CN106028918B - 用于生命体征的连续无创测量的身体佩带式系统 - Google Patents

用于生命体征的连续无创测量的身体佩带式系统 Download PDF

Info

Publication number
CN106028918B
CN106028918B CN201580010786.8A CN201580010786A CN106028918B CN 106028918 B CN106028918 B CN 106028918B CN 201580010786 A CN201580010786 A CN 201580010786A CN 106028918 B CN106028918 B CN 106028918B
Authority
CN
China
Prior art keywords
time
pat
pep
contraction
dependent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580010786.8A
Other languages
English (en)
Other versions
CN106028918A (zh
Inventor
D·麦克康比
G·张
I·亨利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sotera Wireless Inc
Original Assignee
Sotera Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sotera Wireless Inc filed Critical Sotera Wireless Inc
Publication of CN106028918A publication Critical patent/CN106028918A/zh
Application granted granted Critical
Publication of CN106028918B publication Critical patent/CN106028918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提供了用于基于脉搏到达时间(PAT)连续无创地测量生命体征(诸如血压(cNIBP))的方法和系统。本发明使用通过检测心动周期期间产生的低频振动递归地确定估计的PEP用于校正PAT测量的身体佩带式监测器且使用状态估计器算法以识别指示所述测量的振动中的主动脉瓣打开的信号。

Description

用于生命体征的连续无创测量的身体佩带式系统
发明背景
本申请要求2014年2月6日提交的临时美国专利申请61/936,850的优先权,其包括全部表格、图式和权利要求书在此被完整地引入作为参考。
本发明的背景的以下讨论仅仅被提供来辅助读者理解本发明且不允许描述本发明的现有技术或构成本发明的现有技术。
脉搏血氧计是以通常被佩带在患者的手指或耳垂上的光学模块和分析由光学模块产生的数据的处理模块为特征的医疗装置。光学模块通常包括分别传输红色波长(λ~600nm至700nm)和红外线波长(λ~800nm至1200nm)的光学辐射的第一和第二光源(例如,发光二极管或LED)。光学模块还以检测通过(例如)患者的手指或耳垂内的下层动脉的所传输辐射的光电检测器为特征。通常红色和红外线LED循序地发射部分被流入动脉中的血液吸收的辐射。光电检测器与LED同步以检测所传输的辐射。作为响应,光电检测器产生对应于每个波长的单独辐射引发的信号。称为体积描记器的信号是以时间依赖性方式改变,因为每一次心跳改变动脉血液的体积且因此改变沿LED与光电检测器之间的光路径吸收的辐射量。脉搏血氧计中的微处理器数字化并处理由红色和红外线辐射产生的体积描记图以使用本领域中已知的算法确定患者血液中的氧饱和度。介于94%与100%之间的数字被视为正常,而低于85%的数字通常指示患者需要住院治疗。另外,微处理器分析体积描记器中的时间依赖性特征以确定患者的心率。
称为心电图仪的另一医疗装置以放置在患者身体的各个位置处并测量传递至放大电路中的电信号的导电电极为特征。电路产生称为心电图或ECG的波形,其描述患者的心血管系统的时间依赖性响应。
已公开了用于使用单独或结合取得的体积描记器和ECG以测量血压的各种方法。被定义为由心跳发射在患者的动脉系统中的压力脉搏的速度的脉搏波速度在数项研究中已表明与心动(SYS)和舒张(DIA)二者以及平均血压有关。在这些研究中,被视为脉搏到达时间(PAT)的脉搏波速度的替代物通常是利用常规的生命体征监测器来测量,所述生命体征监测器包括单独模块以确定心电图(ECG波形)和脉搏血氧计的值(SpO2)二者。在PAT测量期间,多个电极通常附接至患者的胸部以确定以称为‘QRS波群’的锐利尖峰为特征的ECG波形的时间依赖性分量。QRS波群指示心脏内的心室的初始去极化,且非正规地标记心跳和紧接着的压力脉搏的开始。SpO2通常是利用绷带或衣夹形状的传感器来测量,所述传感器附接至患者的手指且包括在红色和红外线光谱二者的区域中操作的光学系统。光电检测器测量从光学系统发射且传输通过患者的手指的辐射。也可使用其它身体部位(例如,耳朵、额头和鼻子)来代替手指。在测量期间,微处理器分析由光电检测器测量的红色和红外线辐射二者以确定对应于称为光电容积描记器(PPG波形)的不同波长的时间依赖性波形。根据这些计算SpO2值。PPG波形的时间依赖性特征指示脉搏速率和下层动脉中(例如,手指中)由传播的压力脉搏引起的体积吸收比变化二者。
典型的PAT测量确定将QRS波群上的最大点(指示心室去极化的峰值)和PPG波形的部分(指示压力脉搏的到达)分离的时间。PAT主要描绘动脉顺应性、压力脉搏的传播距离(严格近似患者的臂长)和血压。为了考虑患者所特有的性质(诸如动脉顺应性),通常使用常规的血压细带来‘校准’基于PAT的血压测量。通常在校准过程期间,血压细带应用于患者、用于进行一次或多次血压测量且然后被移除。下一步,使用校准测量连同PAT变化以确定患者的血压和血压可变性。PAT通常与血压反向相关(即,PAT的下降指示血压的增加)。
数个美国专利和专利申请描述PAT与血压之间的关系。例如,美国专利5,316,008、5,857,975、5,865,755和5,649,543各自描述包括测量ECG和PPG波形的常规传感器的设备,所述ECG和PPG波形然后被处理来确定PAT。PAT已被识别为舒适的准连续和无创BP监测[1-3]的有前途的替代物。校准步骤通常是成功地根据PAT估计绝对BP所必需的,所述校准步骤就心血管状态的显著变化来说必需是稳定的。
虽然用于测量PAT的最常见实施方案是基于从外围测量的ECG波形和PPG波形的同时检测,但是所测量的时间差是真正的血管通过时间(VTT)(即,脉搏从心脏传播至PPG传感器位置所需要的时间间隔)与射血前期(PEP)(其与脉搏传播无关)的和。Proenga等人32ndAnn.Intl Conf.of the IEEE EMBS,598-601描述了对在健康年轻的受测者的身体锻炼期间通过两种不同方法测量的PTT与BP的关系的研究。一种方法是基于从PAT中减去PEP,其中PEP是根据心阻抗图提供。第二种方法使用两个PPG传感器导出VTT,其中一个传感器位于耳垂处且另一传感器位于手指处。结果表明没有一种方法擅长监测兴奋期间的血压变化,且表明通过ICG获得PEP提供显著影响VTT估计的大的不确定性,且通过使用两个PPG机构导出的无PEP的VTT展现出与SBP不良地关联。
概述
本发明的目的是提供用于生命体征的连续无创测量的方法和系统,诸如基于PAT的血压(cNIBP),其是以相对于常规PAT测量具有数项改进为特征。本发明使用身体佩带式监测器,其通过检测心动周期期间产生的低频振动且使用状态估计器算法识别指示所述测量的振动中的主动脉瓣打开的信号来递归地确定估计的PEP用于校正PAT测量。常规上从心动周期开始和使用脉搏血氧计识别对应压力脉搏时的时间来确定未校正的PAT。然后基于心动周期的开始(根据ECG传感器确定)与主动脉瓣打开的当前估计时间之间的差值逐拍地确定每个心动周期的PEP。使用这些值,在继针对PEP校正PAT之后获得cNIBP测量。获自传感器的此身体佩带式系统的各种生命体征可传输至远程监测器,诸如平板PC、护理站处的工作站、个体数字助理(PDA)或蜂窝电话。
在第一方面中,本发明涉及一种针对发生在时间n中的多个心动周期获得个体的心射血前期的连续测量的方法,其中n包括所述个体的心脏的多次收缩c。这些方法包括:
使用第一身体佩带式传感器设备获取时间依赖性心电图波形,所述第一身体佩带式传感器设备被配置来检测指示所述个体的心脏在时间n中的电活动的信号;
使用第二身体佩带式传感器设备获取时间依赖性振动波形,所述第二身体佩带式传感器设备被配置来检测指示具有介于5Hz与35Hz之间的频率的振动的信号,所述振动是由归因于所述个体的心脏在时间n中的收缩产生的压缩波引起;
将所述时间依赖性心电图波形和所述时间依赖性振动波形传输至处理设备;和
利用所述处理设备通过以下项处理所述时间依赖性心电图波形和所述时间依赖性振动波形
(i)将所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,
(ii)通过使用状态估计器算法处理所述时间依赖性振动波形递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣打开的估计时间,所述状态估计器算法将所述时间依赖性振动波形分段为具有包括收缩c的所述个体的心脏的多次收缩的长度l的移动时间窗,并根据预定移动窗内的数据计算收缩c的主动脉瓣打开的所述估计时间,和
(iii)通过确定所述时间依赖性心电图波形中指示收缩c期间心室的电刺激开始的基准点与针对收缩c确定的主动脉瓣打开的所述估计时间之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的射血前期(PEP)。
如本文中关于各自产生时间依赖性波形的多个传感器节点使用的短语“时间同步”是指将来自每个节点的数据与共同的时序时钟关联。参见(例如)Elson等人的Fine-Grained Network Time Syncrhonization using Reference Broadcasts.In Proc.5thSymp.Op.Syst.Design Implementation(OSDI),Boston,MA,2002;Elson和Romer的Wireless Sensor Networks:A New Regime for Time Synchronization.In Proc.FirstWorkshop on Hot Topics In Networks(HotNets-I),Princeton,NJ,2002。
如本文中所使用的短语“状态估计器算法”是指使用随时间观察的一系列测量(包括噪音(随机变化)和其它不精确度)且产生趋向于比基于仅仅单个测量的变量更精确的未知变量的估计的算法。仅举例而言,卡尔曼滤波器递归地作用于嘈杂的输入数据流以产生下层系统状态的统计学最优估计。在预测步骤中,卡尔曼滤波器产生当前状态变量连同其不确定性的估计。一旦观察到下一次测量的结果(一定被包括随机噪音的一定量误差所破坏),使用加权平均来更新这些估计,其中对具有较高确定性的估计赋予更大权重。由于算法的递归本质,其可仅使用当前输入测量和先前计算的状态以及其不确定性矩阵来实时地运行;不需要额外的先前信息。这并无限制意图,因为可发现在本发明中使用的其它状态估计器算法在本领域中是已知的。这些包括(但不限于)矩形波串滤波器、维纳滤波器、最小均方误差(MMSE)估计器、递归最小二乘估计器、二重指数平滑估计器和/或多分数阶估计器。
短语“基准点”是指波形内指示递归事件的重复界标。除主动脉瓣打开之外,心动周期中的其它基准点包括主动脉瓣闭合、二尖瓣闭合等,且每个这样的事件的时间可从当前方法中记录的波形中求取。如下文描述,归因于个体的心脏的收缩产生的压缩波可使用检测声音的传感器和/或加速传感器记录为低频(介于5Hz与35Hz之间)振动。在加速度测量术的情况中,这样的方法被视为心震描记法,且波形被视为心冲击图或心震图。参见(例如)Castiglioni等人的Conf Proc IEEE Eng Med Biol Soc.2007;2007:3954-7。
如本文中所述,本方法优选地被配置来随时间n连续地操作,其中n包括多个心动周期。为了本发明的目的,此方法被称为“连续”操作。在优选实施方案中,n是至少15分钟、优选地至少30分钟、更优选地至少一小时且最优选地至少4小时或更多。
另外如本文中所述,本发明使用滑动时间窗以将时间依赖性振动波形划分为包括个体的心脏的多次收缩的长度l的移动时间窗。在优选实施方案中,此预定移动窗介于15秒与2分钟之间。如下文描述,窗长度l可随时间变化,使得当输入数据展现出低方差时,窗缩短,且当输入数据展现出较高方差时,窗加长。
本权利要求书中使用的许多波形对运动敏感或具有不良的信噪比。因此,估计器算法用于递归地提供时间m中PEP、PAT等的平均测量;对于特定心动周期,当前测量的平均PEP、PAT等可用作特定心动周期的所述特定参数的值。举例而言,心动周期可每1秒发生一次,且可计算10个心动周期中的平均PEP并每0.5秒更新一次。在任何特定心动周期的时间处,所述时刻的平均PEP可用作来自所述循环的PEP。在优选实施方案中,根据在临计算平均射血前期(mPEP)之前针对时间窗w期间每次收缩c确定的所述PEP计算每m秒的mPEP,其中m介于1秒与10秒之间且w介于15秒与3分钟之间。
另外,因为本权利要求书中使用的波形对运动敏感或具有不良的信噪比,所以信号指标可用于舍弃遭特别破坏的信号时间窗。仅举例而言,可计算时间窗w内的所述PEP的中间值(MEDPEP)和所述PEP的方差(σ2 PEP),且在计算mPEP之前可舍弃针对时间窗w期间每次收缩c确定的与MEDPEP相差1σ以上、更优选2σ或更多的PEP。
因为测量的PAT是真正的PAT(本文中称为血管通过时间或VTT)与PEP的和,所以PEP(单次PEP测量或更优选地平均PEP(mPEP))可用于逐拍地导出VTT间隔。在某些实施方案中,本方法包括使用第三身体佩带式传感器设备获取时间依赖性体积描记图波形,所述第三身体佩带式传感器设备被配置来检测指示肢体处归因于在时间n中所述个体的心脏的收缩产生的血液体积变化的信号;和将所述时间依赖性体积描记图波形传输至所述处理设备以提供测量的PAT。
在某些实施方案中,本方法的处理步骤还包括:
(iv)将所述时间依赖性体积描记图波形与所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,和
(v)通过确定所述时间依赖性心电图波形中指示收缩c期间所述心室的电刺激开始的基准点与所述时间依赖性体积描记图波形中指示所述肢体处归因于收缩c的压力波到达的基准点之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的脉搏到达时间(PAT)。
在某些实施方案中,所述处理还包括根据针对时间窗q期间每次收缩c确定的所述PAT递归地计算每p秒的平均PAT(mPAT),其中p介于1秒与10秒之间且q介于15秒与3分钟之间;并且可计算时间窗w内的所述PAT的中间值(MEDPAT)和所述PAT的方差(σ2 PAT),且在计算mVTT之前可舍弃针对时间窗q期间每次收缩c确定的与MEDPEP相差1σ以上、更优选2σ或更多的PAT。
为了方便起见,m=p且w=q;然而,当例如σ2 PEP基本上不同于σ2 PEP时这些参数不需要相等。
在某些实施方案中,所述处理步骤进一步包括通过从时间t处的mPAT中减去时间t处的mPEP来计算时间n期间每次收缩c的血管通过时间(VTT),且任选地使用所述VTT计算血压值。
在相关方面中,本发明涉及一种用于针对发生在时间n中的多个心动周期获得个体的心射血前期的连续测量的系统,其中n包括所述个体的心脏的多次收缩c。这些系统包括:
第一身体佩带式传感器设备,其被配置来佩带在所述患者的身体上并检测指示所述个体的心脏在时间n中的电活动的信号且由此产生时间依赖性心电图波形;
第二身体佩带式传感器设备,其被配置来佩带在所述患者的身体上并检测指示具有介于5Hz与35Hz之间的频率的振动的信号且由此产生时间依赖性振动波形,所述振动是由归因于所述个体的心脏在时间n中的收缩产生的压缩波引起;和
处理设备,其可操作地连接至所述第一身体佩带式传感器和所述第二身体佩带式传感器,所述处理设备被配置来接收所述时间依赖性心电图波形和所述时间依赖性振动波形,且
(i)将所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,
(ii)通过使用状态估计器算法处理所述时间依赖性振动波形递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣打开的估计时间,所述状态估计器算法将所述时间依赖性振动波形分段为具有包括收缩c的所述个体的心脏的多次收缩的长度l的移动时间窗,并根据预定移动窗内的数据计算收缩c的主动脉瓣打开的所述估计时间,和
(iii)通过确定所述时间依赖性心电图波形中指示收缩c期间心室的电刺激开始的基准点与针对收缩c确定的主动脉瓣打开的所述估计时间之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的射血前期(PEP)。
在某些实施方案中,所述状态估计器算法包括卡尔曼滤波器、矩形波串滤波器、维纳滤波器、递归最小二乘估计器、二重指数平滑估计器、最小均方误差(MMSE)估计器和/或多分数阶估计器。如上所述,此列表并无意图限制。
在某些实施方案中,所述处理设备还被配置来使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣闭合的估计时间。
在某些实施方案中,所述处理设备还被配置来使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的二尖瓣闭合的估计时间。
在某些实施方案中,所述处理设备还被配置来根据在临计算平均射血前期(mPEP)之前针对时间窗w期间每次收缩c确定的所述PEP递归地计算每m秒的mPEP,其中m介于1秒与10秒之间且w介于15秒与3分钟之间。
在某些实施方案中,由所述处理系统计算时间窗w内的所述PEP的中间值(MEDPEP)和所述PEP的方差(σ2 PEP),且在计算mPEP之前舍弃针对时间窗w期间每次收缩c确定的与PEPMED相差2σ以上的PEP。
在某些实施方案中,所述系统还包括第三身体佩带式传感器设备,其被配置来佩带在所述患者的身体上并检测指示肢体处归因于在时间n中所述个体的心脏的收缩产生的血液体积变化的信号且由此产生时间依赖性体积描记图波形。在优选实施方案中,所述第三身体佩带式传感器设备被配置成佩带在所述患者的拇指或手指的基部处。在这些实施方案中,所述处理设备优选地可操作地连接至所述第三身体佩带式传感器且被配置来
(iv)将所述时间依赖性体积描记图波形与所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,和
(v)通过确定所述时间依赖性心电图波形中指示收缩c期间所述心室的电刺激开始的基准点与所述时间依赖性体积描记图波形中指示所述肢体处归因于收缩c的压力波到达的基准点之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的脉搏到达时间(PAT)。
在某些实施方案中,所述处理系统还被配置来根据针对时间窗q期间每次收缩c确定的所述PAT递归地计算每p秒的平均PAT(mPAT),其中p介于1秒与10秒之间且q介于15秒与3分钟之间。
在某些实施方案中,由所述处理系统计算时间窗q内的所述PAT的中间值(MEDPAT)和所述PAT的方差(σ2 PAT),且在计算mVTT之前舍弃针对时间窗q期间每次收缩c确定的与PATMED相差2σ以上的PAT。
在某些实施方案中,所述处理系统还被配置来通过从时间t处的mPAT中减去时间t处的mPEP来计算时间n期间每次收缩c的血管通过时间(VTT),且任选地使用所述VTT计算血压值。
附图简述
图1示出了不具有基于细带的示波NIBP模块(图1A)和具有基于细带的示波NIBP模块(图1B)的本发明的连续生命体征测量系统的示例性实施方案。
图2示出了通过本文中所述的方法获得的示例性心震图(SCG)和光电血管容积图(PPG)波形,其描绘了同步波形内对应于血管通过时间(VTT)的示例性基准点。
图3示出了被带通滤波至5Hz-35Hz且在时间窗内进行信号平均化的示例性心震图(SCG)以及通过斜率和变换对此波形进行的对应变换。
图4示出了通过本文中所述的方法获得的示例性心电图(ECG)和光电血管容积图(PPG)波形,其描绘了同步波形内对应于脉搏到达时间(PAT)的示例性基准点。
具体实施方式
测量概述
本文中所述的方法和系统提供用于生命体征的连续无创测量的方法和系统,诸如基于PAT的血压(cNIBP),其是以相对于常规PAT测量具有数项改进为特征。本发明使用身体佩带式监测器,其通过检测心动周期期间产生的低频振动且使用状态估计器算法识别指示所述测量的振动中的主动脉瓣打开的信号来递归地确定估计的PEP用于校正PAT测量。如下文在示例性实施方案中所述,描述了实时cNIBP算法,其利用移动窗以通过结合根据ECG、SCG和PPG波形导出的时序测量来估计血压。这些时序测量包括PAT、PEP和VTT。在这些实施例中,移动窗是用于处理波形数据并提供对每个心动周期的连续更新,而非批量处理来自这些波形的测量。
识别并使用根据SCG波形导出的基准点以自适应地补偿破坏cNIBP算法中使用的PAT测量的PEP变化。来自SCG波形的最近心动周期与多个先前SCG心动周期的信号平均化允许所述算法消除基带噪音并改进波形中的生理特征中的不同。SCG在某些个体中具有极不良的信噪比(SNR),因此将SCG进行此信号平均化提供显著地改进SNR以及PEP测量的精度的有效方式。
如下文所述,应用斜率和变换于经信号平均化的SCG波形可有助于区分并选择当前SCG波形中的基准点。基准点包括二尖瓣闭合、主动脉瓣打开和主动脉瓣闭合。另外,使用根据SCG波形和胸部加速计导出的信号质量指标(SQI)以在对跨多个心动周期的SCG波形进行信号平均化之前消除来自SCG波形的已破坏的数据。这减少了由运动假影引起的误差并最小化测量的PEP中的方差。
类似地,可使用根据PPG波形和手腕加速计导出的SQI以消除中间PAT(或VTT)值的计算中的已破坏的数据值。这减少了由运动假影引起的误差并最小化测量的PAT中的方差。在中间值计算之前消除此破坏的波形数据大幅地改进了身体佩带式装置中的cNIBP的测量。
本方法依赖于状态估计器算法(被例证为自适应卡尔曼滤波器)的使用以确定改进的平均和/或中间PEP和PAT测量,所述算法基于移动时间窗中的测量的方差对最新测量的更新速度进行加权。当移动窗中的方差较小时,此测量更新速率可较快,且当移动窗中的方差较大时,此测量更新速率可较慢。这提供允许cNIBP基于方差对PAT和/或VTT变化缓慢或快速地作出反应的有效机制。
传感器配置
图1描绘本文中被描述为cNIBP监测器的系统,其是由ECG/加速计模块101、手腕收发器/处理单元104、脉搏血氧计模块105和确定示波血压测量的NIBP模块108组成。这些装置组件能够测量四个不同的生理信号:心电图(ECG)、光电血管容积图(PPG)、被视为心震图(SCG)的振动波形和提供示波血压测量(NIBP)的肱动脉压力信号。
经例证系统包括具有外壳的ECG/加速计传感器模块101,所述外壳封闭(i)ECG电路,其可操作地连接至外壳内的收发器,所述收发器(例如,使用电缆106或通过无线连接)将ECG波形传输至容置在处理设备104内的对应收发器;和(ii)加速计(例如,ADXL-345或LSM330D),其也可操作地连接至外壳内的收发器,所述收发器将加速计(SCG)波形传输至容置在处理设备104内的对应收发器。ECG/加速计传感器模块101位于患者胸骨皮肤上。虽然ECG传感器模块和加速计模块可以单独提供,但是单个外壳101封闭两个传感器模块有利于便于使用。类似地,虽然处理设备104在本文中被描绘为单个身体佩带式处理器单元,但是本文所述的算法可由可容置在不同位置处的多个处理器执行,每个所述处理器均促成系统的处理功率且所述处理器因此统称为“处理设备”。仅举例而言,处理单元可被提供在床边处或以身体佩带式客户端/远程服务器处理器格式提供。
为了实现SCG信号的充分信噪比,ECG/加速计模块101应机械地耦合至患者的皮肤。ECG/加速计模块101的外壳使用直接应用于外壳与皮肤之间的双层粘附剂物质或通过将外壳卡扣至粘附至皮肤的刚性固定器中来抵着患者的皮肤固定。外壳应被附接在患者的胸骨处、优选地刚好高于剑突的较低胸骨处。收发器/处理设备104的微处理器组件应用如下文所述的算法以共同地处理ECG波形连同SCG波形以产生改进的PAT测量。
ECG/加速计模块101内的ECG电路是以单个电路(例如,ASIC)为特征,所述电路从一系列身体佩带式电极102收集电信号并将这些信号转换为数字ECG波形。此电路通过数字、串行接口(例如,基于“控制器局域网”或“CAN”系统的接口)连接至腕戴式收发器。胸戴式ECG/加速计模块101通过电缆108连接至分别位于患者的胸腔的右上侧、左手侧和左下侧部分中的常规ECG电极102。通常需要三个电极102(两个电极检测正和负信号,且一个电极用作接地)来检测必要信号以产生具有适当信噪比的ECG波形。由3M(3M Center,St.Paul,MN 55144-1000)营销的RED DOTTM电极适用于此目的。在测试期间,ECG电极102测量传递至ECG/加速计模块101内的电路的模拟信号。这时,ECG波形被产生、被数字化(通常具有12至24位分辨率和介于250Hz至500Hz之间的采样速率)且以个别分组制定,因此其可被传输至手腕式收发器/处理设备104以供处理。
上述个别分组可优选地根据控制器局域网(CAN)协议传输。此协议利用ECG/加速计模块101与腕戴式收发器/处理设备104之间的有线或无线连接的使用提供分组,其中保留分组之间的所有时序相关信息使得由ECG和加速计产生的波形可由腕戴式收发器/处理设备104同步(任选地与PPG波形同步)。CAN协议还允许对应于由ECG和加速计产生的波形的数据被分离但由单个收发器传输,因为每个分组可包括指定数据来源的传感器的信息。
光学传感器105检测由心跳引发的压力波调制的光学辐射,其利用收发器/处理设备104内的第二放大器/滤波器电路进一步处理。这产生PPG波形,如上所述,PPG波形包括各自对应于个体心跳的一系列脉搏。所描绘的拇指佩带式光学传感器105操作地无线或通过电缆109连接至腕戴式收发器/处理设备104以测量并传输PPG波形,所述PPG波形可结合ECG波形使用以根据下文描述的算法产生cNIBP测量。这产生个体血压值(收缩或“SYS”、舒张或“DIA”和平均动脉压或“MAP”)。光学传感器105另外测量可被处理来确定如以下专利申请中详细描述的SpO2值的PPG波形,所述专利申请的内容被引入作为参考:身体佩带式脉搏血氧计(U.S.S.N 12/559,379,2009年9月14日提交)。
除位于外壳101内的胸骨上的加速计之外,系统还包括另外两个加速计:一个加速计位于腕带上的腕带式收发器/处理设备104内且另一个加速计位于同一个手臂103的上臂。每个加速计测量三个独特信号,其各自对应于附接有加速计的身体部分的x、y和z轴。这些信号然后由腕带式收发器/处理设备104利用一系列算法来处理以确定运动、姿势、臂高和活动等级,某些算法在以下专利申请中加以描述,所述专利申请的内容被引入作为参考:具有用于检测和分析运动的系统的身体佩带式生命体征监测器(U.S.S.N.12/469,094;2009年5月20日提交)。
最后,系统还包括基于气动细带的模块108,其与腕带式收发器/处理设备104通信以获得示波NIBP测量。细带模块108是以气动系统为特征,所述气动系统包括泵、阀、压力接头、压力传感器、模数转换器、微控制器、收发器和可再充电锂离子电池。在分度测量期间,气动系统将一次性细带充气并执行两次测量:1)基于充气的示波法测量以确定SYSINDEX、DIAINDEX和MAPINDEX的值;和2)患者所特有的斜率,其描述PTT与MAP之间的关系。这些测量在上文引用的标题为:‘用于使用光学、电气和压力波形测量血压的生命体征监测器’(U.S.S.N 12/138,194;2008年6月12日提交)的专利申请中详细地描述,所述专利申请的内容先前已经被引入作为参考。压力波形是由收发器(无线或通过电缆107)通过数字、串行接口且优选地作为根据控制局域网(CAN)协议的分组传输至腕带式收发器/处理设备104。
数据获取和信号滤波的总结
ECG:心电图信号可以500Hz的采样频率采样。ECG信号是使用高通滤波器(0.7Hz时为-3dB)和60Hz陷波滤波器进行数字滤波、使用包括在ECG/加速计模块101内的A/D转换器进行数字化,且作为分组数据传输至腕带式收发器/处理设备104。
PPG:光电血管容积图信号是由模数转换器以500Hz的采样频率采样。PPG信号是使用低通滤波器(10Hz时为-3dB)进行数字滤波、作为模拟数据传输至腕带式收发器/处理设备104,其中信号是由腕带式收发器/处理设备104内的A/D转换器进行数字化。
NIBP:压力换能器信号是由模数转换器以500Hz的采样频率采样。压力信号是使用低通滤波器(6Hz时为-3dB)进行数字滤波、使用包括在细带模块108内的A/D转换器进行数字化,且作为分组数据传输至腕带式收发器/处理设备104。
SCG:心震图信号是以500Hz的采样频率进行数字捕捉。SCG信号是使用带通滤波器(5Hz和35Hz时为-3dB)进行数字滤波、使用包括在ECG/加速计模块101内的A/D转换器进行数字化,且作为分组数据传输至腕带式收发器/处理设备104。
PAT和VTT的测量
cNIBP测量是基于脉搏波速度的测量。压力脉搏在其沿动脉路径行进时的速度取决于沿传输路径的动脉的扩张性。扩张性是动脉的顺应性和体积的函数。动脉的扩张性取决于跨动脉壁作用的压力或跨壁压力。通常,跨壁压力等效于动脉血压,因此脉搏波的速度是动脉压力的函数。使用两次不同的时序测量(血管通过时间(VTT)和脉搏到达时间(PAT))来量化压力脉搏波的速度。
VTT是逐拍地测量为拇指(或手指)的基部处的光电血管容积图开始与由如图2中所示的基于加速计的心震图测量的主动脉瓣打开之间的时间差。用于表示SCG波形中的主动脉瓣打开的基准点是以下列方式确定。
信号平均化:SCG信号可包括我们的带通滤波器(5Hz至35Hz)的频率频带内的噪音。信号平均化技术可用于在定位主动脉瓣打开之前消除此噪音。SCG信号可被视为对每个心动周期期间心脏的机械活动的响应。心动周期的持续时间可被定义为ECG或RR间隔中的QRS周期的相邻峰值之间的时间。对应于每个心动周期的经信号平均化的SCG波形是使用如等式(1)中给定般的R-峰值的样本数量(Rpeak[i])定义。长度变量L对应于最后几个N心动周期内的RR间隔中的中间值样本数量。
Figure BDA0001093178060000161
波形变换:为了强调经滤波SCG波形中的特征以便于自动检测,每个心动周期的经滤波SCG波形的每个样本如等式(2)、(3)和(4)中给定般变换为斜率和波形(SSF),其中长度M被选择来突出对应于主动脉瓣打开的特征。
Figure BDA0001093178060000162
如果
Figure BDA0001093178060000163
Figure BDA0001093178060000164
Figure BDA0001093178060000165
每个心动周期时SSF波形中绝对量值最大的两个负峰值是使用自适应阈值识别以消除噪音和其它小的量值变动。
位于两个负斜率和峰值之间的经滤波SCG波形的峰值被确定为定义主动脉瓣打开的基准点。
如果SCG基准点与ECG QRS波群之间的延迟落在指定范围[75ms 175ms]内且如果VTT值在有效范围[30ms 300ms]内,那么VTT值被视为有效的且由血压算法使用。
图3中示出了经滤波SCG波形以及斜率和波形连同自适应阈值和被选择来表示主动脉瓣打开的基准点。
PAT是逐拍地测量为拇指(或手指)的基部处的光电血管容积图开始与由如图4中所示的ECG波形中的QRS波群的峰值之间的时间差。
利用血管通过时间进行的血压估计
连续血压测量是直接根据从心震图和光电血管容积图计算的血管通过时间测量而确定。以下提供方法的总结。
步骤1)利用NIBP细带充气将VTT校准为血压
为了使用VTT校准血压,识别模型以如等式(5)中给定般将VTT与平均动脉血压(MAP)之间的关系特征化,其中Lt表示主动脉瓣与光学传感器的部位之间的动脉传输路径的长度。
Figure BDA0001093178060000171
使用NIBP模块识别模型参数(a和pwv0)以对每个受测者产生唯一校准。
在细带充气期间,细带压力(Pcuff)的增加导致跨肱动脉壁作用的跨壁压力(Ptm)下降。作用于细带下方的动脉段上的跨壁压力的表达是以等式(6)给定,其中血管内压被定义为充气时的平均动脉压力(MAPcal)。
Ptm(t)=MAPcal-Pcuff(t) (6)
由于作用于肱动脉上的跨壁压力随着细带压力的增加而下降,动脉的顺应性和扩张性增加。扩张性增加降低了此动脉段中的压力脉搏的速度,由此增加测量的VTT。用于描述VTT、由NIBP模块测量的平均动脉压力(MAPcal)和充气期间NIBP细带中的压力(Pcuff)之间的关系的表达是以等式(7)给定,其中Lc表示受细带影响的肱动脉的长度。
Figure BDA0001093178060000181
通过使用Levenberg-Marquardt算法最小化测量的VTT与估计的VTT之间的平方误差来从VTT值和NIBP充气期间测量的细带压力识别未知参数值(a和pwv0)。
另外,NIBP细带的充气提供充气时收缩压力(SYScal)、舒张压力(DIAcal)和平均动脉压力(MAPcal)的示波血压测量。
用于估计cNIBP算法中的舒张压力(Rdia)的独特患者比是如等式(8)中给定般基于示波血压测量而计算。
Figure BDA0001093178060000182
用于估计cNIBP算法中的收缩压力(Rsys)的独特患者比是如等式(9)中给定般基于示波血压测量而计算。
Figure BDA0001093178060000183
步骤2)计算总的VTT
血管通过时间值是逐拍地测量,然而SCG和PPG中归因于运动或其它破坏来源的信号假影尤其对于患者佩带的监测器将导致这些实时测量中出现显著误差。另外,诸如归因于呼吸的胸腔压力变化的生理现象导致VTT逐拍地变动。cNIBP确定采用多步算法以消除假的VTT测量并提供总的VTT以计算精确血压。
逐拍VTT值是基于若干筛选准则而被分类为拒绝或接受。如果患者的运动超过固定阈值,那么拒绝VTT值。患者运动的量值是由位于手腕收发器和ECG模块中的加速计测量。另外,VTT值是使用根据PPG信号导出的若干信号质量指标(SQI)来分类。PPG SQI是根据用于识别VTT测量的开始点的PPG脉搏而确定。如果SQI展现出的方差高于预定义阈值,那么VTT值被分类为拒绝。VTT值还使用根据SCG信号导出的若干SQI分类。SQI是根据用于确定何时打开主动脉瓣的心动周期的SCG信号确定。当SQI展现出的方差高于预定义阈值,那么VTT值被分类为拒绝。
根据更新时间之前的60秒周期中收集的所有VTT测量定期地(每3秒)计算总的VTT值。
用于确定总的VTT值的第一步骤是计算60秒窗中被分类为接受的所有测量的VTT值的平均VTT值(m1)和标准偏差(σ1)。
所述过程中的第二步骤是使用被筛选为接受的VTT测量和在使用VTT总计的步骤1中计算的平均和标准偏差定义的上界(m1+2σ1)和下界(m1-2σ1)内部的VTT值计算60秒窗中的中间VTT值(MEDVTT)和VTT值的方差(σ2 VTT)。
用于确定每一定期更新的总VTT值的最终步骤是应用自适应移动平均滤波器于来自步骤2的中间VTT值和先前总计的VTT值。自适应滤波器利用卡尔曼滤波器的框架以计算应用于新的中间VTT值与先前总计的VTT值之间的差值的增益。卡尔曼滤波器允许我们在我们对新的中间值的置信度为高时增加cNIBP监测器对VTT变化的响应速率且在我们对新的中间值的置信度为低时降低cNIBP监测器对VTT变化的响应速率。下文给定用于利用自适应滤波器确定总计VTT数值(VTTnum)的程序。
根据后验误差方差(Ppost)的先前估计或初始估计、步骤2中计算的VTT方差和状态转变矩阵A计算先验误差协方差(Ppri)。
Figure BDA0001093178060000201
根据输出矩阵(H)和预定义PAT过程方差(RVTT)计算卡尔曼增益(G)。
G=Ppri·HT·(H·Ppri·HT+RVTT)-1 (11)
基于后验状态估计(Xpost)及状态转变矩阵A计算先验状态估计(Xpri)。
xpri=A·xpost (12)
使用中间VTT值和卡尔曼增益(G)更新后验状态估计。
xpost=xpri+G·(MEDVTT-H·xpri) (13)
可根据输出矩阵(H)和后验状态估计(Xpost)定义总VTT数值(VTTnum)。
VTTnum=H·xpost (14)
在下一个定期计算之前更新误差协方差(Ppost)。
Ppost=(I-G·H)·Ppri (15)
此滤波器的最简单实施方式是定义A=H=1。在此情况中,所述实施方式可被精简为3个等式。
Figure BDA0001093178060000211
VTTnum(t)=VTTnum(t-3sec)+G.(VTTnum(t-3sec)-VTTmed) (16)
Figure BDA0001093178060000212
步骤3)计算血压
针对先前步骤中计算的每个总VTT值使用等式(18)、(19)和(20)中给定的公式确定收缩、舒张和平均动脉压力的值,其中VTTcal表示NIBP充气时测量的总VTT。
Figure BDA0001093178060000213
SYS=Rsys·MAP (19)
DIA=Rdia·MAP (20)
使用心震图校正射血前期变化
除提供血管通过时间的测量之外,SCG信号还可用于测量心射血前期的持续时间。射血前期(PEP)是心脏的机电延迟与主动脉瓣打开之前左心室的等容收缩的周期的组合。PEP可被测量为SCG波形中的主动脉瓣打开与ECG波形中的QRS循环的峰值之间的时间差。
