CN106054894A - 一种机器人伴随系统、伴随方法及机器人小车 - Google Patents

一种机器人伴随系统、伴随方法及机器人小车 Download PDF

Info

Publication number
CN106054894A
CN106054894A CN201610525353.2A CN201610525353A CN106054894A CN 106054894 A CN106054894 A CN 106054894A CN 201610525353 A CN201610525353 A CN 201610525353A CN 106054894 A CN106054894 A CN 106054894A
Authority
CN
China
Prior art keywords
robot
people
region
module
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610525353.2A
Other languages
English (en)
Other versions
CN106054894B (zh
Inventor
王治彪
毕树生
牛传猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Topsroboteer Technology Co Ltd
Original Assignee
Beijing Topsroboteer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Topsroboteer Technology Co Ltd filed Critical Beijing Topsroboteer Technology Co Ltd
Priority to CN201610525353.2A priority Critical patent/CN106054894B/zh
Publication of CN106054894A publication Critical patent/CN106054894A/zh
Application granted granted Critical
Publication of CN106054894B publication Critical patent/CN106054894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及机器人技术领域,尤其是一种机器人伴随系统、伴随方法及机器人小车;所述机器人伴随系统包括:系统预设定模块、位置采集模块、坐标计算模块、区域判断模块、驱动指令编辑模块和机器人驱动模块,所述系统预设定模块、所述位置采集模块、所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。本发明利用区域判断模块实现实时判断人相对于机器人小车所在的区域;并利用驱动指令编辑模块编辑机器人小车驱动控制指令以指导和实现机器人小车做伴随动作,从而确保了机器人小车与人伴随动作的准确性和可靠性。

Description

一种机器人伴随系统、伴随方法及机器人小车
技术领域
本发明涉及机器人技术领域,尤其是一种机器人伴随系统、伴随方法及机器人小车。
背景技术
伴随机器人顾名思义是一种可陪伴在人的一侧,并随着人的运动而运动的机器人。而现在应用更多的是跟随机器人,即机器人以一定的距离跟随在人的身后。一般跟随机器人多处于人的视野之后,如出现突发事件,人往往不能及时发现,而伴随机器人处于人的视野之内,人能随时观察机器人的运动状态,防止意外事件的发生。由此,本发明提出一种机器人伴随运动实现方法。
发明内容
本发明的目的在于提供一种机器人伴随系统、伴随方法及机器人小车,以实现机器人小车与人伴随动作的准确性和可靠性。
本发明提供了下述方案:
一种机器人的伴随系统,包括:
系统预设定模块,用于建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
位置采集模块,用于采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
坐标计算模块,用于将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
区域判断模块,用于根据人在机器人坐标系中的实际位置坐标实时判断人相对于机器人所在的区域;
驱动指令编辑模块,用于根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
机器人驱动模块,用于根据机器人驱动指令驱动机器人进行伴随动作。
优选地,所述系统预设定模块和所述位置采集模块分别与所述坐标计算模块连接,所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。
优选地,所述系统预设定模块、所述位置采集模块、所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。
优选地,所述区域判断模块包括:
前方区域判断单元,对人是否处于机器人前方区域进行判断,当满足以下条件时即可判断人位于机器人的前方区域:
y>L、y>(x-W/2)+L、y>-(x+W/2)+L;
后方区域判断单元,对人是否处于机器人后方区域进行判断,当满足以下条件时即可判断人位于机器人的后方区域:
y<0、y<-(x-W/2);
左方区域判断单元,对人是否处于机器人左方区域进行判断,当满足以下条件时即可判断人位于机器人的左方区域:
x<-W/2、y<-(x+W/2)+L、y>0;
右方区域判断单元,对人是否处于机器人右方区域进行判断,当满足以下条件时即可判断人位于机器人的右方区域:
x>W/2、y>(x-W/2)、y>-(x-W/2);
其中,W为机器人的宽度,L为机器人的长度,(x,y)为人处于动态人机伴随坐标系中的实时坐标。
优选地,所述驱动指令编辑模块包括:
前方区域驱动指令编辑单元,用于编辑当人处于机器人的前方区域时的驱动指令;
后方区域驱动指令编辑单元,用于编辑当人处于机器人的后方区域时的驱动指令;
左方区域驱动指令编辑单元,用于编辑当人处于机器人的左方区域时的驱动指令;
右方区域驱动指令编辑单元,用于编辑当人处于机器人的右方区域时的驱动指令。
一种机器人的伴随方法,
利用系统预设定模块建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
利用位置采集模块采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
利用坐标计算模块将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
利用区域判断模块根据动态人机伴随坐标系实时判断人相对于机器人所在的区域;
利用驱动指令编辑模块根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
利用机器人驱动模块根据机器人驱动指令驱动机器人进行伴随动作。
优选地,所述驱动指令编辑模块的控制逻辑包括前方区域控制逻辑和左方区域控制逻辑,所述前方区域控制逻辑和所述左方区域控制逻辑相同;
所述前方区域控制逻辑为:
(1)在车体坐标系下,假设人的伴随保持位置坐标为(x0,y0),人的实际位置坐标为(x1,y1);假设人处于伴随保持位置坐标(x0,y0)时,机器人正向前行,左驱动轮和右驱动轮的速度大小相同,且机器人的速度为v0
(2)通过坐标变换,将人的伴随保持位置坐标(x0,y0)转换成正前方伴随保持位置坐标(xn0,yn0);
(3)通过坐标变换之间的几何关系,将人的实际位置坐标(x1,y1)转换成正前方实际位置坐标(xn1,yn1);
(4)根据坐标变换之间的几何关系,分别计算出机器人的两驱动轮中点间的速度大小为vm,左驱动轮的速度大小为vl,右驱动轮的速度为vr以及转向角度的大小;
(5)根据计算出的左驱动轮的速度vl,右驱动轮的速度vr以及转向角度的大小,驱动机器人进行跟随运动,实现人在车体坐标系的位置由(x1,y1)变为(x0,y0)。
优选地,所述驱动指令编辑模块的控制逻辑包括右方区域控制逻辑,所述右方区域控制逻辑为:
(1)机器人以固定的速度顺时针原地转向寻找人,直到人处于小车前方区域或者左方区域;
(2)采用前方区域或左方区域的控制逻辑实现机器人与人的伴随运动。
优选地,所述驱动指令编辑模块的控制逻辑包括后方区域控制逻辑,所述后方区域控制逻辑为:
(1)机器人实施减速,直到速度为零,机器人停下;
(2)进入下一个区域判断控制过程,直到实现机器人与人的伴随运动。
一种机器人小车,包括所述机器人的伴随系统。
本发明产生的有益效果:
本发明利用区域判断模块实现实时判断人相对于机器人小车所在的区域;并利用驱动指令编辑模块编辑机器人小车驱动控制指令以指导和实现机器人小车做伴随动作,从而确保了机器人小车与人伴随动作的准确性和可靠性。
附图说明
图1为本发明的机器人伴随系统的组成框图;
图2为本发明的机器人伴随方法的步骤框图;
图3为本发明的机器人小车的区域划分示意图;
图4为本发明的机器人伴随方法的坐标变换示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
伴随运动分为左侧伴随和右侧伴随,两侧的实现方案完全一致,以下具体描述人在机器人小车左侧的伴随实现方案,人在车右侧的方案不再赘述。
实施例一
如图1所示的机器人的伴随系统,包括:
系统预设定模块,用于建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
位置采集模块,用于采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
坐标计算模块,用于将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
区域判断模块,用于根据人在机器人坐标系中的实际位置坐标实时判断人相对于机器人所在的区域;
驱动指令编辑模块,用于根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
机器人驱动模块,用于根据机器人驱动指令驱动机器人进行伴随动作。
所述系统预设定模块和所述位置采集模块分别与所述坐标计算模块连接,所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。
所述区域判断模块包括:
前方区域判断单元,对人是否处于机器人前方区域进行判断,当满足以下条件时即可判断人位于机器人的前方区域:
y>L、y>(x-W/2)+L、y>-(x+W/2)+L;
后方区域判断单元,对人是否处于机器人后方区域进行判断,当满足以下条件时即可判断人位于机器人的后方区域:
y<0、y<-(x-W/2);
左方区域判断单元,对人是否处于机器人左方区域进行判断,当满足以下条件时即可判断人位于机器人的左方区域:
x<-W/2、y<-(x+W/2)+L、y>0;
右方区域判断单元,对人是否处于机器人右方区域进行判断,当满足以下条件时即可判断人位于机器人的右方区域:
x>W/2、y>(x-W/2)、y>-(x-W/2);
其中,W为机器人的宽度,L为机器人的长度,(x,y)为人处于动态人机伴随坐标系中的实时坐标,具体如图3所示。
所述驱动指令编辑模块包括:
前方区域驱动指令编辑单元,用于编辑当人处于机器人的前方区域时的驱动指令;
后方区域驱动指令编辑单元,用于编辑当人处于机器人的后方区域时的驱动指令;
左方区域驱动指令编辑单元,用于编辑当人处于机器人的左方区域时的驱动指令;
右方区域驱动指令编辑单元,用于编辑当人处于机器人的右方区域时的驱动指令。
所述位置采集模块采用超声波测距定位模块或无线电测距定位模块。
本实施例中,将人相对机器人小车的位置划分为前方区域、后方区域、左方区域和右方区域四个区域,用以确定人和机器人小车的不同位置。
本实施例中,利用区域判断模块实现实时判断人相对于机器人小车所在的区域;并利用驱动指令编辑模块编辑机器人小车驱动控制指令以指导和实现机器人小车做伴随动作,从而确保了机器人小车与人伴随动作的准确性和可靠性。
实施例二,本实施例是基于实施例一的所述机器人的伴随系统,实施例一中所描述的内容也是本实施例所具有的,此处不再具体赘述。
如图2所示的机器人的伴随方法,包括如下步骤:
系统预设定,利用系统预设定模块建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
位置采集,利用位置采集模块采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
坐标计算,利用坐标计算模块将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
区域判断,利用区域判断模块根据动态人机伴随坐标系实时判断人相对于机器人所在的区域;
驱动指令编辑,利用驱动指令编辑模块根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
机器人驱动,利用机器人驱动模块根据机器人驱动指令驱动机器人进行伴随动作。
所述驱动指令编辑模块的控制逻辑包括前方区域控制逻辑、后方区域控制逻辑、左方区域控制逻辑和右方区域控制逻辑;所述前方区域控制逻辑和所述左方区域控制逻辑相同。
所述前方区域控制逻辑为:
(1)在车体坐标系下,假设人的伴随保持位置坐标为(x0,y0),人的实际位置坐标为(x1,y1);假设人处于伴随保持位置坐标(x0,y0)时,机器人正向前行,左驱动轮和右驱动轮的速度大小相同,且机器人的速度为v0
(2)通过坐标变换,将人的伴随保持位置坐标(x0,y0)转换成正前方伴随保持位置坐标(xn0,yn0);采用下式将伴随保持位置坐标转换成正前方伴随保持位置坐标(xn0,yn0):
xno=0;
yno=(vo-b)/a;
其中a为常数,b为保持位置距车体左侧的距离,如图4所示。
(3)通过坐标变换之间的几何关系,将人的实际位置坐标(x1,y1)转换成正前方实际位置坐标(xn1,yn1);由几何关系易得:
xn1=xn0+(x1-x0);
yn1=yn0+(y1-y0);
d = x n 1 2 + y n 1 2 ;
r=d/(2*cosθ)。
(4)根据坐标变换之间的几何关系,分别计算出机器人的两驱动轮中点间的速度大小为vm,左驱动轮的速度大小为vl,右驱动轮的速度为vr以及转向角度的大小;此时,
v m = v l + v r 2 ;
vm=a*d+b;
v l / ( r - W 2 ) = v r / ( r + W 2 ) ;
可得:
v l = ( 1 + W * cos &theta; d ) * ( a * d + b ) ;
v r = ( 1 - W * cos &theta; d ) * ( a * d + b ) .
(5)根据计算出的左驱动轮的速度vl,右驱动轮的速度vr以及转向角度的大小,驱动机器人进行跟随运动,实现人在车体坐标系的位置由(x1,y1)变为(x0,y0)。
所述右方区域控制逻辑为:
(1)机器人以固定的速度顺时针原地转向寻找人,直到人处于小车前方区域或者左方区域;此时:
vl=v1
vr=-v1
其中,v1为机器人的顺时针旋转的速度。
(2)采用前方区域或左方区域的控制逻辑实现机器人与人的伴随运动。
所述后方区域控制逻辑为:
(1)机器人实施减速,直到速度为零,机器人停下;此时:
vl=v0+c*yn1
vr=v0+c*yn1
其中,c为常数。
(2)进入下一个区域判断控制过程,直到实现机器人与人的伴随运动。
本实施例中,坐标转换用到的各常数根据实际运动效果进行设定。
本实施例中,当人相对小车处于不同位置时,采用不同的控制逻辑。
本实施例中,为便于逻辑控制,通过坐标转换,将伴随运动控制转化为跟随运动控制。
实施例三,本实施例是在实施例一基础上改进的,实施例一中所描述的内容也是本实施例所具有的,此处不再具体赘述。
一种机器人小车,包括实施例一中的所述机器人的伴随系统。
实施例四,本实施例是在实施例二基础上改进的,实施例二中所描述的内容也是本实施例所具有的,此处不再具体赘述。
一种机器人小车,包括实施例二中的所述机器人的伴随方法。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种机器人的伴随系统,其特征在于:包括:
系统预设定模块,用于建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
位置采集模块,用于采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
坐标计算模块,用于将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
区域判断模块,用于根据人在机器人坐标系中的实际位置坐标实时判断人相对于机器人所在的区域;
驱动指令编辑模块,用于根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
机器人驱动模块,用于根据机器人驱动指令驱动机器人进行伴随动作。
2.根据权利要求1所述机器人的伴随系统,其特征在于:所述系统预设定模块和所述位置采集模块分别与所述坐标计算模块连接,所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。
3.根据权利要求1所述机器人的伴随系统,其特征在于:所述系统预设定模块、所述位置采集模块、所述坐标计算模块、所述区域判断模块、所述驱动指令编辑模块和所述机器人驱动模块依次连接。
4.根据权利要求2或3所述机器人的伴随系统,其特征在于:所述区域判断模块包括:
前方区域判断单元,对人是否处于机器人前方区域进行判断,当满足以下条件时即可判断人位于机器人的前方区域:
y>L、y>(x-W/2)+L、y>-(x+W/2)+L;
后方区域判断单元,对人是否处于机器人后方区域进行判断,当满足以下条件时即可判断人位于机器人的后方区域:
y<0、y<-(x-W/2);
左方区域判断单元,对人是否处于机器人左方区域进行判断,当满足以下条件时即可判断人位于机器人的左方区域:
x<-W/2、y<-(x+W/2)+L、y>0;
右方区域判断单元,对人是否处于机器人右方区域进行判断,当满足以下条件时即可判断人位于机器人的右方区域:
x>W/2、y>(x-W/2)、y>-(x-W/2);
其中,W为机器人的宽度,L为机器人的长度,(x,y)为人处于动态人机伴随坐标系中的实时坐标。
5.根据权利要求4所述机器人的伴随系统,其特征在于:所述驱动指令编辑模块包括:
前方区域驱动指令编辑单元,用于编辑当人处于机器人的前方区域时的驱动指令;
后方区域驱动指令编辑单元,用于编辑当人处于机器人的后方区域时的驱动指令;
左方区域驱动指令编辑单元,用于编辑当人处于机器人的左方区域时的驱动指令;
右方区域驱动指令编辑单元,用于编辑当人处于机器人的右方区域时的驱动指令。
6.一种机器人的伴随方法,其特征在于:
利用系统预设定模块建立实时的机器人坐标系并设定人在机器人坐标系的伴随位置坐标;
利用位置采集模块采集人与机器人的相对位置,计算并建立实时的人机相对位置坐标;
利用坐标计算模块将人机相对位置坐标实时代入机器人坐标系中,计算并建立动态的人在机器人坐标系中的实际位置坐标;
利用区域判断模块根据动态人机伴随坐标系实时判断人相对于机器人所在的区域;
利用驱动指令编辑模块根据人相对于机器人所在的区域以及人机相对位置坐标,计算并编辑机器人驱动指令;
利用机器人驱动模块根据机器人驱动指令驱动机器人进行伴随动作。
7.根据权利要求6所述机器人的伴随方法,其特征在于:所述驱动指令编辑模块的控制逻辑包括前方区域控制逻辑和左方区域控制逻辑,所述前方区域控制逻辑和所述左方区域控制逻辑相同;
所述前方区域控制逻辑为:
(1)在车体坐标系下,假设人的伴随保持位置坐标为(x0,y0),人的实际位置坐标为(x1,y1);假设人处于伴随保持位置坐标(x0,y0)时,机器人正向前行,左驱动轮和右驱动轮的速度大小相同,且机器人的速度为v0
(2)通过坐标变换,将人的伴随保持位置坐标(x0,y0)转换成正前方伴随保持位置坐标(xn0,yn0);
(3)通过坐标变换之间的几何关系,将人的实际位置坐标(x1,y1)转换成正前方实际位置坐标(xn1,yn1);
(4)根据坐标变换之间的几何关系,分别计算出机器人的两驱动轮中点间的速度大小为vm,左驱动轮的速度大小为vl,右驱动轮的速度为vr以及转向角度的大小;
(5)根据计算出的左驱动轮的速度vl,右驱动轮的速度vr以及转向角度的大小,驱动机器人进行跟随运动,实现人在车体坐标系的位置由(x1,y1)变为(x0,y0)。
8.根据权利要求7所述机器人的伴随方法,其特征在于:所述驱动指令编辑模块的控制逻辑包括右方区域控制逻辑,所述右方区域控制逻辑为:
(1)机器人以固定的速度顺时针原地转向寻找人,直到人处于小车前方区域或者左方区域;
(2)采用前方区域或左方区域的控制逻辑实现机器人与人的伴随运动。
9.根据权利要求8所述机器人的伴随方法,其特征在于:所述驱动指令编辑模块的控制逻辑包括后方区域控制逻辑,所述后方区域控制逻辑为:
(1)机器人实施减速,直到速度为零,机器人停下;
(2)进入下一个区域判断控制过程,直到实现机器人与人的伴随运动。
10.一种机器人小车,其特征在于:包括如权利要求1-4中任意一项所述机器人的伴随系统。
CN201610525353.2A 2016-07-05 2016-07-05 一种机器人伴随系统、伴随方法及机器人小车 Active CN106054894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610525353.2A CN106054894B (zh) 2016-07-05 2016-07-05 一种机器人伴随系统、伴随方法及机器人小车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610525353.2A CN106054894B (zh) 2016-07-05 2016-07-05 一种机器人伴随系统、伴随方法及机器人小车

Publications (2)

Publication Number Publication Date
CN106054894A true CN106054894A (zh) 2016-10-26
CN106054894B CN106054894B (zh) 2019-04-09

Family

ID=57202082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610525353.2A Active CN106054894B (zh) 2016-07-05 2016-07-05 一种机器人伴随系统、伴随方法及机器人小车

Country Status (1)

Country Link
CN (1) CN106054894B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881716A (zh) * 2017-02-21 2017-06-23 深圳市锐曼智能装备有限公司 基于3d摄像头机器人的人体跟随方法及系统
CN109409493A (zh) * 2018-09-12 2019-03-01 中国人民解放军国防科技大学 一组自主机器人伴随观察行为建立方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006316A1 (en) * 2004-07-09 2006-01-12 Funai Electric Co., Ltd. Self-running robot
CN103268616A (zh) * 2013-04-18 2013-08-28 北京工业大学 多特征多传感器的移动机器人运动人体跟踪方法
CN103885449A (zh) * 2014-04-04 2014-06-25 辽宁工程技术大学 基于多传感器的智能视觉跟踪轮式机器人及其控制方法
CN204674698U (zh) * 2015-04-13 2015-09-30 黄维星 自动随行载具
CN104977934A (zh) * 2015-07-09 2015-10-14 深圳中科智酷机器人科技有限公司 一种机器人系统及基于机器人系统的人体探测和跟踪方法
CN105425806A (zh) * 2015-12-25 2016-03-23 深圳先进技术研究院 移动机器人的人体探测与跟踪方法及装置
CN105539553A (zh) * 2015-12-28 2016-05-04 北京九星智元科技有限公司 一种具有随行功能的婴儿车及其随行控制方法
CN105652895A (zh) * 2014-11-12 2016-06-08 沈阳新松机器人自动化股份有限公司 基于激光传感器的移动机器人人体跟踪系统及跟踪方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006316A1 (en) * 2004-07-09 2006-01-12 Funai Electric Co., Ltd. Self-running robot
CN103268616A (zh) * 2013-04-18 2013-08-28 北京工业大学 多特征多传感器的移动机器人运动人体跟踪方法
CN103885449A (zh) * 2014-04-04 2014-06-25 辽宁工程技术大学 基于多传感器的智能视觉跟踪轮式机器人及其控制方法
CN105652895A (zh) * 2014-11-12 2016-06-08 沈阳新松机器人自动化股份有限公司 基于激光传感器的移动机器人人体跟踪系统及跟踪方法
CN204674698U (zh) * 2015-04-13 2015-09-30 黄维星 自动随行载具
CN104977934A (zh) * 2015-07-09 2015-10-14 深圳中科智酷机器人科技有限公司 一种机器人系统及基于机器人系统的人体探测和跟踪方法
CN105425806A (zh) * 2015-12-25 2016-03-23 深圳先进技术研究院 移动机器人的人体探测与跟踪方法及装置
CN105539553A (zh) * 2015-12-28 2016-05-04 北京九星智元科技有限公司 一种具有随行功能的婴儿车及其随行控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881716A (zh) * 2017-02-21 2017-06-23 深圳市锐曼智能装备有限公司 基于3d摄像头机器人的人体跟随方法及系统
CN109409493A (zh) * 2018-09-12 2019-03-01 中国人民解放军国防科技大学 一组自主机器人伴随观察行为建立方法

Also Published As

Publication number Publication date
CN106054894B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN105081524B (zh) 焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法
CN107292048B (zh) 一种基于veDYNA车道保持方法及系统
Liang et al. Automatic parking path optimization based on bezier curve fitting
CN103064420B (zh) 可移动系绳点的空间绳系机器人的逼近姿态协调控制方法
CN102834345B (zh) 用于运行自动地面运输车的方法
CN102662350A (zh) 主从式多机器人协作系统的轨迹示教与规划方法
CN103760908A (zh) 一种巡视器闭环跟踪控制方法
CN203726040U (zh) 汽车车身数控组合焊装夹具
CN204397136U (zh) 移动式弧焊机器人
Petrov et al. Adaptive steering control for autonomous lane change maneuver
CN104898665A (zh) 巡检机器人轨迹规划的方法和装置
CN106054894A (zh) 一种机器人伴随系统、伴随方法及机器人小车
CN110244718A (zh) 一种可自动避障的巡视智能小车
CN104999463B (zh) 一种基于构形平面的冗余机械臂运动控制方法
CN105459116A (zh) 一种基于磁强计的机器人遥操作装置及方法
CN208013430U (zh) 一种自主导航拖拉机障碍物初步探测系统
CN204819543U (zh) 一种集控式多机器人运动控制系统
CN205713320U (zh) 一种全向自动存取交接机器人及自动停车场
CN204976629U (zh) 一种火车喷涂机器人
CN103760825B (zh) 大型精密悬吊装置复合随动平台电控系统的控制方法
CN206854872U (zh) 移载平台与库位模块化集成与智能控制装置
CN106270917B (zh) 多棱管内焊缝跟踪装置
CN106624415A (zh) 移载平台与库位模块化集成与智能控制装置
CN207127893U (zh) 一种新型的基于图像边沿检测爬虫算法的引导机器人
CN106584418B (zh) 全向机器人及其控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant