CN106053580B - 一种高效毛细管电泳拆分外消旋雷诺嗪的方法 - Google Patents

一种高效毛细管电泳拆分外消旋雷诺嗪的方法 Download PDF

Info

Publication number
CN106053580B
CN106053580B CN201610615516.6A CN201610615516A CN106053580B CN 106053580 B CN106053580 B CN 106053580B CN 201610615516 A CN201610615516 A CN 201610615516A CN 106053580 B CN106053580 B CN 106053580B
Authority
CN
China
Prior art keywords
ranolazine
capillary electrophoresis
racemic
sample
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610615516.6A
Other languages
English (en)
Other versions
CN106053580A (zh
Inventor
颜海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Market supervision and Administration Bureau of Babu District, Hezhou City
Original Assignee
Guangxi Chisheng Agricultural Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Chisheng Agricultural Technology Co Ltd filed Critical Guangxi Chisheng Agricultural Technology Co Ltd
Priority to CN201610615516.6A priority Critical patent/CN106053580B/zh
Publication of CN106053580A publication Critical patent/CN106053580A/zh
Application granted granted Critical
Publication of CN106053580B publication Critical patent/CN106053580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于拆分和检测技术领域,具体公开了一种高效毛细管电泳拆分外消旋雷诺嗪的方法,该方法以添加了手性选择试剂的磷酸氢二钠‑盐酸作为缓冲液体系,在一定的高效毛细管电泳参数,包括分离电压、分离温度、压力进样和紫外检测波长下,成功的外消旋雷诺嗪进行了拆分,实现了基线分离,这为雷诺嗪药动学和药效学研究奠定了扎实的基础。

Description

一种高效毛细管电泳拆分外消旋雷诺嗪的方法
【技术领域】
本发明涉及拆分和检测技术领域,具体涉及一种外消旋雷诺嗪的拆分方法。
【背景技术】
雷诺嗪(Ranolazine,RNZ)是一种具有全新机制的治疗心绞痛的药物,由美国CVTherapeutics公司和Kissei公司共同开发研制的用于稳定型心绞痛治疗的新型药物,2006年美国食品药品监督管理局批准了雷诺嗪上市。雷诺嗪是哌嗪类化合物,分子中含有一个手性中心,存在一对光学异构体。雷诺嗪以消旋体在国外上市,在我国目前还处于研发阶段。根据国家对手性药物上市的相关法规规定手性药物申报必须对其单体进行药效、毒理等方面的考察。因此,我们需要对外消旋雷诺嗪进行拆分,使外消旋雷诺嗪被拆分,以便于研究人员制备所需单体,从而观察雷诺嗪和其光学异构体的药动学行为,为其药动学和药效学研究奠定基础。
手性拆分的方法很多,而随着色谱科学的发展,现代色谱分析技术在对映体分离方面显示出巨大的优越性,色谱法已逐渐成为目前手性分离的主要手段。其中主要有气相色谱(GC)和高效液相色(HPLC)、薄层色谱、超临界流体色谱法、高效毛细管电泳法(HPCE)等。
HPCE与传统的分离方法相比,显著特点是简单、高效、快速和微量;还具备了经济、清洁、易于自动化、一机多用和环境污染少等优点。在手性化合物的分离方面,相对于其它分离技术而言,HPCE具有可灵活选择操作模式和手性选择剂、试剂及样品用量少且对环境污染小、分析速度快、应用范围广等许多优点。
而目前关于外消旋雷诺嗪的研究还比较少,只发现了一个利用添加手性固定相的高效液相色谱来拆分外消旋雷诺嗪的文献,该文献在以甲醇、异丙醇和正己烷(17:17:66,V:V:V)为流动相,且流速为1.5mL/min,采用反相体系对外消旋雷诺嗪进行拆分时,最佳分离度为3.33。因此,外消旋雷诺嗪的拆分方法单一,没有选择性,不能为后续的研究提供充分的基础。
【发明内容】
本发明的发明目的在于:针对上述存在的问题,提供一种高效毛细管电泳拆分外消旋雷诺嗪的方法。该方法具有可灵活选择操作模式和手性选择剂、试剂及样品用量少且对环境污染小、分析速度快、应用范围广等许多优点,且本发明建立了一种拆分外消旋雷诺嗪的新方法,为其后续研究提供更充分的基础。
为了实现上述目的,本发明采用的技术方案如下:
一种高效毛细管电泳拆分外消旋雷诺嗪的方法,包括以下步骤:
(1)以磷酸氢二钠-盐酸作为缓冲液,在该缓冲液中添加手性选择试剂作为缓冲液体系,搅拌至混合均匀后,超声脱气10min并用0.20μm的微孔滤膜过滤;
(2)用去离子水配制外消旋雷诺嗪样品,样品浓度为0.08-0.15mg/mL;
(3)调节毛细管电泳参数为:分离电压为18-23KV,毛细管温度为22-27℃,压力进样为1.5psiX15s,紫外检测波长为200-230nm;正极进外消旋雷诺嗪样品,负极检测;
(4)在(3)设定的毛细管电泳参数下运行毛细管电泳仪,待基线平稳且基线波动在0.15mAu范围内时进样,实现了外消旋雷诺嗪的基线分离。
进一步的,步骤(1)中,所述手性选择试剂为磺丁基醚-β-环糊精、羧甲基-β-环糊精或硫酸化-β-环糊精中的一种。
进一步的,步骤(1)中,所述手性选择试剂的浓度为15-20mmol/L,添加量为7-12%的体积。
进一步的,步骤(1)中,所述磷酸氢二钠-盐酸的浓度为30-50mmol/L,pH为3.4-4.0。
进一步的,步骤(2)中,所述样品的浓度为0.12mg/mL。
进一步的,步骤(3)中,所述分离电压为20KV。
进一步的,步骤(3)中,所述毛细管温度为26℃。
进一步的,步骤(3)中,所述紫外检测波长为220nm。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
(1)本发明采用的拆分方法是高效毛细管电泳法,与其他拆分方法相比,具有可灵活选择操作模式和手性选择剂、试剂及样品用量少且对环境污染小、分析速度快、应用范围广等许多优点,用该方法对外消旋雷诺嗪进行拆分的分离效果好且灵敏度高。
(2)目前,关于外消旋雷诺嗪的研究还比较少,只有利用高效液相色谱来拆分外消旋雷诺嗪的研究文献,因此,外消旋雷诺嗪拆分方法单一,没有选择性,不能为后续的研究提供充分的基础,而本发明利用高效毛细管电泳来拆分外消旋雷诺嗪,建立了一种拆分外消旋雷诺嗪的新方法,增加了外消旋雷诺嗪拆分方法的选择,为其后续研究提供更充分的基础。
【具体实施方式】
以下给出具体实施例,对本发明作进一步说明。
实施例1
1.电泳参数的设定
分离电压为18KV;分离温度为22℃;紫外检测波长为200nm;压力进样为0.5psiX15s。
2.缓冲液体系的制备
缓冲液体系为加入7%(V)15mmol/L磺丁基醚-β-环糊精的磷酸氢二钠-盐酸,浓度为30mmol/L,pH为3.4,并用0.20μm的水性滤膜过滤,待用。
3.进样拆分
按设定的电泳参数运行高效毛细管电泳仪,先用0.20μm水性滤膜过滤过的蒸馏水走30min,再用缓冲液体系走30min,再加电场30min,如此循环,直到基线平稳且基线波动在0.15mV以内时,正极进0.08mg/mL外消旋雷诺嗪样品,负极检测。
实施例2
1.电泳参数的设定
分离电压为19KV;分离温度为24℃;紫外检测波长为210nm;压力进样为0.5psiX15s。
2.缓冲液体系的制备
缓冲液体系为加入9%(V)17mmol/L磺丁基醚-β-环糊精的磷酸氢二钠-盐酸,浓度为35mmol/L,pH为3.6,并用0.20μm的水性滤膜过滤,待用。
3.进样拆分
按设定的电泳参数运行高效毛细管电泳仪,先用0.20μm水性滤膜过滤过的蒸馏水走30min,再用缓冲液体系走30min,再加电场30min,如此循环,直到基线平稳且基线波动在0.15mV以内时,正极进0.10mg/mL外消旋雷诺嗪样品,负极检测。
实施例3
1.电泳参数的设定
分离电压为21KV;分离温度为26℃;紫外检测波长为220nm;压力进样为0.5psiX15s。
2.缓冲液体系的制备
缓冲液体系为加入11%(V)18mmol/L羧甲基-β-环糊精的磷酸氢二钠-盐酸,浓度为43mmol/L,pH为3.8,并用0.20μm的水性滤膜过滤,待用。
3.进样拆分
按设定的电泳参数运行高效毛细管电泳仪,先用0.20μm水性滤膜过滤过的蒸馏水走30min,再用缓冲液体系走30min,再加电场30min,如此循环,直到基线平稳且基线波动在0.15mV以内时,正极进0.12mg/mL外消旋雷诺嗪样品,负极检测。
实施例4
1.电泳参数的设定
分离电压为23KV;分离温度为27℃;紫外检测波长为230nm;压力进样为0.5psiX15s。
2.缓冲液体系的制备
缓冲液体系为加入12%(V)20mmol/L硫酸化-β-环糊精的磷酸氢二钠-盐酸,浓度为50mmol/L,pH为4.0,并用0.20μm的水性滤膜过滤,待用。
3.进样拆分
按设定的电泳参数运行高效毛细管电泳仪,先用0.20μm水性滤膜过滤过的蒸馏水走30min,再用缓冲液体系走30min,再加电场30min,如此循环,直到基线平稳且基线波动在0.15mV以内时,正极进0.15mg/mL外消旋雷诺嗪样品,负极检测。
采集上述4个实施例的电泳图,经过计算得到分离度,作为实验组;将文献中采用CDMPC手性柱的高效液相色谱拆分外消旋雷诺嗪的最佳分离度作为对照组,两者相比较,结果见表1:
表1
实施例 1 2 3 4 对照组
分离度 3.31 3.42 4.01 3.37 3.33
由上表可知,在上述4个实施例中,均可以实现对外消旋雷诺嗪拆分的基线分离,且最佳分离度达到4.01。在4组实施例中,不仅最佳分离度优于对照组20.4%,且实施例2和实施例3的分离度均优于对照组的最佳分离度,实施例1的分离度也与对照组近似。因此,本发明不仅为外消旋雷诺嗪建立了一种新的拆分方法,且该拆分方法的灵敏度高、分离效果好。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (7)

1.一种高效毛细管电泳拆分外消旋雷诺嗪的方法,其特征在于,包括以下步骤:
(1)以磷酸氢二钠-盐酸作为缓冲液,在该缓冲液中添加手性选择试剂作为缓冲液体系,搅拌至混合均匀后,超声脱气10min并用0.20μm的微孔滤膜过滤;所述手性选择试剂为磺丁基醚-β-环糊精、羧甲基-β-环糊精或硫酸化-β-环糊精中的一种;
(2)用去离子水配制外消旋雷诺嗪样品,样品浓度为0.08-0.15mg/mL;
(3)调节毛细管电泳参数为:分离电压为18-23KV,毛细管温度为22-27℃,压力进样为1.5psiX15s,紫外检测波长为200-230nm;正极进外消旋雷诺嗪样品,负极检测;
(4)在(3)设定的毛细管电泳参数下运行毛细管电泳仪,待基线平稳且基线波动在0.15mAu范围内时进样,实现了外消旋雷诺嗪的基线分离。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述手性选择试剂的浓度为15-20mmol/L,添加量为7-12%的体积。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述磷酸氢二钠-盐酸的浓度为30-50mmol/L,pH为3.4-4.0。
4.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述样品的浓度为0.12mg/mL。
5.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述分离电压为20KV。
6.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述毛细管温度为26℃。
7.根据权利要求1所述的方法,其特征在于,步骤(3)中,所述紫外检测波长为220nm。
CN201610615516.6A 2016-07-29 2016-07-29 一种高效毛细管电泳拆分外消旋雷诺嗪的方法 Active CN106053580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610615516.6A CN106053580B (zh) 2016-07-29 2016-07-29 一种高效毛细管电泳拆分外消旋雷诺嗪的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610615516.6A CN106053580B (zh) 2016-07-29 2016-07-29 一种高效毛细管电泳拆分外消旋雷诺嗪的方法

Publications (2)

Publication Number Publication Date
CN106053580A CN106053580A (zh) 2016-10-26
CN106053580B true CN106053580B (zh) 2019-01-01

Family

ID=57196659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610615516.6A Active CN106053580B (zh) 2016-07-29 2016-07-29 一种高效毛细管电泳拆分外消旋雷诺嗪的方法

Country Status (1)

Country Link
CN (1) CN106053580B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2447788Y (zh) * 2000-08-11 2001-09-12 上海医大仪器厂 自定位毛细管电泳电化学检测池
CN1401647A (zh) * 2002-09-13 2003-03-12 中国科学院上海有机化学研究所 高比旋度的左旋亚叶酸钙及拆分方法
US20060219637A1 (en) * 2005-03-29 2006-10-05 Killeen Kevin P Devices, systems and methods for liquid chromatography
US8357281B2 (en) * 2009-09-21 2013-01-22 Advanced Analytical Technologies, Inc. Multi-wavelength fluorescence detection system for multiplexed capillary electrophoresis
CN101782548B (zh) * 2009-12-03 2013-07-24 浙江工业大学 一种毛细管电泳拆分2,4-滴丙酸对映体的新方法
CN102095775B (zh) * 2010-12-01 2013-11-20 江南大学 一种高效毛细管电泳拆分检测茶氨酸对映体的方法
CN104965018B (zh) * 2015-07-03 2017-05-24 湖北博凯医药科技有限公司 采用毛细管电泳分离‑二极管阵列检测技术拆分外消旋2‑氯丙酸的方法

Also Published As

Publication number Publication date
CN106053580A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Kataoka New trends in sample preparation for clinical and pharmaceutical analysis
Svec Less common applications of monoliths: Preconcentration and solid-phase extraction
Eibak et al. Kinetic electro membrane extraction under stagnant conditions—fast isolation of drugs from untreated human plasma
JP4866430B2 (ja) キャピラリー等電点電気泳動−中空糸フローフィールドフロー分画法を用いたタンパク質分離装置およびその方法
Schaller et al. Separation of antidepressants by capillary electrophoresis with in-line solid-phase extraction using a novel monolithic adsorbent
Cordero et al. Analytical applications of membrane extraction in chromatography and electrophoresis
Xie et al. Green analytical methodologies combining liquid-phase microextraction with capillary electrophoresis
Pedersen-Bjergaard et al. Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography
McEvoy et al. Recent advances in the development and application of microemulsion EKC
Benavente et al. Lowering the concentration limits of detection by on-line solid-phase extraction–capillary electrophoresis–electrospray mass spectrometry
Wang et al. Determination of parabens in cosmetic products by supercritical fluid extraction and capillary zone electrophoresis
CN104407067B (zh) 依鲁替尼及其异构体的检测方法
Waldhier et al. Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis
Arce et al. Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis
Gotti et al. Analysis of ACE-inhibitors by CE using alkylsulfonic additives
Pranaitytė et al. Capillary electrophoretic determination of ammonia using headspace single-drop microextraction
Liu et al. Separation of structurally related estrogens using isocratic elution pressurized capillary electrochromatography
Puig et al. Improving the sensitivity of the determination of ceftiofur by capillary electrophoresis in environmental water samples: In-line solid phase extraction and sample stacking techniques
Horká et al. Preparative isoelectric focusing of microorganisms in cellulose-based separation medium and subsequent analysis by CIEF and MALDI-TOF MS
Pantůčková et al. Sensitivity enhancement in direct coupling of supported liquid membrane extractions to capillary electrophoresis by means of transient isotachophoresis and large electrokinetic injections
CN106053580B (zh) 一种高效毛细管电泳拆分外消旋雷诺嗪的方法
Gu et al. Rapid LC–MS/MS profiling of protein amino acids and metabolically related compounds for large-scale assessment of metabolic phenotypes
CN112138547B (zh) 半互穿网络聚合物支撑膜、制备及用于电膜萃取的应用
Jiang et al. Surfactant-free microemulsion reinforced hollow-fiber liquid-phase microextraction combined with micellar electrokinetic capillary chromatography for detection of phthalic acid esters in beverage and urine
Paias et al. Enantioselective analysis of albendazole sulfoxide in cerebrospinal fluid by capillary electrophoresis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181129

Address after: 542813 No. 1 Xindu Town Industrial Avenue, Babu District, Hezhou City, Guangxi Zhuang Autonomous Region

Applicant after: Guangxi win Agricultural Technology Co., Ltd.

Address before: 530000 South Railway North 2 District, Xixiangtang District, Nanning City, Guangxi Zhuang Autonomous Region, 54 Blocks 3-9

Applicant before: Yan Hai

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201127

Address after: 9 Jianshe East Road, Babu District, Hezhou City, Guangxi Zhuang Autonomous Region

Patentee after: Market supervision and Administration Bureau of Babu District, Hezhou City

Address before: 542813 No. 1 Xindu Town Industrial Avenue, Babu District, Hezhou City, Guangxi Zhuang Autonomous Region

Patentee before: GUANGXI CHISHENG AGRICULTURE TECHNOLOGY Co.,Ltd.