脉搏到达时间是PPG波形的开始与ECG中的QRS循环的峰值之间的时间差。与使用SCG计算VTT相比,归因于ECG的高信噪比和其运动公差,其可提供更稳定方式来确定脉搏波的逐拍变化。因此,可根据脉搏到达时间直接计算连续无创血压。
然而,除捕捉脉搏波速度的变化之外,PAT值还跟踪可与动脉血压的变化无关的PEP变化。由SCG波形测量的PEP可用于识别并补偿由PEP变化引发的PAT变化。此策略允许来自具有不良信噪比的SCG信号的PEP值测量使用较长平均窗且不牺牲对以PAT测量的动脉压力变化的cNIBP监测响应。
下文概述用于以PAT进行cNIBP测量并同时使用基于加速计的心震图校正PEP变化的程序。
步骤1)利用NIBP细带充气将PAT校准为血压
如等式(21)中给定,用于使用NIBP识别PAT与MAP之间的校准等式的算法除VTT测量用PAT测量取代之外类似于先前段落中针对VTT描述的程序。
Figure BDA0001093178060000221
使用NIBP模块识别模型参数(a和pwv0)以对每个受测者产生唯一校准。
步骤2)计算总的PAT、PEP和cPAT
PAT值和PEP值是逐拍地测量,然而ECG、PPG和SCG中归因于运动或其它破坏来源的信号假影尤其对于患者佩带的监测器将导致这些实时测量中出现显著误差。ViSi cNIBP监测器采用多步算法以消除假的PAT和PEP测量并提供总的PAT和PEP值以计算精确血压。
逐拍PAT值是基于若干筛选准则而被分类为拒绝或接受。如果患者的运动超过固定阈值,那么拒绝PAT值。患者运动的量值是由位于手腕收发器中的加速计测量。另外,PAT值是使用根据PPG信号导出的若干SQI来分类。SQI是根据用于识别开始点的PPG脉搏而确定。当SQI展现出的方差高于预定义阈值时,PAT值被分类为拒绝,如果PAT值低于阈值,那么其被接受。
逐拍PEP值是基于若干筛选准则而被分类为拒绝或接受。如果患者的运动超过固定阈值,那么拒绝PEP值。患者运动的量值是由位于ECG模块中的加速计测量。另外,PEP值是使用根据SCG信号导出的若干SQI来分类。SQI是根据用于确定何时打开主动脉瓣的心动周期的SCG信号而确定。当SQI展现出的方差高于预定义阈值时,PEP值被分类为拒绝,如果其低于阈值,那么其被接受。
根据更新时间之前的60秒周期中收集的所有PAT测量定期地(每3秒)计算总的PAT值。用于确定总的PAT值的第一步骤是计算60秒窗中被分类为接受的所有测量的平均PAT值(m1)和PAT值的标准偏差(σ1)。
所述过程中的第二步骤是使用被筛选为接受的PAT测量和在使用PAT总计的步骤1中计算的平均和标准偏差定义的上界(m1+2σ1)和下界(m1-2σ1)内部的PAT值计算60秒窗中的中间PAT值(PATmed)和PAT值的方差(σ2 PAT)。
用于确定每一定期更新的总PAT值的最终步骤是应用自适应移动平均滤波器于来自步骤2的中间PAT值和先前总计的PAT值。自适应滤波器利用卡尔曼滤波器的框架以计算应用于新的中间PAT值与先前总计的PAT值之间的差值的增益。卡尔曼滤波器允许我们在我们对新的中间值的置信度为高时增加cNIBP监测器对PAT变化的响应速率且在我们对新的中间值的置信度为低时降低cNIBP监测器对PAT变化的响应速率。下文给定用于利用自适应滤波器确定总计PAT数值(PATnum)的程序。
根据后验误差方差(Ppost)的先前估计或初始估计、步骤2中计算的PAT方差和状态转变矩阵A计算先验误差协方差(Ppri)。
Figure BDA0001093178060000231
根据输出矩阵(H)和预定义PAT过程方差(RPAT)计算卡尔曼增益(G)。
G=Ppri·HT·(H·Ppri·HT+RPAT)-1 (23)
基于后验状态估计(Xpost)及状态转变矩阵A计算先验状态估计(Xpri)。
xpri=A·xpost (24)
使用中间PAT值和卡尔曼增益(G)更新后验状态估计。
xpost=xpri+G·(PATmed-H·xpri) (25)
可根据输出矩阵(H)和后验状态估计(Xpost)定义总PAT数值(PATnum)。
PATnum=H·xpost (26)
在下一个定期计算之前更新误差协方差(Ppost)。
Ppost=(I-G·H)·Ppri (27)
此滤波器的最简单实施方式是定义A=H=1。在此情况中,所述实施方式可被精简为3个等式。
Figure BDA0001093178060000241
PATnum(t)=PATnum(t-3sec)+G·(PATnum(t-3sec)-PATmed) (29)
Figure BDA0001093178060000242
根据更新时间之前的60秒周期中收集的所有PEP测量定期地(每3秒)计算总的PEP值。
用于确定总的PEP值的第一步骤是计算60秒窗中被分类为接受的所有测量的平均PEP值(m1)和PEP值的标准偏差(σ1)。
所述过程中的第二步骤是使用被筛选为接受的PEP测量和在使用PEP总计的步骤1中计算的平均和标准偏差定义的上界(m1+2σ1)和下界(m1-2σ1)内部的PEP值计算60秒窗中的中间PEP值(PEPmed)和PEP值的方差(σ2 PEP)。
用于确定每一定期更新的总PEP值的最终步骤是应用自适应移动平均滤波器于来自步骤2的中间PEP值和来自先前3秒更新的总PEP值。自适应滤波器利用卡尔曼滤波器的框架以计算应用于新的中间PEP值与先前总计的PEP值之间的差值的增益。卡尔曼滤波器允许我们在我们对新的中间值的置信度为高时增加PEP测量的响应速率且在我们对新的中间值的置信度为低时降低对PEP变化的响应速率。下文给定用于利用自适应滤波器确定总计PEP数值(PEPnum)的程序。
根据后验误差方差(Ppost)的先前估计或初始估计、步骤2中计算的PEP方差和状态转变矩阵A计算先验误差协方差(Ppri)。
Figure BDA0001093178060000251
根据输出矩阵(H)和预定义PEP过程方差(RPEP)计算卡尔曼增益(G)。
G=Ppri·HT·(H·Ppri·HT+RPEP)-1 (32)
基于后验状态估计(Xpost)及状态转变矩阵A计算先验状态估计(Xpri)。
xpri=A·xpost (33)
使用中间PEP值和卡尔曼增益(G)更新后验状态估计。
xpost=xpri+G·(PEPmed-H·xpri) (34)
可根据输出矩阵(H)和后验状态估计(Xpost)定义总PEP数值(PEPnum)。
PEPnum=H·xpost (35)
在下一个定期计算之前更新误差协方差(Ppost)。
Ppost=(I-G·H)·Ppri (36)
此滤波器的最简单实施方式是定义A=H=1。在此情况中,所述实施方式可被精简为3个等式。
Figure BDA0001093178060000261
PEPnum(t)=PEPnum(t-3sec)+G.(PEPnum(t-3sec)-PEPmed) (38)
Figure BDA0001093178060000262
步骤3)计算血压
用于确定血压值的第一步骤是如等式(40)中给定般使用最新总计的PAT和PEP值计算经校正的PAT值(cPAT),其中PEPcal表示NIBP充气时测量的总PEP。
cPAT=PATnum-(PEPnum-PEPcal) (40)
针对每个cPAT值使用等式(41)、(42)和(43)中给定的公式确定收缩、舒张和平均动脉压力的值,其中PATcal表示NIBP充气时测量的总PAT。
Figure BDA0001093178060000263
SYS=Rsys·MAP (42)
DIA=Rdia·MAP (43)
本领域技术人员容易明白的是,本发明充分适用于实行目标并获得所提及的目的和优点以及其中固有的事务。本文中提供的实例表示优选实施方案、是示例性的且并无意图限制本发明的范围。
本领域技术人员将容易明白的是,在不脱离本发明的范围和精神的情况下可对本文中所公开的发明作出替换和修改。
本说明书中提及的所有专利和公开案指示本发明所涉及领域的一般技术人员的水平。所有专利和公开案以引用方式并入本文中,其相同程度类似于具体且个别指示要引用方式并入的每个单独公开案。
本文中适当说明性描述的本发明可在缺少本文中未具体公开的任何元件或多个元件、限制或多个限制的情况下实践。因此,例如,在本文中的每个实例中,“包括”、“基本上由……组成”和“由……组成”的术语中的任一个可用另外两个术语中的任一个取代。已经采用的术语和表达被用作描述术语且无限制,且并无使用排除所示出且描述的特征或其部分的任何等效物的这些术语和表达的意图,而应认识到各种修改在所述发明的范围内是可行的。因此,应理解的是,虽然已通过优选实施方案和选用特征具体地公开了本发明,但是本领域技术人员可诉诸于本文中公开的概念的修改和变动,且这些修改和变动被视为在如所附权利要求书界定的本发明的范围内。
以下权利要求书中陈述了其它实施方案。

Claims (32)

1.一种针对发生在时间n中的多个心动周期获得个体的心射血前期的连续测量的方法,其中n包括所述个体的心脏的多次收缩c,所述方法包括:
使用第一身体佩带式传感器设备获取时间依赖性心电图波形,所述第一身体佩带式传感器设备被配置来检测指示所述个体的心脏在时间n中的电活动的信号;
使用第二身体佩带式传感器设备获取时间依赖性振动波形,所述第二身体佩带式传感器设备被配置来检测指示具有介于5Hz与35Hz之间的频率的振动的信号,所述振动是由归因于所述个体的心脏在时间n中的收缩产生的压缩波引起;
将所述时间依赖性心电图波形和所述时间依赖性振动波形传输至处理设备;和
利用所述处理设备通过以下项处理所述时间依赖性心电图波形和所述时间依赖性振动波形
(i)将所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,
(ii)通过使用状态估计器算法处理所述时间依赖性振动波形递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣打开的估计时间,所述状态估计器算法将所述时间依赖性振动波形分段为具有包括收缩c的所述个体的心脏的多次收缩的长度l的移动时间窗,并根据预定移动窗内的数据计算收缩c的主动脉瓣打开的所述估计时间,和
(iii)通过确定所述时间依赖性心电图波形中指示收缩c期间心室的电刺激开始的基准点与针对收缩c确定的主动脉瓣打开的所述估计时间之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的射血前期PEP。
2.根据权利要求1所述的方法,其中所述状态估计器算法包括卡尔曼滤波器、矩形波串滤波器、维纳滤波器、递归最小二乘估计器、二重指数平滑估计器和/或多分数阶估计器。
3.根据权利要求1或2所述的方法,其中所述处理还包括使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣闭合的估计时间。
4.根据权利要求1或2所述的方法,其中所述处理还包括使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的二尖瓣闭合的估计时间。
5.根据权利要求1或2所述的方法,其中时间n是至少一小时。
6.根据权利要求1或2所述的方法,其中所述预定移动窗介于15秒与2分钟之间。
7.根据权利要求6所述的方法,其中所述处理还包括根据在临计算平均射血前期mPEP之前针对时间窗w期间每次收缩c确定的所述PEP递归地计算每m秒的mPEP,其中m介于1秒与10秒之间且w介于15秒与3分钟之间。
8.根据权利要求7所述的方法,其中计算时间窗w内的所述PEP的中间值MEDPEP和所述PEP的方差σ2 PEP,且在计算mPEP之前舍弃针对时间窗w期间每次收缩c确定的与MEDPEP相差2σPEP以上的PEP。
9.根据权利要求1或2所述的方法,其还包括:
使用第三身体佩带式传感器设备获取时间依赖性体积描记图波形,所述第三身体佩带式传感器设备被配置来检测指示肢体处归因于在时间n中所述个体的心脏的收缩产生的血液体积变化的信号;和
将所述时间依赖性体积描记图波形传输至所述处理设备,且其中所述处理还包括
(iv)将所述时间依赖性体积描记图波形与所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,和
(v)通过确定所述时间依赖性心电图波形中指示收缩c期间所述心室的电刺激开始的基准点与所述时间依赖性体积描记图波形中指示所述肢体处归因于收缩c的压力波到达的基准点之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的脉搏到达时间PAT。
10.根据权利要求9所述的方法,其中所述处理还包括根据针对时间窗q期间每次收缩c确定的所述PAT递归地计算每p秒的平均PAT mPAT,其中p介于1秒与10秒之间且q介于15秒与3分钟之间。
11.根据权利要求10所述的方法,其中计算时间窗q内的所述PAT的中间值MEDPAT和所述PAT的方差σ2 PAT
12.根据权利要求11所述的方法,其中在计算MEDPAT之前舍弃针对时间窗q期间每次收缩c确定的与mPAT相差2σPAT以上的PAT。
13.根据权利要求10所述的方法,其中m=p且w=q。
14.根据权利要求10至13中任一项所述的方法,其中所述处理还包括通过从时间t处的mPAT中减去时间t处的mPEP来计算时间n期间每次收缩c的血管通过时间VTT。
15.根据权利要求14所述的方法,其中所述处理还包括使用所述VTT计算血压值。
16.一种用于针对发生在时间n中的多个心动周期获得个体的心射血前期的连续测量的系统,其中n包括所述个体的心脏的多次收缩c,所述系统包括:
第一身体佩带式传感器设备,其被配置来佩带在患者的身体上并检测指示所述个体的心脏在时间n中的电活动的信号且由此产生时间依赖性心电图波形;
第二身体佩带式传感器设备,其被配置来佩带在所述患者的身体上并检测指示具有介于5Hz与35Hz之间的频率的振动的信号且由此产生时间依赖性振动波形,所述振动是由归因于所述个体的心脏在时间n中的收缩产生的压缩波引起;和
处理设备,其可操作地连接至所述第一身体佩带式传感器和所述第二身体佩带式传感器,所述处理设备被配置来接收所述时间依赖性心电图波形和所述时间依赖性振动波形,且
(i)将所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,
(ii)通过使用状态估计器算法处理所述时间依赖性振动波形递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣打开的估计时间,所述状态估计器算法将所述时间依赖性振动波形分段为具有包括收缩c的所述个体的心脏的多次收缩的长度l的移动时间窗,并根据预定移动窗内的数据计算收缩c的主动脉瓣打开的所述估计时间,和
(iii)通过确定所述时间依赖性心电图波形中指示收缩c期间心室的电刺激开始的基准点与针对收缩c确定的主动脉瓣打开的所述估计时间之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的射血前期PEP。
17.根据权利要求16所述的系统,其中所述状态估计器算法包括卡尔曼滤波器、矩形波串滤波器、维纳滤波器、递归最小二乘估计器、二重指数平滑估计器和/或多分数阶估计器。
18.根据权利要求16或17所述的系统,其中所述处理设备还被配置来使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的主动脉瓣闭合的估计时间。
19.根据权利要求16或17所述的系统,其中所述处理设备还被配置来使用所述状态估计器算法递归地确定时间n期间所述个体的心脏的每次收缩c的二尖瓣闭合的估计时间。
20.根据权利要求16或17所述的系统,其中时间n是至少一小时。
21.根据权利要求16或17所述的系统,其中所述预定移动窗介于15秒与2分钟之间。
22.根据权利要求21所述的系统,其中所述处理设备还被配置来根据在临计算平均射血前期mPEP之前针对时间窗w期间每次收缩c确定的所述PEP递归地计算每m秒的mPEP,其中m介于1秒与10秒之间且w介于15秒与3分钟之间。
23.根据权利要求22所述的系统,其中由所述处理系统计算时间窗w内的所述PEP的中间值MEDPEP和所述PEP的方差σ2 PEP,且在计算mPEP之前舍弃针对时间窗w期间每次收缩c确定的与MEDPEP相差2σPEP以上的PEP。
24.根据权利要求16或17所述的系统,其还包括:
第三身体佩带式传感器设备,其被配置来佩带在所述患者的身体上并检测指示肢体处归因于在时间n中所述个体的心脏的收缩产生的血液体积变化的信号且由此产生时间依赖性体积描记图。
25.根据权利要求24所述的系统,其中所述第三身体佩带式传感器设备被配置成佩带在所述患者的拇指或手指的基部处。
26.根据权利要求24所述的系统,其中所述处理设备可操作地连接至所述第三身体佩带式传感器且被配置来
(iv)将所述时间依赖性体积描记图波形与所述时间依赖性心电图波形和所述时间依赖性振动波形进行时间同步,和
(v)通过确定所述时间依赖性心电图波形中指示收缩c期间所述心室的电刺激开始的基准点与所述时间依赖性体积描记图波形中指示所述肢体处归因于收缩c的压力波到达的基准点之间的时间差来递归地确定时间n期间所述个体的心脏的每次收缩c的脉搏到达时间PAT。
27.根据权利要求26所述的系统,其中所述处理系统还被配置来根据针对时间窗q期间每次收缩c确定的所述PAT递归地计算每p秒的平均PAT mPAT,其中p介于1秒与10秒之间且q介于15秒与3分钟之间。
28.根据权利要求27所述的系统,其中由所述处理系统计算时间窗q内的所述PAT的中间值MEDPAT和所述PAT的方差σ2 PAT
29.根据权利要求28所述的系统,其中在计算MEDPAT之前舍弃针对时间窗q期间每次收缩c确定的与mPAT相差2σPAT以上的PAT。
30.根据权利要求28所述的系统,其中m=p且w=q。
31.根据权利要求26所述的系统,其中所述处理系统还被配置来通过从时间t处的mPAT中减去时间t处的mPEP来计算时间n期间每次收缩c的血管通过时间VTT。
32.根据权利要求31所述的系统,其中所述处理系统还被配置来使用所述VTT计算血压值。
CN201580010786.8A 2014-02-06 2015-02-06 用于生命体征的连续无创测量的身体佩带式系统 Active CN106028918B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461936850P 2014-02-06 2014-02-06
US61/936,850 2014-02-06
PCT/US2015/014915 WO2015120330A1 (en) 2014-02-06 2015-02-06 Body-worn system for continuous, noninvasive measurement of vital signs

Publications (2)

Publication Number Publication Date
CN106028918A CN106028918A (zh) 2016-10-12
CN106028918B true CN106028918B (zh) 2020-08-04

Family

ID=53778498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580010786.8A Active CN106028918B (zh) 2014-02-06 2015-02-06 用于生命体征的连续无创测量的身体佩带式系统

Country Status (4)

Country Link
US (3) US10856742B2 (zh)
EP (1) EP3102097B1 (zh)
CN (1) CN106028918B (zh)
WO (1) WO2015120330A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856742B2 (en) 2014-02-06 2020-12-08 Sotera Wireless, Inc. Body-worn system for continuous, noninvasive measurement of vital signs
US10492703B2 (en) 2014-03-28 2019-12-03 Board Of Regents, The University Of Texas System Epidermal sensor system and process
CN107530004A (zh) 2015-02-20 2018-01-02 Mc10股份有限公司 基于贴身状况、位置和/或取向的可穿戴式设备的自动检测和构造
US20160317043A1 (en) * 2015-04-30 2016-11-03 Withings Weighing scale with extended functions
US10085691B2 (en) * 2015-08-06 2018-10-02 Asustek Computer Inc. Wearable device for sensing physiological information
US9814388B2 (en) 2016-02-11 2017-11-14 General Electric Company Wireless patient monitoring system and method
US9883800B2 (en) 2016-02-11 2018-02-06 General Electric Company Wireless patient monitoring system and method
FR3048352B1 (fr) * 2016-03-02 2021-11-19 Inria Inst Nat Rech Informatique & Automatique Dispositif cardiaque
US20180192888A1 (en) 2016-04-08 2018-07-12 Robert Bosch Gmbh Blood Pressure and Cardiac Monitoring System and Method Thereof
CN109310340A (zh) 2016-04-19 2019-02-05 Mc10股份有限公司 用于测量汗液的方法和系统
US10098558B2 (en) 2016-04-25 2018-10-16 General Electric Company Wireless patient monitoring system and method
US10849508B2 (en) * 2016-06-03 2020-12-01 Fourth Frontier Technologies Pvt. Ltd. System and method for continuous monitoring of blood pressure
WO2018013656A1 (en) * 2016-07-12 2018-01-18 Mc10, Inc. Single wearable device system for measuring blood pressure
JP7107531B2 (ja) * 2017-04-24 2022-07-27 ヘルスセンシング株式会社 血圧算出方法及び装置
US20200085336A1 (en) * 2017-05-23 2020-03-19 Board Of Regents, The University Of Texas System Dual-mode epidermal cardiogram sensor
US10806933B2 (en) 2017-09-06 2020-10-20 General Electric Company Patient monitoring systems and methods that detect interference with pacemaker
WO2019126866A1 (en) 2017-12-28 2019-07-04 Heart Force Medical Inc. Sensor apparatuses, methods of operating same, and systems including same, and methods and systems for sensing and analyzing electromechanical characteristics of a heart
DE112019000370T5 (de) * 2018-02-27 2020-10-01 Robert Bosch Gesellschaft mit beschränkter Haftung Tragbares Gesundheitsvorrichtungssystem mit automatischer Referenzierung von Seismokardiographiesignalen
KR102135716B1 (ko) * 2018-04-25 2020-07-20 서울대학교산학협력단 생체 정보 추정 장치 및 방법
WO2020009631A1 (en) * 2018-07-06 2020-01-09 Maquet Critical Care Ab Non-invasive estimation of pulmonary blood pressure
EP3856016A4 (en) * 2018-09-24 2022-06-15 Sotera Wireless, Inc. METHOD AND SYSTEM FOR MONITORING A PATIENT FOR ATRIAL FIBRILLATION AND/OR ASYSTOL
US20220123947A1 (en) * 2019-01-18 2022-04-21 Zeu Technologies, Inc. A Method for Generating Random Numbers in Blockchain Smart Contracts
DE102019207672B4 (de) * 2019-05-24 2023-11-09 Siemens Healthcare Gmbh Reduktion von magnetfeldinduzierten Störungen bei der Messung von bioelektrischen Signalen
EP3785617A1 (en) * 2019-08-26 2021-03-03 Koninklijke Philips N.V. Method and device for calibrating blood pressure measurements based on measured pulse arrival time
CN111481185A (zh) * 2020-03-24 2020-08-04 南京润楠医疗电子研究院有限公司 一种基于射血前期的连续血压估计装置和方法
WO2021219779A1 (en) * 2020-04-29 2021-11-04 Rds Vital signs or health monitoring systems and methods
EP4228501A1 (en) * 2020-10-13 2023-08-23 Sotera Wireless, Inc. Method and system for identifying fiducial features in the cardiac cycle and their use in cardiac monitoring
EP4068799A1 (en) 2021-03-30 2022-10-05 Sonova AG Binaural hearing system for providing sensor data indicative of a biometric property, and method of its operation
CN114200328B (zh) * 2022-01-20 2022-09-30 中国科学技术大学 一种非高斯Lévy噪声下的锂离子电池SOC估计方法
CN117713750B (zh) * 2023-12-14 2024-05-17 河海大学 一种基于分数次幂的一致性卡尔曼滤波状态估计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357062A (zh) * 2008-08-22 2009-02-04 华南理工大学 基于容积脉搏波检测的生命体征参数测评装置
CN101801263A (zh) * 2007-02-08 2010-08-11 心动力医疗公司 监测生理状况和检测异常
WO2012149652A1 (en) * 2011-05-03 2012-11-08 Heart Force Medical Inc. Method and apparatus for estimating myocardial contractility using precordial vibration signals
CN102958427A (zh) * 2010-06-24 2013-03-06 皇家飞利浦电子股份有限公司 用于检测患者的危急血液动力学事件的方法和设备
US8430817B1 (en) * 2009-10-15 2013-04-30 Masimo Corporation System for determining confidence in respiratory rate measurements
WO2013160537A1 (en) * 2012-04-23 2013-10-31 Turun Yliopisto Method and apparatus for determining information indicative of cardiac malfunctions and abnormalities

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316008A (en) 1990-04-06 1994-05-31 Casio Computer Co., Ltd. Measurement of electrocardiographic wave and sphygmus
JP3318727B2 (ja) 1994-06-06 2002-08-26 日本光電工業株式会社 脈波伝播時間方式血圧計
US5865755A (en) 1996-10-11 1999-02-02 Dxtek, Inc. Method and apparatus for non-invasive, cuffless, continuous blood pressure determination
WO2006132865A2 (en) * 2005-06-03 2006-12-14 Acceleron Medical Systems, Inc. Improved scg point pick process device and method
US7569020B2 (en) 2006-06-19 2009-08-04 St. Jude Medical Ab Method for extracting timing parameters using a cardio-mechanical sensor
US8419649B2 (en) 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
US8688201B2 (en) * 2008-04-24 2014-04-01 Medtronic, Inc. System and method to monitor ejection time and QT interval to alert patients before syncopal events
US8200321B2 (en) 2009-05-20 2012-06-12 Sotera Wireless, Inc. Method for measuring patient posture and vital signs
US9775529B2 (en) 2009-06-17 2017-10-03 Sotera Wireless, Inc. Body-worn pulse oximeter
IT1398605B1 (it) * 2010-02-25 2013-03-08 Bombardini Dispositivo per la quantificazione e il monitoraggio della funzione cardiovascolare in corso di stress o attivita' fisica e a riposo
US8946931B2 (en) 2011-07-28 2015-02-03 Schneider Electric It Corporation Dual boost converter for UPS system
US10856742B2 (en) 2014-02-06 2020-12-08 Sotera Wireless, Inc. Body-worn system for continuous, noninvasive measurement of vital signs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801263A (zh) * 2007-02-08 2010-08-11 心动力医疗公司 监测生理状况和检测异常
CN101357062A (zh) * 2008-08-22 2009-02-04 华南理工大学 基于容积脉搏波检测的生命体征参数测评装置
US8430817B1 (en) * 2009-10-15 2013-04-30 Masimo Corporation System for determining confidence in respiratory rate measurements
CN102958427A (zh) * 2010-06-24 2013-03-06 皇家飞利浦电子股份有限公司 用于检测患者的危急血液动力学事件的方法和设备
WO2012149652A1 (en) * 2011-05-03 2012-11-08 Heart Force Medical Inc. Method and apparatus for estimating myocardial contractility using precordial vibration signals
WO2013160537A1 (en) * 2012-04-23 2013-10-31 Turun Yliopisto Method and apparatus for determining information indicative of cardiac malfunctions and abnormalities

Also Published As

Publication number Publication date
US20210177281A1 (en) 2021-06-17
WO2015120330A1 (en) 2015-08-13
US11647910B2 (en) 2023-05-16
US10856742B2 (en) 2020-12-08
EP3102097A1 (en) 2016-12-14
EP3102097A4 (en) 2017-10-04
US20160345844A1 (en) 2016-12-01
US20230284911A1 (en) 2023-09-14
CN106028918A (zh) 2016-10-12
EP3102097B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN106028918B (zh) 用于生命体征的连续无创测量的身体佩带式系统
EP3654837B1 (en) Apparatus and method for determining blood pressure of a subject
Kurylyak et al. A Neural Network-based method for continuous blood pressure estimation from a PPG signal
US20210244302A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
CN102429649B (zh) 连续血压测量装置
EP1684626B1 (en) Method and system for processing data from ambulatory physiological monitoring
EP3203899B1 (en) Non-invasive blood pressure monitors, methods and computer program product of operating the same
JP6310401B2 (ja) 生理的リズムを表す信号を処理する方法、システム及びコンピュータプログラム
JP7345681B2 (ja) 統合されたekg及びppgセンサを用いたインテリジェントパルス平均化を使用して静脈酸素飽和度を測定するシステム及び方法
Moreno et al. Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room
Mishra et al. Cuffless blood pressure monitoring using PTT and PWV methods
Atef et al. PTT based continuous time non-invasive blood pressure system
Soerensen et al. Challenges in using seismocardiography for blood pressure monitoring
Pielmuş et al. Correlation of arterial blood pressure to synchronous piezo, impedance and photoplethysmographic signal features: Investigating pulse wave features and transit times
EP3636144B1 (en) Monitoring apparatus and method
CN213883186U (zh) 一种无袖带血压监测装置
Lui et al. A novel calibration procedure of pulse transit time based blood pressure measurement with heart rate and respiratory rate
WO2017031110A1 (en) Wearable led sensor device configured to identify a wearer's pulse
Radjef et al. A new algorithm for measuring pulse transit time from ECG and PPG signals
US20220110575A1 (en) Method and system for identifying fiducial features in the cardiac cycle and their use in cardiac monitoring
KR102521294B1 (ko) 연속 혈압 측정을 이용한 생체활력징후 모니터링 시스템
CN114041764A (zh) 一种基于脑阻抗和心电信号进行无袖带血压估计的方法
WO2024047651A1 (en) System and method for sensors integration for non-static continuous blood pressure monitoring
CN116098597A (zh) 一种基于pep的连续血压估计方法
Lilia et al. ANew LOW-COMPLEXITY ALGORITHM FOR THE PULSE TRANSIT TIME EVALUATION

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant