CN106053320B - 一种使用普通颗粒对激光颗粒计数器进行校准的方法 - Google Patents

一种使用普通颗粒对激光颗粒计数器进行校准的方法 Download PDF

Info

Publication number
CN106053320B
CN106053320B CN201610332778.1A CN201610332778A CN106053320B CN 106053320 B CN106053320 B CN 106053320B CN 201610332778 A CN201610332778 A CN 201610332778A CN 106053320 B CN106053320 B CN 106053320B
Authority
CN
China
Prior art keywords
particle
electric signal
distribution
mean
calibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610332778.1A
Other languages
English (en)
Other versions
CN106053320A (zh
Inventor
胥海洲
孙波
黄晓兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qinghetao Technology Co Ltd
Original Assignee
Shenzhen Qinghetao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qinghetao Technology Co Ltd filed Critical Shenzhen Qinghetao Technology Co Ltd
Priority to CN201610332778.1A priority Critical patent/CN106053320B/zh
Publication of CN106053320A publication Critical patent/CN106053320A/zh
Application granted granted Critical
Publication of CN106053320B publication Critical patent/CN106053320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种使用普通颗粒对激光颗粒计数器进行校准的方法,该使用普通颗粒对激光颗粒计数器进行校准的方法包括以下步骤:放入整体的颗粒尺寸分布服从对数正态分布的颗粒;把颗粒的重量分布转换为尺寸分布;通过激光颗粒计数器采集颗粒的电信号;筛选出电信号正态分布的均数μI;通过均数μI得到校准的电信号。本发明的有益效果是:提高了校准的准确度,排除了标准设备自身的误差以及颗粒在空间分布不均匀对校准结果造成的干扰;其次实现了纯自动化校准,提高校准结果的准确性和校准的效率;同时也降低了校准的成本,实现了提高效率和降低成本的双重目的。

Description

一种使用普通颗粒对激光颗粒计数器进行校准的方法
技术领域
本发明涉及到激光颗粒计数器校准领域的技术领域,尤其涉及到一种使用普通颗粒对激光颗粒计数器进行校准的方法。
背景技术
激光颗粒计数器在应用中用于检测环境中PM0.3、PM2.5、PM10等指标。激光颗粒计数器基于光的散射原理,一束激光经过被测颗粒的散射后改变方向,被激光接收器接收。激光接收器把接受到的光信号转换为电信号。激光颗粒计数器通过处理该电信号(整形和放大),并建立电信号与光信号以及颗粒大小的对应关系,即可得到环境中各种大小微粒的数量。
现行的校准方法是参照某一标准设备进行对照校准。在校准时,把用于作为标准的设备放入校准环境中并读取其读数。通过调整待校准计数器电路上的一个可调电阻(可以是其他方法,本质是调整电信号与颗粒大小的对应系数的大小)来使待校准计数器的读数与标准设备读数一致。
现有技术的缺点是:1、由于在环境中颗粒的分布本质上并不均匀,所以不同位置的颗粒浓度并不能保证一致,加之标准设备本身也会有测量误差,所以标准设备的读数对待校准计数器只是相对准确而不是绝对准确;2、操作复杂,需要手动输入各项参数,甚至手动调节电信号幅度对应参数,难以自动化;本发明着力解决以上两个问题。
发明内容
本发明的目的是为了克服现有技术的不足,提供了一种使用普通颗粒对激光颗粒计数器进行校准的方法。
本发明是通过以下技术方案实现:
本发明提供了一种使用普通颗粒对激光颗粒计数器进行校准的方法,该使用普通颗粒对激光颗粒计数器进行校准的方法包括以下步骤:
放入整体的颗粒尺寸分布服从对数正态分布的颗粒;
把颗粒的重量分布转换为尺寸分布;
通过激光颗粒计数器采集颗粒的电信号;
筛选出电信号正态分布的均数μI
通过均数μI得到校准的电信号。
优选的,还包括:通过采购标签上获得对数正态分布颗粒的均数和标准差,或者对标准颗粒首先进行测试,获得其重量的正态分布规律。
优选的,转换的颗粒的尺寸分布的正态分布方程为:fn(rlog)=N(μn=μw-3σw 2,σn=σw),其中μn为尺寸分布的均数,σn为尺寸分布的方差;μw为重量分布的均数,σw为重量分布的方差。
优选的,其特征在于,电信号与颗粒尺寸的关系式为IP=α×r2;转换的电信号的对数与α的对数满足以下关系log(Ip)=log(α)+2rlog
优选的,转换后的电信号的均数α的表达式
优选的,所述筛选出电信号正态分布的均数μI具体为:对电信号的采样和处理;筛选出电信号正态分布的均数μI
本发明的有益效果是:提高了校准的准确度,排除了标准设备自身的误差以及颗粒在空间分布不均匀对校准结果造成的干扰;其次实现了纯自动化校准,提高校准结果的准确性和校准的效率;同时也降低了校准的成本,实现了提高效率和降低成本的双重目的。
附图说明
图1是本发明实施例提供的使用普通颗粒对激光颗粒计数器进行校准的方法的流程图;
图2是本发明提供的激光颗粒计数器工作原理示意图;
图3是本发明提供的校准原理示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1是本发明提供的使用普通颗粒对激光颗粒计数器进行校准的方法的流程图。
本发明实施例提供了一种使用普通颗粒对激光颗粒计数器进行校准的方法,该使用普通颗粒对激光颗粒计数器进行校准的方法包括以下步骤:
放入整体的颗粒尺寸分布服从对数正态分布的颗粒;
把颗粒的重量分布转换为尺寸分布;
通过激光颗粒计数器采集颗粒的电信号;
筛选出电信号正态分布的均数μI
通过均数μI得到校准的电信号。
在上述实施例中,采用上述方法提高了校准的准确度,排除了标准设备自身的误差以及颗粒在空间分布不均匀对校准结果造成的干扰;其次实现了纯自动化校准,提高校准结果的准确性和校准的效率;同时也降低了校准的成本,实现了提高效率和降低成本的双重目的。
为了方便理解本实施例提供的方法,下面结合具体的实施例进行详细的说明。
该方法的整体思路是1、不再使用标准设备进行参考;2、优化校准的流程,减去人工操作的步骤,实现校准自动化;3、降低校准的成本。该方案把校准过程中的标准由标准设备改为颗粒。从而不再以校准设备的读数为参考,而是以整个光散射理论为依据进行校准。在光的散射理论中,激光接收器接收到的散射光强度与颗粒直径的平方成正比例关系,设为k1;激光接收器转换的电信号强度与接收的散射光强度也成正比例关系,设为k2。从而电信号与颗粒直径的平方的对应系数为k1*k2。而影响k1和k2的因素只与整个激光颗粒计数器的元器件性能和安装位置有关,因此校准的关键在于得到k1*k2的数值。
如图2所示,激光颗粒计数器在应用中用于检测环境中PM0.3、PM2.5、PM10等指标。激光颗粒计数器基于光的散射原理,一束激光经过被测颗粒的散射后改变方向,被激光接收器接收。激光接收器把接受到的光信号转换为电信号。激光颗粒计数器通过处理该电信号(整形和放大),并建立电信号与光信号以及颗粒大小的对应关系,即可得到环境中各种大小微粒的数量。
请参阅图3,所以在校准环境中放入已知直径大小的单一颗粒,同时计数器对接收到的电信号进行测量。通过上述过程,激光颗粒计数器会获得k1*k2的具体数值并存入存储器,从而完成了整个校准过程。
但是目前单一尺寸的颗粒价格高昂,所以进一步考虑使用便宜易得的普通颗粒代替单一标准颗粒。某普通颗粒,比如滑石粉,虽然不知道每个颗粒的粒径,但是根据Kolmogorov定理,其整体的颗粒尺寸分布服从对数正态分布。
并且通过采购标签的信息即可获得对数正态分布颗粒的均数和标准差。
为了得到计数器输出值与滑石粉尺寸的对应关系,我们需要考虑求解滑石粉尺寸与测得电信号的转换关系。假设电信号与颗粒尺寸的关系式为IP=α×r2,即为要求的系数。因为rlog=log(r),所以fw(rlog)=N(μw,σw)。现在我们需要把滑石粉的重量分布转换为尺寸分布。滑石粉的尺寸分布的正态分布方程可以经推导得出:fn(rlog)=N(μn=μw-3σw 2,σn=σw),其中μn为尺寸分布的均数,σn为尺寸分布的方差;μw为重量分布的均数,σw为重量分布的方差。
由IP=α×r2可知电信号的对数与α的对数满足以下关系log(Ip)=log(α)+2rlog。通过rlog与log(Ip)的线性关系,可以得到f(log(Ip))=N(μ1=logα+2μn1=2σn)。通过上式可知:(1)把颗粒尺寸转换为电信号以后仍然满足对数正态分布;(2)标准差σI=2σn=2σw,因此在校准过程没有必要获取电信号正态分布的标准差;(3)均数,由此可以得到α的表达式因此,只要在校准过程中通过软件对电信号的采样和处理,筛选出电信号正态分布的均数μI,就可以得到α的数值,从而可以完成校准过程。
通过上述描述可以看出,采用上述方法提高了校准的准确度,排除了标准设备自身的误差以及颗粒在空间分布不均匀对校准结果造成的干扰;其次实现了纯自动化校准,提高校准结果的准确性和校准的效率;同时也降低了校准的成本,实现了提高效率和降低成本的双重目的。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种使用普通颗粒对激光颗粒计数器进行校准的方法,其特征在于,该方法包括以下步骤:
放入整体的颗粒尺寸分布服从对数正态分布的颗粒;
把颗粒的重量分布转换为尺寸分布;
通过激光颗粒计数器采集颗粒的电信号;
筛选出电信号正态分布的均数
通过均数得到校准的电信号;
还包括:通过采购标签上获得对数正态分布颗粒的均数和标准差,或者对标准颗粒首先进行测试,获得其重量的正态分布规律;
所述转换的颗粒的尺寸分布的正态分布方程为: ,其中为尺寸分布的均数,为尺寸分布的方差;为重量分布的均数,为重量分布的方差。
2.根据权利要求1所述的使用普通颗粒对激光颗粒计数器进行校准的方法,其特征在于,电信号与颗粒尺寸的关系式为;转换的电信号的对数与的对数满足以下关系
3.根据权利要求2所述的使用普通颗粒对激光颗粒计数器进行校准的方法,其特征在于,转换后的电信号的均数的表达式
4.根据权利要求1~3任一项所述的使用普通颗粒对激光颗粒计数器进行校准的方法,其特征在于,所述筛选出电信号正态分布的均数具体为:对电信号的采样和处理;筛选出电信号正态分布的均数
CN201610332778.1A 2016-05-18 2016-05-18 一种使用普通颗粒对激光颗粒计数器进行校准的方法 Active CN106053320B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610332778.1A CN106053320B (zh) 2016-05-18 2016-05-18 一种使用普通颗粒对激光颗粒计数器进行校准的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610332778.1A CN106053320B (zh) 2016-05-18 2016-05-18 一种使用普通颗粒对激光颗粒计数器进行校准的方法

Publications (2)

Publication Number Publication Date
CN106053320A CN106053320A (zh) 2016-10-26
CN106053320B true CN106053320B (zh) 2019-02-19

Family

ID=57176447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610332778.1A Active CN106053320B (zh) 2016-05-18 2016-05-18 一种使用普通颗粒对激光颗粒计数器进行校准的方法

Country Status (1)

Country Link
CN (1) CN106053320B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247783A (en) * 1978-01-24 1981-01-27 Berber Viktor A Photoelectric converter of sizes of particles employing calibration light pulses with increased stability
CN102004067A (zh) * 2009-09-01 2011-04-06 杭州绿洁水务科技有限公司 一种液体中颗粒物的检测系统和方法
CN103454203A (zh) * 2013-09-09 2013-12-18 中国科学院合肥物质科学研究院 一种大气颗粒物粒径和化学成分的实时在线测量系统及测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576364B1 (ko) * 2003-11-21 2006-05-03 삼성전자주식회사 시편 검사장치의 기준값설정장치 및 이를 이용한 기준값설정방법
CN101911139B (zh) * 2007-11-16 2013-03-20 粒子监测系统有限公司 用于光学粒子计数器的校准验证的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247783A (en) * 1978-01-24 1981-01-27 Berber Viktor A Photoelectric converter of sizes of particles employing calibration light pulses with increased stability
CN102004067A (zh) * 2009-09-01 2011-04-06 杭州绿洁水务科技有限公司 一种液体中颗粒物的检测系统和方法
CN103454203A (zh) * 2013-09-09 2013-12-18 中国科学院合肥物质科学研究院 一种大气颗粒物粒径和化学成分的实时在线测量系统及测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"基于光散射法的大气气溶胶粒径测量关键技术的研究";钟现奎;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140815(第08期);第B027-1231页,尤其是正文第44、53页
"液体自动颗粒计数器的校准技术与发展";郝新友;《内燃机与配件》;20120331(第3期);第33页
"颗粒物发生装置与检定系统研究";吴芳;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160215(第02期);第B027-321页,尤其是正文第30、37-46页

Also Published As

Publication number Publication date
CN106053320A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN105842142A (zh) 一种使用单一标准颗粒对激光颗粒计数器进行校准的方法
CN104122180B (zh) 一种测量颗粒物质量浓度的方法
CN203949849U (zh) 一种测量颗粒物质量浓度的检测装置
CN105572715B (zh) 海洋放射性测量传感器的温漂自校正方法及传感器
CN105181236B (zh) 六维力传感器标定方法
CN105043954B (zh) 数字粉尘仪的标定系统及其标定方法
CN103499539B (zh) 基于光学原理的水产养殖浊度探测仪以及方法
CN106997058B (zh) 一种闪烁体性能测试装置及其一致性校正方法
CN105675461A (zh) Pm2.5检测仪的校准标定方法
CN103235331A (zh) 用于检测特定放射性核素的能量分段的方法及其电路
CN104596904A (zh) 一种激光粉尘传感器的粉尘浓度测量方法
CN104536056A (zh) 小口径伽马能谱测井装置及数据采集传输和自稳方法
US9140638B2 (en) Pulse discriminator for particle counter
CN103852475A (zh) 一种基于伽马射线的多道测钾仪
CN102353976A (zh) 闪烁体性能测量装置
CN102944765A (zh) 一种低频段磁传感器本底噪声测量方法
CN105954789B (zh) 一种氡子体测量仪α能谱峰重叠修正因子的准确刻度方法
CN106053320B (zh) 一种使用普通颗粒对激光颗粒计数器进行校准的方法
CN204924866U (zh) 数字粉尘仪的标定系统
CN102997834B (zh) 一种共面电容传感器的非导电介质薄膜厚度在线检测装置
CN205300757U (zh) 太阳光照度测量仪
CN102539111B (zh) 一种基于dsPIC单片机的温度脉动仪
CN209961651U (zh) 一种多角度颗粒物检测光度计
CN106526236A (zh) 海流计流向校准的方法和装置
CN109253953B (zh) 一种可测量多种颗粒物质量浓度的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant