热板控制设定温度的原理图,如图6所示,加热板控制方法采用模糊控制方法,加热板初始设定温度为45℃,在规定时间内利用动力电池下表面温度传感器值采集温度,以二者之间差值及差值变化率作为模糊控制器输入变量,利用模糊控制的方法控制加热板对电池箱的加热。
具体控制方法如下:
1、设定前部加热板4和后部加热板3的表面温度为T1和T2,前部动力电池2和后箱动力电池1的最低温度为Tm1和Tm2。
2、在加热开始时,设定加热板表面温度T1=T2=45℃,使PWM的占空比为100%,将加热板温度快速温升为45℃。
3、以前后部动力电池温度最低值为控制目标,当前后箱最低温度温差Tm1-Tm2=T,当T>3℃时,前部加热板设定温度T1=45℃-kT(1≤k≤2);当T<-3℃时,后箱加热板设定温度T2=45℃-kT(1≤k≤2);当-3℃≤T≤3℃时,前后加热板设定温度T1=T2=45℃,如式(5)。
4、对加热板表面温度值T1和T2的控制,采用模糊控制,其控制误差在-△T℃~△T℃之间,量化因子为a,将温度变化E及温度变化率△E范围定义为模糊集上的论域{-2,-1,0,1,2},模糊子集为E及△E={NS,NB,Z0,PB,PS},分别代表负大,负小,0,正小,正大。PWM的周期是3min,实际输出的占空比定义为U={0,1/4,2/4,3/4,1},对应模糊论域的负小,负大,0,正大,正小。选择三角形为隶属度函数如图7所示。表1为加热模糊控制表。
表1:加热模糊控制表
本发明对于高温散热,利用箱体表面对动力电池进行自然散热。若温度高于某一温度值采取降电流方式减少动力电池产热,降电流方法如下:
1、充电降电流
当动力电池温度高于45℃时,充电电流I降为0.2C,当动力电池温度高于50℃时,充电电流I降为0.1C(此电流下充电,动力电池内阻生热与可逆反应吸热相同,动力电池不产热)。
2、行驶降电流
当动力电池温度高于45℃时,放电最大电流I降为0.4C,当动力电池温度高于50℃时,放电电流I降为0.2C(此电流下动力电池产热速率与箱体散热速率相同,动力电池不会继续升温)。
根据本发明实施例提供的方案,通过增加导热材料,合理计算质量分布不同动力电池加热功率,采用串联-并联混合加热电路连接结构,利用比例-模糊控制方法,缩短动力电池加热时间并减少动力电池温差。
尽管上文对本发明进行了详细说明,但是本发明不限于此,本技术领域技术人员可以根据本发明的原理进行各种修改。因此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (10)

1.一种动力电池的加热方法,包括:
通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;
根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;
根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
2.根据权利要求1所述的方法,所述的对所述前部加热板或后部加热板进行加热包括:
根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比;
根据所确定的加热信号的占空比,对前部加热板或后部加热板进行加热。
3.根据权利要求2所述的方法,所述的根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,确定用于加热的加热信号的占空比包括:
建立包含温度变化值、温度变化率以及加热信号占空比的加热模糊控制表;
根据前部加热板或后部加热板在规定时间内的温度变化值及温度变化率,从所建立的加热模糊控制表中确定用于加热的加热信号的占空比。
4.根据权利要求3所述的方法,所述通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差包括:
通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池温度和后部动力电池温度;
通过对前部动力电池温度与后部动力电池温度进行减法计算,得到前部动力电池与后部动力电池的动力电池温差。
5.根据权利要求4所述的方法,所述根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值包括:
当所述前部动力电池与后部动力电池的动力电池温差大于第一温差阈值时,利用前部加热板的设定温度计算用于对前部动力电池进行加热的前部加热板的目标温度值;
当所述前部动力电池与后部动力电池的动力电池温差小于第二温差阈值时,利用后部加热板的设定温度计算用于对后部动力电池进行加热的后部加热板的目标温度值;
当所述前部动力电池与后部动力电池的动力电池温差小于第一温差阈值且大于第二温差阈值时,则将前部加热板的设定温度值作为目标温度值、后部加热板的设定温度值作为目标温度值。
6.根据权利要求5所述的方法,所述根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热包括:
根据所述前部加热板的目标温度值和所确定加热信号的占空比,对前部加热板进行加热;
根据所述后部加热板的目标温度值和所确定加热信号的占空比,对后部加热板进行加热。
7.根据权利要求1-6任一所述的方法,还包括:
通过降低动力电池的充电电流或降低动力电池的放电电流的方式对所述前部动力电池或后部动力电池进行降热。
8.根据权利要求7所述的方法,所述通过降低动力电池的充电电流的方式对所述前部动力电池或后部动力电池进行降热包括:
建立包含动力电池温度和充电电流大小的充电电流关系表;
根据前部动力电池或后部动力电池的当前动力电池温度,在所述充电电流关系表中查找充电电流;
根据所查找到的充电电流进行充电,以便对所述前部动力电池或后部动力电池进行降热。
9.根据权利要求7所述的方法,所述通过降低动力电池的放电电流对所述前部动力电池或后部动力电池进行降热包括:
建立包含动力电池温度和放电电流大小的放电电流关系表;
根据前部动力电池或后部动力电池的当前动力电池温度,在所述放电电流关系表中查找放电电流;
根据所查找到的放电电流进行放电,以便对所述前部动力电池或后部动力电池进行降热。
10.一种动力电池的加热装置,包括:
获取动力电池温差模块,用于通过分别采集前部动力电池和后部动力电池的温度,得到前部动力电池与后部动力电池的动力电池温差;
计算目标温度值模块,用于根据前部动力电池与后部动力电池的动力电池温差,计算用于对前部动力电池进行加热的前部加热板的目标温度值或对后部动力电池进行加热的后部加热板的目标温度值;
动力电池加热模块,用于根据所述前部加热板的目标温度值或后部加热板目标温度值,对所述前部加热板或后部加热板进行加热。
CN201610644877.3A 2016-08-08 2016-08-08 一种动力电池的加热方法及装置 Active CN106058384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610644877.3A CN106058384B (zh) 2016-08-08 2016-08-08 一种动力电池的加热方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610644877.3A CN106058384B (zh) 2016-08-08 2016-08-08 一种动力电池的加热方法及装置

Publications (2)

Publication Number Publication Date
CN106058384A true CN106058384A (zh) 2016-10-26
CN106058384B CN106058384B (zh) 2018-11-06

Family

ID=57480712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610644877.3A Active CN106058384B (zh) 2016-08-08 2016-08-08 一种动力电池的加热方法及装置

Country Status (1)

Country Link
CN (1) CN106058384B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425229A (zh) * 2017-03-31 2017-12-01 惠州市亿能电子有限公司 一种电动汽车用液冷电池系统及其热管理方法
CN109301399A (zh) * 2018-09-30 2019-02-01 桑顿新能源科技有限公司 一种多支路区域式动力电池系统加热方法及系统
CN112072218A (zh) * 2019-06-10 2020-12-11 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
CN113097603A (zh) * 2021-04-02 2021-07-09 云度新能源汽车有限公司 一种带温度保护功能的变功率低温加热系统和方法
WO2021189324A1 (zh) * 2020-03-25 2021-09-30 深圳市大疆创新科技有限公司 电池加热方法、充电装置、系统、电池和可移动平台
CN114475364A (zh) * 2022-03-04 2022-05-13 东软睿驰汽车技术(沈阳)有限公司 电池包的定时保温方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709615A (zh) * 2012-05-04 2012-10-03 惠州市亿能电子有限公司 一种电车电池加热方法
JP2013054939A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 電池システム
CN103339817A (zh) * 2011-01-20 2013-10-02 威伦斯技术公司 可充电电池系统及可充电电池系统操作方法
CN104134831A (zh) * 2014-07-31 2014-11-05 智慧城市系统服务(中国)有限公司 一种基于tec级联的电池包的温度控制装置、方法及系统
CN104835993A (zh) * 2014-07-14 2015-08-12 北汽福田汽车股份有限公司 电动汽车的动力电池充电加热控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339817A (zh) * 2011-01-20 2013-10-02 威伦斯技术公司 可充电电池系统及可充电电池系统操作方法
JP2013054939A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 電池システム
CN102709615A (zh) * 2012-05-04 2012-10-03 惠州市亿能电子有限公司 一种电车电池加热方法
CN104835993A (zh) * 2014-07-14 2015-08-12 北汽福田汽车股份有限公司 电动汽车的动力电池充电加热控制方法及系统
CN104134831A (zh) * 2014-07-31 2014-11-05 智慧城市系统服务(中国)有限公司 一种基于tec级联的电池包的温度控制装置、方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425229A (zh) * 2017-03-31 2017-12-01 惠州市亿能电子有限公司 一种电动汽车用液冷电池系统及其热管理方法
CN107425229B (zh) * 2017-03-31 2021-06-15 惠州市亿能电子有限公司 一种电动汽车用液冷电池系统及其热管理方法
CN109301399A (zh) * 2018-09-30 2019-02-01 桑顿新能源科技有限公司 一种多支路区域式动力电池系统加热方法及系统
CN112072218A (zh) * 2019-06-10 2020-12-11 北京新能源汽车股份有限公司 一种动力电池的加热控制方法及装置
WO2021189324A1 (zh) * 2020-03-25 2021-09-30 深圳市大疆创新科技有限公司 电池加热方法、充电装置、系统、电池和可移动平台
CN113097603A (zh) * 2021-04-02 2021-07-09 云度新能源汽车有限公司 一种带温度保护功能的变功率低温加热系统和方法
CN114475364A (zh) * 2022-03-04 2022-05-13 东软睿驰汽车技术(沈阳)有限公司 电池包的定时保温方法、装置和电子设备
CN114475364B (zh) * 2022-03-04 2023-12-15 东软睿驰汽车技术(沈阳)有限公司 电池包的定时保温方法、装置和电子设备

Also Published As

Publication number Publication date
CN106058384B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN106058384A (zh) 一种动力电池的加热方法及装置
Jaguemont et al. Thermal management of a hybrid electric vehicle in cold weather
CN103887578B (zh) 提高电动汽车低温续航里程的动力电池加热方法和系统
CN105555585B (zh) 蓄电系统
US20140285135A1 (en) Systems for heating a battery and processes thereof
CN204407446U (zh) 一种具有加热功能的动力电池热管理系统
CN104044580A (zh) 用于在充电时控制电动车辆的方法和系统
CN107994299A (zh) 车载动力电池低温全时间交错并联加热拓扑电路及其应用
CN103427137A (zh) 纯电动汽车动力电池的低温充电加热系统及加热方法
CN106785235A (zh) 电池组加热方法及系统
CN103730707A (zh) 电动汽车恒温电池箱及其热管理控制方法
CN104409788B (zh) 一种低温环境下预热充电损耗最优化电池组充电方法
CN102208700A (zh) 一种电动汽车用锂离子动力电池自动加热系统
CN203521558U (zh) 混合动力车辆电池系统低温调控装置
Huang et al. Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates
CN105846013A (zh) 动力电池充电和加热控制系统以及控制方法
Huang et al. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation
CN109004293B (zh) 动力电池液冷系统热管理模块大小循环控制方法
CN108493520A (zh) 一种锂离子动力电池系统的加热方法
CN105826619A (zh) 锂离子动力电池包恒温热管理系统
CN104600381B (zh) 一种锂离子电池组单体布置结构的优化方法
Guo et al. An integrated thermal management strategy for cabin and battery heating in range-extended electric vehicles under low-temperature conditions
Enthaler et al. Thermal management consumption and its effect on remaining range estimation of electric vehicles
CN206471453U (zh) 一种电池包冷却系统
CN205811017U (zh) 一种电动车锂离子动力电池组加热装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant