CN106030620B - 用于随机尖峰贝叶斯网络的基于事件的推断和学习 - Google Patents

用于随机尖峰贝叶斯网络的基于事件的推断和学习 Download PDF

Info

Publication number
CN106030620B
CN106030620B CN201580009313.6A CN201580009313A CN106030620B CN 106030620 B CN106030620 B CN 106030620B CN 201580009313 A CN201580009313 A CN 201580009313A CN 106030620 B CN106030620 B CN 106030620B
Authority
CN
China
Prior art keywords
event
incoming event
median
outgoing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580009313.6A
Other languages
English (en)
Chinese (zh)
Other versions
CN106030620A (zh
Inventor
X·王
B·F·贝哈巴迪
A·霍斯劳沙希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN106030620A publication Critical patent/CN106030620A/zh
Application granted granted Critical
Publication of CN106030620B publication Critical patent/CN106030620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0495Quantised networks; Sparse networks; Compressed networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0499Feedforward networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Image Analysis (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
CN201580009313.6A 2014-02-21 2015-02-19 用于随机尖峰贝叶斯网络的基于事件的推断和学习 Active CN106030620B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201461943147P 2014-02-21 2014-02-21
US61/943,147 2014-02-21
US201461949154P 2014-03-06 2014-03-06
US61/949,154 2014-03-06
US14/281,220 2014-05-19
US14/281,220 US20150242745A1 (en) 2014-02-21 2014-05-19 Event-based inference and learning for stochastic spiking bayesian networks
PCT/US2015/016665 WO2015127110A2 (en) 2014-02-21 2015-02-19 Event-based inference and learning for stochastic spiking bayesian networks

Publications (2)

Publication Number Publication Date
CN106030620A CN106030620A (zh) 2016-10-12
CN106030620B true CN106030620B (zh) 2019-04-16

Family

ID=52627570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580009313.6A Active CN106030620B (zh) 2014-02-21 2015-02-19 用于随机尖峰贝叶斯网络的基于事件的推断和学习

Country Status (8)

Country Link
US (1) US20150242745A1 (enExample)
EP (1) EP3108410A2 (enExample)
JP (1) JP2017509978A (enExample)
KR (1) KR20160123309A (enExample)
CN (1) CN106030620B (enExample)
CA (1) CA2937949A1 (enExample)
TW (1) TW201541374A (enExample)
WO (1) WO2015127110A2 (enExample)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10635968B2 (en) 2016-03-24 2020-04-28 Intel Corporation Technologies for memory management of neural networks with sparse connectivity
US11222278B2 (en) 2016-09-08 2022-01-11 Fujitsu Limited Estimating conditional probabilities
US10108538B1 (en) 2017-07-31 2018-10-23 Google Llc Accessing prologue and epilogue data
CN111512325B (zh) * 2018-02-23 2025-09-23 英特尔公司 用于利用尖峰神经网络生成贝叶斯推断的方法、设备和系统
WO2019203946A1 (en) * 2018-04-17 2019-10-24 Hrl Laboratories, Llc Programming model for a bayesian neuromorphic compiler
US11521053B2 (en) * 2018-04-17 2022-12-06 Hrl Laboratories, Llc Network composition module for a bayesian neuromorphic compiler
CN108647725A (zh) * 2018-05-11 2018-10-12 国家计算机网络与信息安全管理中心 一种实现静态隐马尔科夫模型推理的神经电路
JP7151382B2 (ja) * 2018-11-01 2022-10-12 日本電信電話株式会社 イベント予測装置、イベント予測方法及びイベント予測プログラム
DE102018127383A1 (de) * 2018-11-02 2020-05-07 Universität Bremen Datenverarbeitungsvorrichtung mit einem künstlichen neuronalen Netzwerk und Verfahren zur Datenverarbeitung
WO2020102421A1 (en) * 2018-11-13 2020-05-22 The Board Of Trustees Of The University Of Illinois Integrated memory system for high performance bayesian and classical inference of neural networks
JP7562522B2 (ja) 2018-11-18 2024-10-07 インナテラ・ナノシステムズ・ビー.ブイ. スパイキングニューラルネットワーク
CN113396426A (zh) * 2019-03-05 2021-09-14 赫尔实验室有限公司 用于贝叶斯神经形态编译器的网络构成模块
SG11202110721XA (en) * 2019-04-09 2021-10-28 Chengdu Synsense Technology Co Ltd Event-driven spiking convolutional neural network
US11201893B2 (en) 2019-10-08 2021-12-14 The Boeing Company Systems and methods for performing cybersecurity risk assessments
CN110956256B (zh) * 2019-12-09 2022-05-17 清华大学 利用忆阻器本征噪声实现贝叶斯神经网络的方法及装置
US12197926B2 (en) * 2020-07-03 2025-01-14 Mediatek Inc. Dynamic loading neural network inference at DRAM/on-bus SRAM/serial flash for power optimization
US11681906B2 (en) * 2020-08-28 2023-06-20 Micron Technology, Inc. Bayesian network in memory
KR102595095B1 (ko) * 2020-11-26 2023-10-27 서울대학교산학협력단 유아-모사 베이지안 학습 방법 및 이를 수행하기 위한 컴퓨팅 장치
KR102535635B1 (ko) * 2020-11-26 2023-05-23 광운대학교 산학협력단 뉴로모픽 컴퓨팅 장치
AU2021269370A1 (en) 2020-12-18 2022-07-07 The Boeing Company Systems and methods for context aware cybersecurity
CN113191402B (zh) * 2021-04-14 2022-05-20 华中科技大学 基于忆阻器的朴素贝叶斯分类器设计方法、系统及分类器
CN113516172B (zh) * 2021-05-19 2023-05-12 电子科技大学 基于随机计算贝叶斯神经网络误差注入的图像分类方法
CN113987749B (zh) * 2021-09-26 2025-06-10 深圳市城市公共安全技术研究院有限公司 电气火灾预测方法、设备、计算机程序产品及存储介质
US20230419075A1 (en) * 2022-06-24 2023-12-28 Mitsubishi Electric Research Laboratories, Inc. Automated Variational Inference using Stochastic Models with Irregular Beliefs
US20240095354A1 (en) * 2022-09-14 2024-03-21 Worcester Polytechnic Institute Assurance model for an autonomous robotic system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8943008B2 (en) * 2011-09-21 2015-01-27 Brain Corporation Apparatus and methods for reinforcement learning in artificial neural networks
US9111224B2 (en) * 2011-10-19 2015-08-18 Qualcomm Incorporated Method and apparatus for neural learning of natural multi-spike trains in spiking neural networks
US9367797B2 (en) * 2012-02-08 2016-06-14 Jason Frank Hunzinger Methods and apparatus for spiking neural computation
US9111225B2 (en) * 2012-02-08 2015-08-18 Qualcomm Incorporated Methods and apparatus for spiking neural computation
US20130204814A1 (en) * 2012-02-08 2013-08-08 Qualcomm Incorporated Methods and apparatus for spiking neural computation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity;Nessler等;《PLOS Computational Biology》;20130430;第9卷(第4期);第1-7页 *

Also Published As

Publication number Publication date
CA2937949A1 (en) 2015-08-27
WO2015127110A2 (en) 2015-08-27
WO2015127110A3 (en) 2015-12-03
TW201541374A (zh) 2015-11-01
US20150242745A1 (en) 2015-08-27
JP2017509978A (ja) 2017-04-06
EP3108410A2 (en) 2016-12-28
KR20160123309A (ko) 2016-10-25
CN106030620A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106030620B (zh) 用于随机尖峰贝叶斯网络的基于事件的推断和学习
CN106030622B (zh) 原位神经网络协同处理
CN105760930B (zh) 用于aer的多层脉冲神经网络识别系统
US20150269485A1 (en) Cold neuron spike timing back-propagation
CN106663222A (zh) 神经网络中的分解卷积操作
CN105900115A (zh) 配置用于实现低尖峰发放率的神经网络
CN105981055A (zh) 神经网络对当前计算资源的自适应
CN106796667B (zh) 动态空间目标选择
CN106164939A (zh) 尖峰发放深度置信网络(dbn)中的训练、识别、以及生成
CN107077637A (zh) 神经网络中的差分编码
CN106133755A (zh) 使用尖峰发放神经网络的图像的不变对象表示
WO2015065738A2 (en) Evaluation of a system including separable sub-systems over a multidimensional range
CN106164940A (zh) 在尖峰神经网络中通过全局标量值来调制可塑性
US9536189B2 (en) Phase-coding for coordinate transformation
CN105706121B (zh) 神经网络模型中的多普勒效应处理
CN106104586B (zh) 神经元形态模型开发的上下文实时反馈
WO2015127106A1 (en) Stochastic delay plasticity
CN106030621B (zh) 用于空间目标选择的失衡式交叉抑制性机制

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant