CN106026279A - 一种具有储能装置的充电桩 - Google Patents

一种具有储能装置的充电桩 Download PDF

Info

Publication number
CN106026279A
CN106026279A CN201610520274.2A CN201610520274A CN106026279A CN 106026279 A CN106026279 A CN 106026279A CN 201610520274 A CN201610520274 A CN 201610520274A CN 106026279 A CN106026279 A CN 106026279A
Authority
CN
China
Prior art keywords
current
harmonic
charging
charging pile
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610520274.2A
Other languages
English (en)
Inventor
吴文坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610520274.2A priority Critical patent/CN106026279A/zh
Publication of CN106026279A publication Critical patent/CN106026279A/zh
Pending legal-status Critical Current

Links

Classifications

    • H02J7/0027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种具有储能装置的充电桩,通过该充电桩,在现有配电网不增容的情况下,利用储能装置实现电动汽车大功率快速充电,实现配电网和充电桩之间的缓冲,减少对配电网的短时干扰和冲击,此外该系统还解决了目前电动汽车充电桩网侧谐波含量比较大的问题,且能够滤除负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响,极大提升了充电的效率和安全性。

Description

一种具有储能装置的充电桩
所属技术领域
本发明涉一种具有储能装置的充电桩。
背景技术
随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,节能和减排是未来汽车技术发展的主攻方向。日本丰田公司率先开发出混合动力汽车Prius,揭开了电动汽车的时代序幕。电动汽车作为新一代的交通工具,在节能减排、减少人类对传统化石能源的依赖方面具备传统汽车不可比拟的优势。2009年以来,中国政府密集出台了鼓励电动汽车及相关行业发展的政策措施,企业对电动汽车的研发和产业化投入显著增强。
当电动汽车充电电池能源消耗到一定程度时,就需要使用能源供给装置对该电池进行充电,以保证电动汽车重复使用,达到“以电代油”的目的,因此能源供给装置对电动汽车的推广使用具有不可替代的作用。能源供给装置主要有两种形式,一种是直流充电桩,该充电桩功率较大,100kW左右,充电时间短,体积比较大,因此一般安装在固定的地点;另一种是交流充电桩,直接利用交流电网,输出交流电能,通过电动汽车自带的车载充电桩将交流电能转换为直流电能为充电电池进行充电。该种充电形式功率较小,一般为10kW左右,充电时间长,体积小,因此可以充分利用城市的各个角落为电动汽车进行充电。
由于现有电网框架容量的限制,建设一个电动汽车充电站,涉及到电网的增容、城市规划的调整等等一系列的重大问题,国家电网大改造不是小事, 耗资巨大,从讨论、立项到成网,非一朝一夕能实现。目前,在现有电网不增容的情况下,现有的充电机难以实现给电动汽车大功率快速充电的功能。
由于现有的充电机在电网与电动汽车充电机之间缺少缓冲装置,当充电机给电动汽车大功率快速充电时,充电设备会对电网造成的短时的干扰和冲击。
由于充电桩采用的充电桩和所带的负载是非线性设备,因此在运行时会给电网的电能质量带来不好的影响,主要体现在电网功率因数下降和给电网带来谐波污染等方面。其中谐波污染对电网造成的危害主要有以下几个方面:谐波电流造成的电压和发热情况会导致功率因数补偿电容器的使用寿命缩短;由于机械振动会受到基波频率磁场和谐波电流的影响,当机械谐振频率和电气励磁频率相等时,会发生共振从而产生更大的机械应力,破坏设备;谐波会导致系统对电压过零和电压为零的点判断失误;谐波电流会造成变压器铁损和铜损的增加;对电子设备和继电保护产生干扰;谐波电流会导致设备误动作,可能会中断生产和运行。
发明内容
为解决上述问题,本发明提供一种具有储能装置的充电桩,通过该充电桩,在现有配电网不增容的情况下,利用储能装置实现电动汽车大功率快速充电,实现配电网和充电桩之间的缓冲,减少对配电网的短时干扰和冲击,此外该系统还解决了目前电动汽车充电桩网侧谐波含量比较大的问题,且能够滤除负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响,极大提升了充电的效率和安全性。
为了实现上述目的,本发明提供一种具有储能装置的充电桩,该充电桩包括:
多个充电终端,用于对多个电动汽车的电池组进行充电;
有源电力滤波器,用于实时对充电桩进行谐波滤除,提高充电桩运行的功率因素;
储能装置,用于从配电网吸收电能,并用于对充电终端快速提供电能;
监控装置,用于控制充电桩的运行,该监控装置包括:
谐波检测模块,用于实时检测充电桩的无功和谐波电流大小;
储能装置监测与调度模块,用于实时检测储能装置的储能状态,根据检测结果,随时将储能单元在配电网与充电终端之间进行投切;
充电服务及控制模块,用于控制上述每个充电终端对电池组的充电功率,控制有源电力滤波器对充电桩的进行谐波滤除。
优选的,所述储能装置包括第一储能飞轮和第二储能飞轮,所述第一储能飞轮和第二储能飞轮以配电网允许的最大接入功率通过输入变换器吸取电能直到充满,此时所述第一储能飞轮和第二储能飞轮处于待机状态,可以随时通过充电终端给需要进行充电的电动汽车快速充电,工作过程中,储能装置监测与调度模块会根据第一储能飞轮和第二储能飞轮的储能状态进行充放电切换,保证内部可以随时满足电动汽车的充电需求。
优选的,当第一储能飞轮或第二储能飞轮需要进行充电时,所述储能装置监测与调度模块发送指令,打开充电开关,对储能飞轮进行充电,并时时检测储能飞轮的充电状态,当储能飞轮的电量达到饱和时,系统再次发送指 令,关闭充电开关,停止对储能飞轮的充电,此时,储能飞轮处于待机状态,等待接收放电指令。
优选的,储能飞轮在储能时采用PWM可控整流,最大程度地降低设备对电网的谐波干扰和无功需求。
优选的,当充电终端给电动汽车充电时,所述储能装置监测与调度模块发送指令,使储能装置切离电网,利用储能飞轮大功率发电机对电动汽车的电池组进行短时快速放电,满足其对快速充电的需求。
优选的,所述充电终端包括:
通信装置,用于与充电服务及控制模块以及所述充电终端进行通信;
程控电源,用于根据控制进行充电;
充电接口,与所述程控电源连接,用于连接电动汽车;
电量计量装置,用于计量充电电量。
优选的,所述有源电力滤波器包括:电感一L1、电感二L2、非线性负载W、PWM变流器S、电容C,配电网分别与电感一L1、电感二L2,电感一L1的另一端连接到非线性负载W,电感二L2的另一端连接PWM变流器S,PWM变流器S并联有电容C,配电网的接入端和电容C通过电压采样A/D模块1分别连接到指令电流运算器输入端和PWM发生器输入端,电容C的两端通过电压采样A/D模块和PI调节器连接到指令电流运算器输入端,电感一L1的输入端连接电流采样A/D模块连接到指令电流运算器输入端,PWM变流器S的输入端通过电流采样A/D模块连接到指令电流运算器输出端,指令电流运算器输出端连接到PWM发生器输入端。
优选的,所述谐波检测模块采用如下方式检测充电桩中的谐波分量:
将负载电流ia、ib、ic分解成基波ia1、ib1、ic1与谐波iak、ibk、ick之和;
考虑到三相不平衡,将电流基波电流ia1、ib1、ic1分为正序、零序和负序分量,则谐波电流iak、ibk、ick也可以分解为正序、零序和负序分量;
三相瞬时功率将上述步骤得到的分解结果代入该式,可得:
其中I1+、I1-是分别为基波正序和负序分量,Ik+、Ik-分别为k次谐波正序和负序分量,θ1-是基波负序的初始相位,θk+、θk-分别是k次谐波正序和负序的初始相位。上式谐波频率最低可达100Hz,经过低通滤波器(LFP),则三相瞬时功率中的谐波分量就能完全滤去,只剩下稳态值从而可以得到滤除了负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响。
优选的,所述有源电力滤波器采用如下方式消除谐波:
通过谐波检测模块检测到系统无功和谐波电流大小,作为指令信号,与PWM变流器的输出电流进行比较,误差大小与滞环比较器的环宽相比较得到一组PWM波;
PWM波发送给功率器件的控制端控制功率器件的开关,跟随无功和谐波电流;
PWM变流器将与无功和谐波电流大小相等,方向相反的电流注入到配电网侧,与配电网侧中包含的无功和谐波电流相互抵消,从而达到消除配电网 侧无功和谐波电流的目的。
本发明具有如下优点:(1)在现有配电网不增容的情况下,利用储能装置实现电动汽车大功率快速充电,实现配电网和充电桩之间的缓冲,减少对配电网的短时干扰和冲击;(2)通过本发明,解决了目前电动汽车充电桩网侧谐波含量比较大的问题,且能够滤除负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响。
附图说明
图1示出了本发明的一种具有储能装置的充电桩的框图;
图2示出了一种具有储能装置的充电桩的运行方法的流程图。
具体实施方式
图1示出了一种具有储能装置的充电桩10,该充电桩包10括:
多个充电终端12,用于对多个电动汽车的电池组进行充电;
有源电力滤波器13,用于实时对充电桩进行谐波滤除,提高充电桩运行的功率因素;
储能装置14,用于从配电网吸收电能,并用于对充电终端快速提供电能;
监控装置11,用于控制充电桩的运行,该监控装置11包括:
谐波检测模块111,用于实时检测充电桩的无功和谐波电流大小;
储能装置监测与调度模块112,用于实时检测储能装置的储能状态,根据检测结果,随时将储能单元在配电网与充电终端之间进行投切;
充电服务及控制模块113,用于控制上述每个充电终端对电池组的充电功率,控制有源电力滤波器对充电桩的进行谐波滤除。
优选的,所述储能装置14包括第一储能飞轮和第二储能飞轮,所述第一储能飞轮和第二储能飞轮以配电网20允许的最大接入功率通过输入变换器吸取电能直到充满,此时所述第一储能飞轮和第二储能飞轮处于待机状态,可以随时通过充电终端给需要进行充电的电动汽车快速充电,工作过程中,储能装置监测与调度模块会根据第一储能飞轮和第二储能飞轮的储能状态进行充放电切换,保证内部可以随时满足电动汽车的充电需求。
优选的,当第一储能飞轮或第二储能飞轮需要进行充电时,所述储能装置监测与调度模块112发送指令,打开充电开关,对储能飞轮进行充电,并时时检测储能飞轮的充电状态,当储能飞轮的电量达到饱和时,系统再次发送指令,关闭充电开关,停止对储能飞轮的充电,此时,储能飞轮处于待机状态,等待接收放电指令。
优选的,储能飞轮在储能时采用PWM可控整流,最大程度地降低设备对电网的谐波干扰和无功需求。
优选的,当充电终端12给电动汽车充电时,所述储能装置监测与调度模块112发送指令,使储能装置14切离电网,利用储能飞轮大功率发电机对电动汽车的电池组30进行短时快速放电,满足其对快速充电的需求。
优选地,所述充电终端12包括:
通信装置,用于与充电服务及控制模块以及所述充电终端进行通信;
程控电源,用于根据控制进行充电;
充电接口,与所述程控电源连接,用于连接电动汽车;
电量计量装置,用于计量充电电量。
所述有源电力滤波器13包括:电感一L1、电感二L2、非线性负载W、PWM变流器S、电容C,配电网分别与电感一L1、电感二L2,电感一L1的另一端连接到非线性负载W,电感二L2的另一端连接PWM变流器S,PWM变流器S并联有电容C,配电网的接入端和电容C通过电压采样A/D模块1分别连接到指令电流运算器输入端和PWM发生器输入端,电容C的两端通过电压采样A/D模块和PI调节器连接到指令电流运算器输入端,电感一L1的输入端连接电流采样A/D模块连接到指令电流运算器输入端,PWM变流器S的输入端通过电流采样A/D模块连接到指令电流运算器输出端,指令电流运算器输出端连接到PWM发生器输入端。
所述谐波检测模块111采用如下方式检测充电桩10中的谐波分量:
将负载电流ia、ib、ic分解成基波ia1、ib1、ic1与谐波iak、ibk、ick之和;
考虑到三相不平衡,将电流基波电流ia1、ib1、ic1分为正序、零序和负序分量,则谐波电流iak、ibk、ick也可以分解为正序、零序和负序分量;
三相瞬时功率将上述步骤得到的分解结果代入该式,可得:
其中I1+、I1-是分别为基波正序和负序分量,Ik+、Ik-分别为k次谐波正序和负序分量,θ1-是基波负序的初始相位,θk+、θk-分别是k次谐波正序和负序的初始相位。上式谐波频率最低可达100Hz,经过低通滤波器(LFP),则 三相瞬时功率中的谐波分量就能完全滤去,只剩下稳态值从而可以得到滤除了负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响。
所述有源电力滤波器13采用如下方式消除谐波:
通过谐波检测模块111检测到系统无功和谐波电流大小,作为指令信号,与PWM变流器的输出电流进行比较,误差大小与滞环比较器的环宽相比较得到一组PWM波;
PWM波发送给功率器件的控制端控制功率器件的开关,跟随无功和谐波电流;
PWM变流器将与无功和谐波电流大小相等,方向相反的电流注入到配电网侧,与配电网侧中包含的无功和谐波电流相互抵消,从而达到消除配电网侧无功和谐波电流的目的。
图2示出了一种具有储能装置的充电桩的监控方法的流程图。该监控方法包括如下步骤:
S1.储能装置从配电网中以配电网允许的最大接入功率通过输入变换器吸取电能直到充满,此时储能装置处于待机状态,可以随时给需要进行充电的电动汽车快速充电;
S2.当充电桩给电动汽车充电时,使储能装置切离电网,利用储能飞轮大功率发电机对电动汽车的电池组进行短时快速放电,满足其对快速充电的需求;
S3.充电桩运行期间,实时检测充电桩的系统无功和谐波电流大小;
S4.根据检测到的无功和谐波电流大小,实时进行无功动态补偿和谐波滤除,保障充电桩安全经济运行。
优选的,在步骤S1中,在正常状态下,储能装置监测与调度模块实时检测储能装置的储能状态,根据检测结果,随时将储能装置在配电网与充电终端之间进行投切。
优选的,所述储能装置包括第一储能飞轮和第二储能飞轮,当第一储能飞轮或第二储能飞轮需要进行充电时,该系统发送指令,打开充电开关,对储能飞轮进行充电,并时时检测储能飞轮的充电状态,当储能飞轮的电量达到饱和时,系统再次发送指令,关闭充电开关,停止对储能飞轮的充电。此时,储能飞轮处于待机状态,等待接收放电指令。
优选的,在步骤S2中,储能飞轮在放电过程中,飞轮降速带动发电机发电,经过DC/DC变换模块,然后通过充电终端对电动汽车的电池组快速充电。
在S3中,谐波电流的检测具体步骤为:
S31.将负载电流ia、ib、ic分解成基波ia1、ib1、ic1与谐波iak、ibk、ick之和;
S32.考虑到三相不平衡,将电流基波电流ia1、ib1、ic1分为正序、零序和负序分量,则谐波电流iak、ibk、ick也可以分解为正序、零序和负序分量;
S33.三相瞬时功率将上述步骤得到的分解结果代入该式,可得:
中I1+、I1-是分别为基波正序和负序分量,Ik+、Ik-分别为k次谐波正序和负序分量,θ1-是基波负序的初始相位,θk+、θk-分别是k次谐波正序和负序的初始相位。上式谐波频率最低可达100Hz,经过低通滤波器(LFP),则三相瞬时功率中的谐波分量就能完全滤去,只剩下稳态值从而可以得到滤除了负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响。
优选的,若考虑到三相不平衡的情况,则可以将负载侧基波电流分解为正序、负序和零序分量ia1、ib1、ic1,则谐波电流也可以分解为正序、负序和零序分量iak、ibk、ick,其中
三相瞬时功率p为将上述分解的分量分别代入该式,可得;
其中I1+、I1-、I10是分别为基波正序和负序分量,Ik+、Ik-、Ik0分别为k次谐波正序和负序分量,θ1-是基波负序的初始相位,θk+、θk-分别是k次谐 波正序和负序的初始相位,是功率因数角。
优选的,在步骤S4中,具体采用如下无功动态补偿方法实现无功动态补偿和谐波滤除:
S41.通过谐波检测模块检测到系统无功和谐波电流大小,作为指令信号,与PWM变流器的输出电流进行比较,误差大小与滞环比较器的环宽相比较得到一组PWM波;
S42.PWM波发送给功率器件的控制端控制功率器件的开关,跟随无功和谐波电流;
S43.PWM变流器将与无功和谐波电流大小相等,方向相反的电流注入到配电网侧,与配电网侧中包含的无功和谐波电流相互抵消,从而达到消除配电网侧无功和谐波电流的目的。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

1.一种具有储能装置的充电桩,其特征在于,包括:
多个充电终端,用于对多个电动汽车的电池组进行充电;
有源电力滤波器,用于实时对充电桩进行谐波滤除,提高充电桩运行的功率因素;
储能装置,用于从配电网吸收电能,并用于对充电终端快速提供电能;
监控装置,用于控制充电桩的运行,该监控装置包括:
谐波检测模块,用于实时检测充电桩的无功和谐波电流大小;
储能装置监测与调度模块,用于实时检测储能装置的储能状态,根据检测结果,随时将储能单元在配电网与充电终端之间进行投切;
充电服务及控制模块,用于控制上述每个充电终端对电池组的充电功率,控制有源电力滤波器对充电桩的进行谐波滤除。
2.如权利要求1所述的充电桩,其特征在于,所述储能装置包括第一储能飞轮和第二储能飞轮,所述第一储能飞轮和第二储能飞轮以配电网允许的最大接入功率通过输入变换器吸取电能直到充满,此时所述第一储能飞轮和第二储能飞轮处于待机状态,可以随时通过充电终端给需要进行充电的电动汽车快速充电,工作过程中,储能装置监测与调度模块会根据第一储能飞轮和第二储能飞轮的储能状态进行充放电切换,保证内部可以随时满足电动汽车的充电需求。
3.如权利要求2所述的充电桩,其特征在于,当第一储能飞轮或第二储能飞轮需要进行充电时,所述储能装置监测与调度模块发送指令,打开充电开关,对储能飞轮进行充电,并时时检测储能飞轮的充电状态,当储能飞轮的电量达到饱和时,系统再次发送指令,关闭充电开关,停止对储能飞轮的充电,此时,储能飞轮处于待机状态,等待接收放电指令。
4.如权利要求3所述的充电桩,其特征在于,储能飞轮在储能时采用PWM可控整流,最大程度地降低设备对电网的谐波干扰和无功需求。
5.如权利要求4所述的充电桩,其特征在于,当充电终端给电动汽车充电时,所述储能装置监测与调度模块发送指令,使储能装置切离电网,利用储能飞轮大功率发电机对电动汽车的电池组进行短时快速放电,满足其对快速充电的需求。
6.如权利要求5所述的充电桩,其特征在于,所述充电终端包括:
通信装置,用于与充电服务及控制模块以及所述充电终端进行通信;
程控电源,用于根据控制进行充电;
充电接口,与所述程控电源连接,用于连接电动汽车;
电量计量装置,用于计量充电电量。
7.如权利要求6所述的充电桩,其特征在于,所述有源电力滤波器包括:电感一L1、电感二L2、非线性负载W、PWM变流器S、电容C,配电网分别与电感一L1、电感二L2,电感一L1的另一端连接到非线性负载W,电感二L2的另一端连接PWM变流器S,PWM变流器S并联有电容C,配电网的接入端和电容C通过电压采样A/D模块1分别连接到指令电流运算器输入端和PWM发生器输入端,电容C的两端通过电压采样A/D模块和PI调节器连接到指令电流运算器输入端,电感一L1的输入端连接电流采样A/D模块连接到指令电流运算器输入端,PWM变流器S的输入端通过电流采样A/D模块连接到指令电流运算器输出端,指令电流运算器输出端连接到PWM发生器输入端。
8.如权利要求7所述的充电桩,其特征在于,所述谐波检测模块采用如下方式检测充电桩中的谐波分量:
将负载电流ia、ib、ic分解成基波ia1、ib1、ic1与谐波iak、ibk、ick之和;
考虑到三相不平衡,将电流基波电流ia1、ib1、ic1分为正序、零序和负序分量,则谐波电流iak、ibk、ick也可以分解为正序、零序和负序分量;
三相瞬时功率将上述步骤得到的分解结果代入该式,可得:
其中I1+、I1-是分别为基波正序和负序分量,Ik+、Ik-分别为k次谐波正序和负序分量,θ1-是基波负序的初始相位,θk+、θk-分别是k次谐波正序和负序的初始相位。上式谐波频率最低可达100Hz,经过低通滤波器(LFP),则三相瞬时功率中的谐波分量就能完全滤去,只剩下稳态值从而可以得到滤除了负载电流中的基波无功电流、负序电流、零序电流和谐波电流,只留下基波正序有功分量,避免了零序泄露误差的影响。
9.如权利要求8所述的充电桩,其特征在于,所述有源电力滤波器采用如下方式消除谐波:
通过谐波检测模块检测到系统无功和谐波电流大小,作为指令信号,与PWM变流器的输出电流进行比较,误差大小与滞环比较器的环宽相比较得到一组PWM波;
PWM波发送给功率器件的控制端控制功率器件的开关,跟随无功和谐波电流;
PWM变流器将与无功和谐波电流大小相等,方向相反的电流注入到配电网侧,与配电网侧中包含的无功和谐波电流相互抵消,从而达到消除配电网侧无功和谐波电流的目的。
CN201610520274.2A 2016-07-01 2016-07-01 一种具有储能装置的充电桩 Pending CN106026279A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610520274.2A CN106026279A (zh) 2016-07-01 2016-07-01 一种具有储能装置的充电桩

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610520274.2A CN106026279A (zh) 2016-07-01 2016-07-01 一种具有储能装置的充电桩

Publications (1)

Publication Number Publication Date
CN106026279A true CN106026279A (zh) 2016-10-12

Family

ID=57106372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610520274.2A Pending CN106026279A (zh) 2016-07-01 2016-07-01 一种具有储能装置的充电桩

Country Status (1)

Country Link
CN (1) CN106026279A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505662A (zh) * 2016-11-03 2017-03-15 上海理工大学 标定电动汽车电池组容量的充电装置及工作方法
CN107887921A (zh) * 2017-11-16 2018-04-06 江苏兴云新能源有限公司 一种智能充电桩负荷分配与储能电量分配云系统
CN108215878A (zh) * 2016-12-15 2018-06-29 福特全球技术公司 用于对电动车辆直流快速充电的车辆充电系统
CN109038746A (zh) * 2018-08-21 2018-12-18 谭钧方 智能充电系统及智能充电方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203416032U (zh) * 2013-09-03 2014-01-29 叶卫国 多功能电动汽车充电装置
CN203933018U (zh) * 2014-06-24 2014-11-05 南通华为电力设备有限公司 一种电动汽车电网侧谐波消除系统
CN105515003A (zh) * 2015-12-28 2016-04-20 江苏大学 一种谐波及无功电流检测的有源电力滤波器及检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203416032U (zh) * 2013-09-03 2014-01-29 叶卫国 多功能电动汽车充电装置
CN203933018U (zh) * 2014-06-24 2014-11-05 南通华为电力设备有限公司 一种电动汽车电网侧谐波消除系统
CN105515003A (zh) * 2015-12-28 2016-04-20 江苏大学 一种谐波及无功电流检测的有源电力滤波器及检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨秀: "《分布式发电及储能技术基础》", 31 August 2012, 北京:中国水利水电出版社 *
蔡杏山: "《变频技术十日通(双色版)》", 31 July 2015, 北京:中国电力出版社 *
谢卫: "《电力电子与交流传动系统仿真》", 31 August 2009, 北京:机械工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505662A (zh) * 2016-11-03 2017-03-15 上海理工大学 标定电动汽车电池组容量的充电装置及工作方法
CN108215878A (zh) * 2016-12-15 2018-06-29 福特全球技术公司 用于对电动车辆直流快速充电的车辆充电系统
CN107887921A (zh) * 2017-11-16 2018-04-06 江苏兴云新能源有限公司 一种智能充电桩负荷分配与储能电量分配云系统
CN109038746A (zh) * 2018-08-21 2018-12-18 谭钧方 智能充电系统及智能充电方法

Similar Documents

Publication Publication Date Title
CN203933018U (zh) 一种电动汽车电网侧谐波消除系统
Kersten et al. Battery loss and stress mitigation in a cascaded h-bridge multilevel inverter for vehicle traction applications by filter capacitors
CN106100033A (zh) 一种可检测和滤除谐波的充电桩系统
CN102163856A (zh) 一种基于v2g技术的车载充放电装置及其控制方法
CN106026279A (zh) 一种具有储能装置的充电桩
CN106080245B (zh) 一种可提升充电质量的充电桩系统
CN102647006B (zh) 纯电动汽车锂电池充电装置
CN103915856A (zh) 一种基站并网-充电光伏微逆变器系统及其控制方法
CN106515474A (zh) 一种用于电动汽车的充电系统
Parkhideh et al. Supplementary energy storage and hybrid front-end converters for high-power mobile mining equipment
CN106230081A (zh) 一种充电桩的谐波检测和滤除方法
CN106100036A (zh) 一种具有储能装置的充电桩的运行方法
CN106300581A (zh) 一种可检测和滤除谐波的充电桩的监控方法
Arabsalmanabadi et al. Analyzing fast charger in the smart grid from power quality's prospecting
CN106026278A (zh) 一种充电桩系统的智能监控方法
CN102611173B (zh) 一种两级充放电系统
CN102570566B (zh) 一种充电机系统
CN106100035A (zh) 一种智能充电桩系统
CN105978007A (zh) 一种具有储能装置的充电桩的监控装置
Alobaidi et al. Impact of vehicle to grid technology on distribution grid with two power line filter approaches
CN105978118A (zh) 一种用于电动汽车的智能充电方法
CN205646974U (zh) 瞬态动力功率补偿器
Chang et al. Research on Dynamic Behavior of Electric Vehicle Converter in power network fault
CN205945101U (zh) 组合式超级电池
Hamidi et al. Batteries and ultracapacitors for electric power systems with renewable energy sources

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012

RJ01 Rejection of invention patent application after publication