CN108647725A - 一种实现静态隐马尔科夫模型推理的神经电路 - Google Patents

一种实现静态隐马尔科夫模型推理的神经电路 Download PDF

Info

Publication number
CN108647725A
CN108647725A CN201810449021.XA CN201810449021A CN108647725A CN 108647725 A CN108647725 A CN 108647725A CN 201810449021 A CN201810449021 A CN 201810449021A CN 108647725 A CN108647725 A CN 108647725A
Authority
CN
China
Prior art keywords
neuron
markov model
hidden
hidden markov
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810449021.XA
Other languages
English (en)
Inventor
董建武
孙波
房婧
杜雄杰
姚珊
方喆君
余肇飞
刘健
张伟
李胜男
张泽亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
National Computer Network and Information Security Management Center
Original Assignee
Peking University
National Computer Network and Information Security Management Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, National Computer Network and Information Security Management Center filed Critical Peking University
Priority to CN201810449021.XA priority Critical patent/CN108647725A/zh
Publication of CN108647725A publication Critical patent/CN108647725A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • G06F18/295Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种实现静态隐马尔科夫模型推理的神经电路,本发明赢者通吃电路(Winner‑take‑all,WTA)电路可以实现静态隐马尔可夫模型的近似最优推理,网络中的脉冲神经元可以不断地累积证据,即通过新的证据更新后验概率;WTA电路中的竞争机制可以对分布进行归一化。

Description

一种实现静态隐马尔科夫模型推理的神经电路
技术领域
本发明涉及计算神经科学领域,尤其涉及一种实现静态隐马尔科夫模型推理的神经电路。
背景技术
隐马尔可夫模型是一种重要的有向概率图模型。在计算神经科学中,隐马尔可夫模型经常被用于在一系列的传感输入条件下探测隐藏的规律。当隐变量时不变时,这种隐马尔可夫模型叫做静态隐马尔可夫模型,实验证明这样的隐马尔可夫模型可以十分有效地模拟人脑认知中的推理与决策过程,但是尚不清楚神经电路如何实现静态马尔科夫模型的推理,很多研究者尝试建立脉冲神经电路的动力学方程与隐马尔可夫模型推理方程的对应关系,由于这两个方程不能完全等价,所以只能实现隐马尔可夫模型的近似推理,我们分析了隐马尔可夫模型的推理过程,发现它包括证据累积和归一化两个操作,这两个操作相互耦合,每一步计算中归一化的结果正是下一步计算中的需要累积的证据,因此当建立相应的脉冲神经网络时需要引入很多约束和近似,从而导致不准确的推理结果。
发明内容
针对上述问题,本发明提供了一种实现静态隐马尔科夫模型推理的神经电路,以解决建立相应的脉冲神经网络时需要引入很多约束和近似,从而导致不准确的推理结果的问题。
为解决上述技术问题,本发明所采用的技术方案是:其基本构成可以分为隐马尔可夫模型、脉冲WTA电路两部分,隐马尔可夫模型是一种重要的动态贝叶斯网络,它可以用来表示隐变量和观测变量随时间t的变化关系,脉冲WTA电路中每个脉冲神经元都是自连接的,因此神经元zk的输入电流包含两个部分:外部输入电流和自连接产生的内部电流
进一步的,隐变量序列Y={y1,y2,...,yt}是一个一阶的马氏链,当前状态的条件概率p(yt|y1,y2,...,yt-1)只取决于前一时刻的状态yt-1,也就是, p(yt|y1,y2,...,yt-1)=p(yt|yt-1)。
进一步的,观测序列X={x1,x2,...,xt}由隐状态序列决定,每个观测变量xi(i=1,2,...,t)只取决于相应的隐变量yi,据此,隐马尔可夫模型的联合分布可以表示为
进一步的,神经元zk的膜电位方程可以表示为:
其中表示神经元zk静止电位,表示一个核函数,它决定神经元zk时刻发放一个脉冲后膜电位的变化情况,κ(s)表示神经元对单位脉冲电流的响应函数。
进一步的,运用标准的指数核:这里重置电势η0=5mV,膜时间常数τ=20ms,电压响应幅值ε0=5mV,化简方程得:
由上述对本发明的描述可知,和现有技术相比,本发明具有如下优点:
本发明一种实现静态隐马尔科夫模型推理的神经电路,赢者通吃电路 (Winner-take-all,WTA)电路可以实现静态隐马尔可夫模型的近似最优推理,网络中的脉冲神经元可以不断地累积证据,即通过新的证据更新后验概率;WTA电路中的竞争机制可以对分布进行归一化。
附图说明
图1为本发明的静态隐马尔可夫模型结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种实现静态隐马尔科夫模型推理的神经电路,隐马尔可夫模型是一种重要的动态贝叶斯网络,它可以用来表示隐变量和观测变量随时间t的变化关系(如图1所示),其中隐变量序列Y={y1,y2,...,yt}是一个一阶的马氏链,当前状态的条件概率p(yt|y1,y2,...,yt-1)只取决于前一时刻的状态 yt-1,也就是,p(yt|y1,y2,...,yt-1)=p(yt|yt-1)。观测序列X={x1,x2,...,xt}由隐状态序列决定,每个观测变量xi(i=1,2,...,t)只取决于相应的隐变量yi,据此,隐马尔可夫模型的联合分布可以表示为:
当y1=y2=...=yt时为静态隐马尔可夫模型,这个模型的研究对于很多推理决策问题尤为重要,这是因为在多数情况下我们已经知道隐变量的状态不随时间改变,隐马尔可夫模型的推理问题就是已知从1时刻到t时刻的观测的条件下推断t时刻隐变量的最有可能的状态值,即
脉冲WTA电路
脉冲WTA电路中每个脉冲神经元都是自连接的,因此神经元zk的输入电流包含两个部分:外部输入电流和自连接产生的内部电流则神经元zk的膜电位方程可以表示为:
其中表示神经元zk静止电位,表示一个核函数,它决定神经元zk时刻发放一个脉冲后膜电位的变化情况,κ(s)表示神经元对单位脉冲电流的响应函数,我们运用标准的指数核:
这里重置电势η0=5mV,膜时间常数τ=20ms,电压响应幅值ε0=5mV。
化简方程可得:
实施例2
一种实现静态隐马尔科夫模型推理的神经电路,定理1:假设 G(y0=yi)=logp(y1=yi),且对于任意的t≥1,
G(yt)=logp(xt|yt)+G(yt-1)
成立,则正比于分布p(yt|x1,x2,...,xt),即
仅在最后一步进行归一化并不影响推理结果的准确性,因此可以运用差分方程和初始条件G(y0=yi)=logp(y1=yi)来实现概率推理,且后验概率需要注意的是这里的归一化常数定理1表明证据累积操作和归一化操作可以被解耦和,当前步骤中归一化的结果不需要做为下一步中的输入,因此当建立相应的脉冲神经网络时,可以将神经网络分为两个部分:一是利用新的证据来更新后验,即 G(yt)=logp(xt|yt)+G(yt-1),二是对后验分布进行归一化。
实施例3
一种实现静态马尔科夫模型推力的神经电路,定理2:考虑脉冲WTA 电路,其中神经元的静止电位外部电流 (j=1,2,3...),这里Tj表示电流的到达时间,Θ(·)表示单位阶跃函数(当x≥0时Θ(x)=1,否则Θ(x)=0),则对于任意的t≥1,如果Tt+1-Tt≥3τ都成立,那么
uk(Tt+1)=bt logp(yt=yk|x1,x2,...,xt),
成立,这里bt表示一个常数(bt≠0),且
ρk(Tt+1)∝p(yt=yk|x1,x2,...,xt).
定理2建立了脉冲WTA电路的动态性和隐马尔可夫模型的推理方程之间的对应关系:当隐马尔可夫模型新的观测到达时,脉冲WTA电路中神经元zk在Tt的输入电流将增加脉冲WTA电路中每个神经元的膜电位对隐马尔可夫模型中隐变量的后验概率的对数进行编码,每个神经元的发放概率(或者发放率)正比于隐变量的后验概率,在这样的条件下可以证明神经元的膜电位随时间的变化过程即为隐马尔可夫模型的后验概率推理过程,推理结果可以通过在一个大约几百毫秒的时间窗内统计神经元的发放脉冲的个数占所有发放的比例来获得,该方法也与猴子大脑皮层中的实验观测一致。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种实现静态隐马尔科夫模型推理的神经电路,其基本构成可以分为隐马尔可夫模型、脉冲WTA电路两部分:
(1)隐马尔可夫模型是一种重要的动态贝叶斯网络,它可以用来表示隐变量和观测变量随时间t的变化关系;
(2)脉冲WTA电路中每个脉冲神经元都是自连接的,因此神经元zk的输入电流包含两个部分:外部输入电流和自连接产生的内部电流
2.根据权利要求书1所述的一种实现静态隐马尔科夫模型推理的神经电路,其隐马尔可夫模型的步骤为:
(1)隐变量序列Y={y1,y2,...,yt}是一个一阶的马氏链,当前状态的条件概率p(yt|y1,y2,...,yt-1)只取决于前一时刻的状态yt-1,也就是,p(yt|y1,y2,...,yt-1)=p(yt|yt-1);
(2)观测序列X={x1,x2,...,xt}由隐状态序列决定,每个观测变量xi(i=1,2,...,t)只取决于相应的隐变量yi,据此,隐马尔可夫模型的联合分布可以表示为
3.根据权利要求书1所述的一种实现静态隐马尔科夫模型推理的神经电路,其脉冲WTA电路神经元的步骤为:
(1)神经元zk的膜电位方程可以表示为:
其中表示神经元zk静止电位,表示一个核函数,它决定神经元zk时刻发放一个脉冲后膜电位的变化情况,κ(s)表示神经元对单位脉冲电流的响应函数;
(2)运用标准的指数核:这里重置电势η0=5mV,膜时间常数τ=20ms,电压响应幅值ε0=5mV,化简方程得:
CN201810449021.XA 2018-05-11 2018-05-11 一种实现静态隐马尔科夫模型推理的神经电路 Pending CN108647725A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810449021.XA CN108647725A (zh) 2018-05-11 2018-05-11 一种实现静态隐马尔科夫模型推理的神经电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810449021.XA CN108647725A (zh) 2018-05-11 2018-05-11 一种实现静态隐马尔科夫模型推理的神经电路

Publications (1)

Publication Number Publication Date
CN108647725A true CN108647725A (zh) 2018-10-12

Family

ID=63754792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810449021.XA Pending CN108647725A (zh) 2018-05-11 2018-05-11 一种实现静态隐马尔科夫模型推理的神经电路

Country Status (1)

Country Link
CN (1) CN108647725A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656472A (zh) * 2001-11-16 2005-08-17 陈垣洋 带有监督和非监督簇分析的似真神经网络
US20140343903A1 (en) * 2013-05-20 2014-11-20 Nec Corporation Factorial hidden markov models estimation device, method, and program
CN105205538A (zh) * 2015-10-14 2015-12-30 清华大学 基于重要性采样的推理算法及神经电路
CN105303235A (zh) * 2015-10-26 2016-02-03 清华大学 大规模分层神经网络的构建方法
CN106030620A (zh) * 2014-02-21 2016-10-12 高通股份有限公司 用于随机尖峰贝叶斯网络的基于事件的推断和学习

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656472A (zh) * 2001-11-16 2005-08-17 陈垣洋 带有监督和非监督簇分析的似真神经网络
US20140343903A1 (en) * 2013-05-20 2014-11-20 Nec Corporation Factorial hidden markov models estimation device, method, and program
CN106030620A (zh) * 2014-02-21 2016-10-12 高通股份有限公司 用于随机尖峰贝叶斯网络的基于事件的推断和学习
CN105205538A (zh) * 2015-10-14 2015-12-30 清华大学 基于重要性采样的推理算法及神经电路
CN105303235A (zh) * 2015-10-26 2016-02-03 清华大学 大规模分层神经网络的构建方法

Similar Documents

Publication Publication Date Title
Qi et al. Exponential stability and L1-gain analysis for positive time-delay Markovian jump systems with switching transition rates subject to average dwell time
Übeylı et al. Automatic detection of erythemato-squamous diseases using adaptive neuro-fuzzy inference systems
Bhatkar et al. Detection of diabetic retinopathy in retinal images using MLP classifier
JP2005509978A (ja) 教師あり及び教師なしクラスタ分析を有する曖昧ニューラルネットワーク
US20200311527A1 (en) Residual semi-recurrent neural networks
Reljan-Delaney et al. Solving the linearly inseparable XOR problem with spiking neural networks
Freestone et al. Patient-specific neural mass modeling-stochastic and deterministic methods
Luo et al. Pruning method for dendritic neuron model based on dendrite layer significance constraints
Henderson et al. Spike event based learning in neural networks
CN108647725A (zh) 一种实现静态隐马尔科夫模型推理的神经电路
Lankarany et al. Simultaneous bayesian estimation of excitatory and inhibitory synaptic conductances by exploiting multiple recorded trials
CN107731308A (zh) 一种基于信息双反馈的sir模型传播阈值计算方法
Li et al. Improving convolutional neural network using accelerated proximal gradient method for epilepsy diagnosis
Choi Drowsy driving detection using neural network with backpropagation algorithm implemented by FPGA
CN105205538B (zh) 基于重要性采样的推理算法及神经电路
Yamashita et al. Recurrent network for multisensory integration-identification of common sources of audiovisual stimuli
Shaabani et al. Implementation of neuro fuzzy system for diagnosis of multiple sclerosis
Turnip et al. P300 detection using nonlinear independent component analysis
Verguts How to compare two quantities? A computational model of flutter discrimination
US12020789B1 (en) Systems and methods enabling baseline prediction correction
Seker An analytical approach based on information theory for neural network architecture
Zarei Eskikand et al. Inhibitory stabilized network behaviour in a balanced neural mass model of a cortical column
Shinozaki et al. Gap junctions facilitate propagation of synchronous firing in the cortical neural population: a numerical simulation study
Hayashi et al. A non-Gaussian approach for biosignal classification based on the Johnson SU translation system
Peterson et al. A homotopic mapping between current-based and conductance-based synapses in a mesoscopic neural model of epilepsy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181012