CN106048528B - 一种薄膜电极制备方法及装置 - Google Patents
一种薄膜电极制备方法及装置 Download PDFInfo
- Publication number
- CN106048528B CN106048528B CN201610530653.XA CN201610530653A CN106048528B CN 106048528 B CN106048528 B CN 106048528B CN 201610530653 A CN201610530653 A CN 201610530653A CN 106048528 B CN106048528 B CN 106048528B
- Authority
- CN
- China
- Prior art keywords
- substrate
- preparing
- sputtering
- oxygen
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明实施例公开了一种薄膜电极制备方法及装置,对制备Mo的衬底进行清洗;将清洗后的制备Mo的衬底置于Mo溅射线的预热腔室;将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;进行Mo工艺的溅射,使用MoOx不通氧气的工艺,通过两层工艺,第一层在溅射过程中通入少量氧气(0.001%‑0.5%)形成MoOx化合物,此过渡层MoOx与玻璃等衬底具有良好的粘附力,其他根据Mo电极的要求进行正常的磁控溅射工艺,从而提高基底粘附力,实现提高量产效率的目的。
Description
技术领域
本发明实施例涉及制备工艺的技术领域,尤其涉及一种薄膜电极制备方法及装置。
背景技术
薄膜体声波谐振器(Film Bulk Acoustic Resonator,FBAR)的性能不仅与所用的AlN压电薄膜的成膜质量有关,还与底电极材料的选取有关。Mo具有较小的密度、较低的衰减系数和高声速等特点成为沉积AlN薄膜的优选底电极材料之一。
由于Mo金属的热膨胀系数和玻璃比较匹配,现在基于玻璃衬底的器件都优先选用Mo作为底电极,例如我们选用的应用实例,做IGZO-TFT(IGZO薄膜晶体管),采用Mo作为底栅极结构;
由于Mo与CIGS薄膜晶格和能带等很多性质都比其他金属与CIGS匹配,所以CIGS薄膜太阳能电池的底电极不管是用玻璃衬底还是柔性的其他衬底都会选用Mo作为量产时的电极;
以上三种Mo电极的量产应用都需要解决如何提高基底粘附力和提高量产效率的问题。
发明内容
本发明实施例的目的在于提出一种薄膜电极制备方法及装置,旨在解决如何提高基底粘附力和提高量产效率的问题。
为达此目的,本发明实施例采用以下技术方案:
第一方面,一种薄膜电极制备方法,所述薄膜电极制备方法包括:
对制备Mo的衬底进行清洗;
将清洗后的制备Mo的衬底置于预热腔室;
将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;
进行Mo溅射。
优选地,所述对制备Mo的衬底进行清洗,包括:
把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;
使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水。
优选地,所述预热腔室的温度为50-150℃,烘烤清洗后的制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽。
优选地,所述将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,包括:
将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.001%-0.5%,优选0.5%,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度5-100nm,优选20nm-50nm。
优选地,所述进行Mo溅射,包括:
选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氩气流量5-100SCCM,优选40-60SCCM,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度50-1000nm,优选200nm,该步骤不通氧气。
第二方面,一种薄膜电极制备装置,所述薄膜电极制备装置包括:
清洗模块,用于对制备Mo的衬底进行清洗;
预热模块,用于将清洗后的制备Mo的衬底置于预热腔室;
第一溅射模块,用于将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;
第二溅射模块,用于进行Mo溅射。
优选地,所述清洗模块,用于:
把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;
使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水。
优选地,所述预热腔室的温度为50-150℃,烘烤清洗后的制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽。
优选地,所述第一溅射模块,用于:
将烘干后的制备Mo的衬底置于Mo金属溅射腔室,进行MoOx溅射,选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.001%-0.5%,优选0.5%,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度5-100nm,优选20nm-50nm。
优选地,所述第二溅射模块,用于:
进行Mo溅射,具体包括:选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氩气流量5-100SCCM,优选40-60SCCM,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度50-1000nm,优选200nm,该步骤不通氧气。
本发明实施例提供一种薄膜电极制备方法及装置,对制备Mo的衬底进行清洗;将清洗后的制备Mo的衬底置于Mo溅射线的预热腔室;将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;进行Mo溅射,通过两层工艺,第一层在溅射过程中通入少量氧气(0.001%-0.5%)形成MoOx化合物,形成与玻璃等衬底良好的粘附力,其他根据Mo电极的要求进行正常的磁控溅射工艺,从而提高基底粘附力,实现提高量产效率的目的。
附图说明
图1是本发明实施例薄膜电极制备方法的流程示意图;
图2是本发明实施例薄膜电极制备方法各步骤对应的结构示意图;
图3是本发明实施例薄膜电极制备装置的功能模块示意图。
具体实施方式
下面结合附图和实施例对本发明实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明实施例,而非对本发明实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明实施例相关的部分而非全部结构。
参照图1,图1是本发明实施例薄膜电极制备方法的流程示意图。
在第一实施例中,该薄膜电极制备方法包括:
步骤101,对制备Mo的衬底进行清洗;
优选地,所述对制备Mo的衬底进行清洗,包括:
把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;
使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水。
步骤102,将清洗后的制备Mo的衬底置于预热腔室;
其中,所述预热腔室的温度为50-150℃,烘烤清洗后的制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽。
步骤103,将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;
优选地,所述将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,包括:
将烘干后的制备Mo的衬底置于Mo金属溅射腔室,进行MoOx溅射,选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.001%-0.5%,优选0.5%,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度5-100nm,优选20nm-50nm。
步骤104,进行Mo溅射。
优选地,所述进行Mo溅射,包括:
进行Mo溅射,选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氩气流量5-100SCCM,优选40-60SCCM,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度50-1000nm,优选200nm,该步骤不通氧气。
具体的,参考图2。此Mo电极制备工艺在实验室和量产线上都可以重复稳定实现。
1)、增加了一步氧气的控制,氧气用量和控制精度要求不高,但免去了高、低气压带来的不确定工艺问题,可能起辉不了,可能气压控制不稳定等设备和工艺问题和对设备例如蝶阀精度、流量计精度的控制高要求;
2)、有些应用有对Mo电极有方阻、表面应力等要求,此新Mo电极制备工艺可以根据要求设计相对应的工艺,只需在前面通入少量氧,形成5-100nm厚(建议20nm-50nm)的MoOx粘附层,极大的提高了工艺window和可控性。
3)、相比双层Mo工艺,极大的提高了溅射效率,在一定程度降低了量产成本,提高了工艺稳定性;
4)、通过了粘附力测试,3M胶带测试和氨水浸泡测试,说明是一种好的增加Mo与玻璃等基底粘附力的新方法。
本发明实施例提供一种薄膜电极制备方法,对制备Mo的衬底进行清洗;将清洗后的制备Mo的衬底置于预热腔室;将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;进行Mo溅射,通过两层工艺,第一层在溅射过程中通入少量氧气(0.001%-0.5%)形成MoOx化合物,形成与玻璃等衬底良好的粘附力,其他根据Mo电极的要求进行正常的磁控溅射工艺,从而提高基底粘附力,实现提高量产效率的目的。
参照图3,图3是本发明实施例薄膜电极制备装置的功能模块示意图。
在图3中,所述薄膜电极制备装置包括:
清洗模块301,用于对制备Mo的衬底进行清洗;
优选地,所述清洗模块301,用于:
把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;
使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水。
预热模块302,用于将清洗后的制备Mo的衬底置于预热腔室;
其中,所述预热腔室的温度为50-150℃,烘烤清洗后的制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽。
第一溅射模块303,用于将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;
优选地,所述第一溅射模块303,用于:
将烘干后的制备Mo的衬底置于Mo金属溅射腔室,进行MoOx溅射,选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.001%-0.5%,优选0.5%,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度5-100nm,优选20nm-50nm。
第二溅射模块304,用于进行Mo溅射。
优选地,所述第二溅射模块304,用于:
进行Mo溅射,具体包括:选择电流模式,电流0.2-2A,优选0.8A,气压0.05-2Pa,优选0.8-1.2Pa,温度室温,氩气流量5-100SCCM,优选40-60SCCM,衬底移动速度0.1-5m/min,优选2m/min,溅射厚度50-1000nm,优选200nm,该步骤不通氧气。
本发明实施例提供一种薄膜电极制备装置,对制备Mo的衬底进行清洗;将清洗后的制备Mo的衬底置于预热腔室;将烘干后的制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射;进行Mo溅射,通过两层工艺,第一层在溅射过程中通入少量氧气(0.001%-0.5%)形成MoOx化合物,形成与玻璃等衬底良好的粘附力,其他根据Mo电极的要求进行正常的磁控溅射工艺,从而提高基底粘附力,实现提高量产效率的目的。
以上结合具体实施例描述了本发明实施例的技术原理。这些描述只是为了解释本发明实施例的原理,而不能以任何方式解释为对本发明实施例保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明实施例的其它具体实施方式,这些方式都将落入本发明实施例的保护范围之内。
Claims (2)
1.一种薄膜电极制备方法,其特征在于,所述薄膜电极制备方法包括:
对制备Mo的衬底进行清洗;
所述对制备Mo的衬底进行清洗具体包括:把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水;
将清洗后的所述制备Mo的衬底置于预热腔室;所述预热腔室的温度为50-150℃,烘烤清洗后的所述制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽;
将烘干后的所述制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,具体包括:将烘干后的所述制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,选择电流模式,电流0.8A,气压0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.5%,衬底移动速度2m/min,溅射厚度20nm-50nm;
进行Mo溅射,具体包括:选择电流模式,电流0.8A,气压0.8-1.2Pa,温度室温,氩气流量40-60SCCM,衬底移动速度2m/min,溅射厚度200nm,该步骤不通氧气。
2.一种薄膜电极制备装置,其特征在于,所述薄膜电极制备装置包括:
清洗模块,用于对制备Mo的衬底进行清洗;所述清洗模块具体用于:
把所述制备Mo的衬底放入含专业玻璃清洗液的去离子水中,用滚刷清洗,并用去离子水去除清洗液;
使用气液二流体深度清洗,用氮气吹干,并用灯管或加热板烘干,所述气液二流体包括氮气和去离子水;
预热模块,用于将清洗后的所述制备Mo的衬底置于预热腔室;所述预热腔室的温度为50-150℃,烘烤清洗后的所述制备Mo的衬底半个小时以上,去除玻璃衬底上的水汽;
第一溅射模块,用于将烘干后的所述制备Mo的衬底置于Mo溅射腔室,进行MoOx溅射,具体包括:选择电流模式,电流0.8A,气压0.8-1.2Pa,温度室温,氧气/(氩气+氧气)的比例0.5%,衬底移动速度2m/min,溅射厚度20nm-50nm;
第二溅射模块,用于进行Mo溅射,具体包括:选择电流模式,电流0.8A,气压0.8-1.2Pa,温度室温,氩气流量40-60SCCM,衬底移动速度2m/min,溅射厚度200nm,该步骤不通氧气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610530653.XA CN106048528B (zh) | 2016-07-07 | 2016-07-07 | 一种薄膜电极制备方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610530653.XA CN106048528B (zh) | 2016-07-07 | 2016-07-07 | 一种薄膜电极制备方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106048528A CN106048528A (zh) | 2016-10-26 |
CN106048528B true CN106048528B (zh) | 2019-04-05 |
Family
ID=57184940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610530653.XA Expired - Fee Related CN106048528B (zh) | 2016-07-07 | 2016-07-07 | 一种薄膜电极制备方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106048528B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108517494A (zh) * | 2018-05-22 | 2018-09-11 | 桑尼光电技术(安徽)有限公司 | 一种光学真空镀膜机内腔清洁方法 |
CN108823539B (zh) * | 2018-05-29 | 2020-04-07 | 中国科学院半导体研究所 | 低电阻层状结构正交相MoO3-x薄膜的制备方法 |
CN111101102B (zh) * | 2019-11-21 | 2022-03-25 | 广东工业大学 | 一种MoON涂层及其制备方法和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103354246A (zh) * | 2013-07-10 | 2013-10-16 | 尚越光电科技有限公司 | 铜铟镓硒太阳电池背电极Mo薄膜及其制备工艺 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7875945B2 (en) * | 2007-06-12 | 2011-01-25 | Guardian Industries Corp. | Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same |
-
2016
- 2016-07-07 CN CN201610530653.XA patent/CN106048528B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103354246A (zh) * | 2013-07-10 | 2013-10-16 | 尚越光电科技有限公司 | 铜铟镓硒太阳电池背电极Mo薄膜及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN106048528A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106048528B (zh) | 一种薄膜电极制备方法及装置 | |
KR100885664B1 (ko) | 고속/고밀도 마그네트론 스퍼터링 법을 이용한 후막제조방법 | |
CN106197718B (zh) | 一种薄膜温度传感器及制备方法 | |
CN104980117A (zh) | 一种耐高温的柔性声表面波器件及其制造方法 | |
CN103014654B (zh) | 一种AlN/ZnO/InGaN/金刚石/Si多层结构声表面波滤波器件的制备方法 | |
CN104451545B (zh) | 一种ZnO薄膜材料、声表面波滤波器复合薄膜材料及制备方法 | |
TWI503430B (zh) | 鍍膜件及其製造方法 | |
CN105547535A (zh) | 用于薄膜压力传感器的应变薄膜及其制备方法、薄膜压力传感器芯体 | |
CN106637207A (zh) | 一种石墨基材上的耐高温类金刚石涂层方法 | |
JP2014502038A5 (zh) | ||
CN108106748B (zh) | 一种柔性烧蚀电阻薄膜及其制备方法 | |
WO2021088401A1 (zh) | 一种基于双层电极高机电耦合系数的声表面波器件及其制备方法 | |
CN104131260A (zh) | 金属Pd纳米颗粒阵列的制备方法 | |
CN103290376A (zh) | 对柔性衬底的扩散阻挡层修饰 | |
JP2007311040A (ja) | 結晶性ito薄膜の成膜方法、結晶性ito薄膜及びフィルム、並びに抵抗膜式タッチパネル | |
CN106435503B (zh) | 一种大的正温度系数的氧化硅薄膜及其沉积方法 | |
CN102286722B (zh) | 氧化锌/类金刚石声表面波器件复合薄膜的制备方法 | |
CN108165928A (zh) | 一种FeGa合金衬底的AlN薄膜及其制备方法 | |
CN105239044A (zh) | 靶材基板制造方法 | |
CN105060236B (zh) | 一种类金刚石碳微悬梁臂及其制备方法 | |
CN104332261A (zh) | 一种Pt薄膜热敏电阻的制备方法 | |
CN107299315A (zh) | 一种高绝缘电阻二氧化硅薄膜材料及其制备方法 | |
CN102965616A (zh) | Wcn纳米复合膜及其制备方法 | |
CN206019863U (zh) | 一种薄膜温度传感器及六靶台双离子束反应溅射沉积设备 | |
CN106498349B (zh) | 真空镀膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190405 Termination date: 20200707 |