CN106018545A - 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法 - Google Patents

一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法 Download PDF

Info

Publication number
CN106018545A
CN106018545A CN201610488711.7A CN201610488711A CN106018545A CN 106018545 A CN106018545 A CN 106018545A CN 201610488711 A CN201610488711 A CN 201610488711A CN 106018545 A CN106018545 A CN 106018545A
Authority
CN
China
Prior art keywords
defect
adaboost
rbf
magnetic leakage
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610488711.7A
Other languages
English (en)
Other versions
CN106018545B (zh
Inventor
冯健
刘光恒
刘金海
张化光
汪刚
马大中
吴振宇
温胤镭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Shenyang Academy of Instrumentation Science Co Ltd
Original Assignee
Northeastern University China
Shenyang Academy of Instrumentation Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China, Shenyang Academy of Instrumentation Science Co Ltd filed Critical Northeastern University China
Priority to CN201610488711.7A priority Critical patent/CN106018545B/zh
Publication of CN106018545A publication Critical patent/CN106018545A/zh
Application granted granted Critical
Publication of CN106018545B publication Critical patent/CN106018545B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Biochemistry (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明提供一种基于Adaboost‑RBF协同的管道缺陷漏磁反演方法,涉及管道漏磁检测技术领域。该方法包括:对标准缺陷进行漏磁检测,并进行特征提取;测量待测缺陷所在管道前若干米的缺陷形状参数;对待测缺陷所在管道进行漏磁检测,并进行特征提取;确定样本数据和待测数据;建立Adaboost‑RBF神经网络初始模型;校正Adaboost‑RBF神经网络初始模型;将待测数据输入最终模型,得到待测缺陷的形状参数,完成反演。本发明运用Adaboost‑RBF神经网络模型对管道缺陷进行反演,能够进行快速的缺陷形状重构,学习速度快,精度高,泛化性能好,并能判断该缺陷的严重性,从而预防管道泄漏,避免损失。

Description

一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法
技术领域:
本发明涉及管道漏磁检测技术领域,尤其涉及一种基于Adaboost-RBF协同(Adaboost算法与RBF神经网络结合后协同作用)的管道缺陷漏磁反演方法。
背景技术:
漏磁检测是无损检测的一种方式,相比较其他无损检测方式,其有高效、可靠、无污染并能实现自动化等优势,而且也是能够用于管道内检测的为数不多的方法之一。漏磁检测中的反演问题,是指根据给定的磁场信号数据求出被测材料中是否存在缺陷、并标定缺陷的位置和形状,进而实现缺陷检测的可视化。但是,由于信号数据与被测缺陷的参数之间的关系非常复杂,虽然多年来科研人员作出很多努力,缺陷的反演问题依然是这个领域的技术难关。
传统反演方法中,基于有限元的缺陷反演方法通过有限元方法计算人工给定的缺陷漏磁信号来与未知缺陷的漏磁信号进行对比,不断调整给定的缺陷尺寸,从而得到未知缺陷的尺寸,虽然该方法精度较高,但是十分依赖操作人员的检测经验,并且用时很长,资源消耗高;基于RBF径向基神经网络的缺陷反演方法根据已知缺陷信号与缺陷尺寸的关系,通过建立RBF神经网络模型,再通过测得的未知缺陷的信号数据与RBF模型得到未知缺陷的尺寸,该方法的运算速度很快,但是精确度较低,容易失灵;基于RBF神经网络与有限元的缺陷反演方法通过有限元方法计算出多种规格缺陷的信号数据,构建缺陷数据库,再使用RBF神经网络学习该库数据特征,再通过该模型计算人工给定的缺陷尺寸的信号数据,与测得的未知缺陷的信号数据对比并修正,从而得到未知缺陷的尺寸,该方法既提高了计算速度,也有较好的精度,但是其精度比较依赖初始人工给定缺陷的参数。
发明内容:
本发明要解决的技术问题是针对上述现有技术的不足,提供一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,将RBF神经网络方法与Adaboost算法结合,运用Adaboost-RBF神经网络模型对管道缺陷形状进行反演,能够对管道缺陷进行快速的缺陷形状重构,学习速度快,精度高,泛化性能好,并能判断该缺陷的严重性,从而预防管道泄漏,避免损失。
为解决上述技术问题,本发明所采取的技术方案是:一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,包括:
步骤1:对标准缺陷进行漏磁检测,并将其漏磁信号进行特征提取,得到缺陷漏磁信号波形特征值;
步骤2:利用标尺等工具人工测量待测缺陷所在管道起点处前若干米的缺陷形状参数;
步骤3:对待测缺陷所在管道进行漏磁检测,并将其漏磁信号进行特征提取;
步骤4:确定样本数据和待测数据,并将所述样本数据分为训练样本数据和测试样本数据;
步骤5:通过训练样本数据建立Adaboost-RBF神经网络初始模型;
步骤6:利用测试样本数据校正Adaboost-RBF神经网络初始模型,得到Adaboost-RBF神经网络最终模型;
步骤7:将待测数据输入Adaboost-RBF神经网络最终模型,得到待测缺陷的形状参数,完成对待测管道漏磁信号的反演。
进一步地,标准缺陷为按照国家标准NB/T 47013.12-2015中附录B的规范在标准管上加工所得,标准管为与待测缺陷所在管道材质相同、规格相同的管道。
进一步地,标准缺陷的加工应可以分为三组,分别满足缺陷长度单一变化、缺陷宽度单一变化和缺陷深度单一变化,且每组尺寸范围应满足实际可能情况。
进一步地,特征提取的过程包括:
步骤a:根据缺陷实际轴向位置与设备提供的位置信息,确定缺陷对应信号的位置;
步骤b:统计每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量;
步骤c:提取每个缺陷处波形波动最明显的波形,得到缺陷漏磁信号波形特征值。
进一步地,缺陷漏磁信号波形分为单峰双谷和双峰双谷两种情况,缺陷漏磁信号波形特征值包括:
信号波形的平均峰谷值,表示信号波形的波峰与其最近的波谷的纵向差值的平均值;
幅度阂值长度,表示满足信号阂值强度时,对应点之间的横向距离;
信号能量,表示漏磁信号的二阶中心距;
信号微分峰谷平均距离,表示信号波形微分后波形的波峰与其最近的波谷的横向距离的平均值;
信号微分平均峰谷值,表示信号波形微分后波形的波峰与其最近的波谷的纵向差值的平均值;
信号周向长度,表示每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量。
进一步地,步骤4的具体确定方法为:将标准管道和待测管道前若干米的缺陷形状参数及其对应的漏磁信号特征值数据作为样本数据,每组样本数据包括缺陷形状参数及其漏磁信号的特征提取数据;待测管道上剩余的其他漏磁信号特征数据作为待测数据;样本数据按一定比例随机分为训练样本数据和测试样本数据。
进一步地,步骤5的具体方法包括:
步骤501:将训练样本数据、测试样本数据和待测数据中的漏磁信号特征值数据分别进行归一化处理;
步骤502:初始化RBF神经网络,确定基函数、散步常数和神经元个数;
步骤503:初始化Adaboost样本权值;
步骤504:将训练样本数据中的每组数据乘以初始权值作为训练集Set1;以训练集Set1中的缺陷漏磁信号特征值数据作为输入,以缺陷形状参数作为输出,训练初始化的RBF神经网络,得到RBF神经网络子模型1,其输出结果记为Y1
步骤505:计算输出结果Y1中的数据组与训练样本数据中已知的缺陷性转参数数据组的相对误差,选出相对误差超过预设阂值的数据组,并记为错误结果,统计错误结果数,计算子模型1的错误率;
步骤506:根据步骤505得到的错误率,调整Adaboost样本权值,增大误差较大的数据组的样本权值,减小误差较小的数据组的样本权值,得到新的Adaboost样本权值;
步骤507:将每组训练样本数据与对应的新的Adaboost样本权值相乘,得到新的子训练集Set2,并用来训练新的RBF神经网络,记为RBF神经网络模型2,其输出结果记为Y2,计算子模型2的错误率,方法同步骤505和步骤506。
步骤508:重复步骤507,直至得到错误率小于阂值的子模型。
步骤509:建立Adaboost-RBF神经网络初始模型,模型输出公式为:
Y A - R B F = Σ k = 1 n w k Y k
其中,n为RBF神经网络子模型的个数;YA-RBF为Adaboost-RBF神经网络初始模型的输出,即缺陷形状参数;Yk为第k个RBF神经网络子模型的输出结果;wk为Yk的权值。
进一步地,步骤6的具体方法为:
步骤601:将测试样本数据中缺陷的漏磁信号特征数据输入Adaboost-RBF神经网络初始模型,得到输出为缺陷形状参数;
步骤602:计算初始模型输出的缺陷形状数据与测试样本数据中缺陷形状参数的相对误差,当相对误差超过预设误差阂值时,将对应输出记为错误结果,并统计模型输出的错误结果数,计算模型错误率;
步骤603:当模型错误率下雨预设错误率阂值时,当前Adaboost-RBF神经网络模型为最终可用的Adaboost-RBF神经网络模型,进入步骤7,否则,重新调节RBF神经网络的神经元个数与散布常数,再返回步骤5,重新建立Adaboost-RBF神经网络初始模型。
进一步地,重新调节的神经元个数与散布常数在初始的神经元个数与散布常数附近一定范围内变动。
进一步地,缺陷形状参数包括相应缺陷的长度、宽度和深度;所述长度为所述缺陷的轴向最长距离,所述宽度为所述缺陷的周向最长距离,所述深度为所述缺陷的径向最长距离。
采用上述技术方案所产生的有益效果在于,本发明提供的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,将RBF神经网络方法与Adaboost算法结合,运用Adaboost-RBF神经网络模型对管道缺陷形状进行反演,建立了Adaboost-RBF神经网络模型,能够对管道缺陷进行快速的缺陷形状重构。与传统有限元或单RBF方法相比,本发明在步骤1中保证模型的泛化能力,利用RBF神经网络使模型的学习速度快,Adaboost方法能有效提高模型精度,Adaboost-RBF神经网络模型整体提高了缺陷反演计算速度。通过漏磁检测得到的信号数据,该模型能快速准确地反演缺陷形状,判断该缺陷的严重性,从而预防管道泄漏,避免损失。
附图说明:
图1是本发明实施例的方法流程总图;
图2是本发明实施例中管道缺陷漏磁单峰信号特征提取示意图;
图3是本发明实施例中管道缺陷漏磁单峰信号微分曲线的特征提取示意图;
图4是本发明实施例中管道缺陷漏磁双峰信号特征提取示意图;
图5是本发明实施例中管道缺陷漏磁双峰信号微分曲线的特征提取示意图;
图6是本发明实施例中步骤5的流程图。
图中:A、单峰信号波形峰谷值;B、单峰信号幅度阂值长度;C、单峰信号能量;D、单峰信号微分峰谷距离;E、单峰信号微分峰谷值;F、双峰信号波形峰谷值;G、双峰信号幅度阂值长度;H、双峰信号能量;I、双峰信号微分峰谷距离;J、双峰信号微分峰谷值。
具体实施方式:
下面结合附图和具体实施方式对本发明作进一步详细说明。
一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,如图1所示,为本实施例的方法流程总图,本实施例的方法具体如下所述。
步骤1:对标准缺陷进行漏磁检测,并将其漏磁信号进行特征提取。
步骤101:取与待测缺陷所在管道相同材质相同规格的标准管,按国家标准NB/T47013.12-2015中附录B的规范,在其上加工给定标准缺陷。具体实施中,标准管长度应在实际工况允许下,尽量取长;加工的标准缺陷尺寸应可以归类分成3组,分别满足缺陷长度单一变化、缺陷宽度单一变化及缺陷深度单一变化,且每组尺寸范围应满足实际可能情况。
步骤102:对步骤101中的给定标准缺陷进行漏磁检测。
步骤103:将步骤102测得的给定缺陷漏磁信号进行特征提取。根据缺陷实际轴向位置与设备提供的位置信息,确定缺陷对应信号的位置,并统计每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量,提取每个缺陷处波形波动最明显的波形,得到缺陷信号波形特征值,即信号波形的平均峰谷值、幅度阂值长度、信号能量、信号微分峰谷平均距离、信号微分平均峰谷值及信号周向长度。
如图2至图5所示,为缺陷信号波形示意图。根据管道长度的不同,管道缺陷漏磁信号波形可分为单峰双谷和双峰双谷两种情况,信号特征值分别与缺陷形状参数有一定关系。
信号平均峰谷值表示信号波形的波峰与其最近的波谷的纵向差值A或F的平均值。信号幅度阂值长度B或G表示满足信号阂值强度时,对应点之间的横向距离,本实施例中的阂值为每个采集频道的信号强度幅值的40%。信号能量C或H表示漏磁信号的二阶中心距,其公式为:
E = Σ t T { y ( t ) - min [ y ( t ) ] } 2
其中,E为信号能量,y(t)表示缺陷漏磁信号的幅值,t与T分别表示缺陷信号的起始位置和终止位置的采样点编号。
信号微分峰谷平均距离表示信号波形微分后波形的波峰与其最近的波谷的横向距离D或I的平均值。信号微分平均峰谷值表示信号波形微分后波形的波峰与其最近的波谷的纵向差值E或J的平均值。信号周向长度表示每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量。
步骤2:利用标尺等工具人工测量待测缺陷所在管道起点处前若干米的缺陷形状参数,即长度、宽度、深度。
待测管道前若干米根据实际情况选取,取值依赖于管道检测起点处管道的长度,一股取10至20米,缺陷的形状参数取其轴向最长距离作为长度、取其周向最长距离作为宽度、,取其径向最长距离作为深度。
步骤3:对待测缺陷所在管道进行漏磁检测,并将其漏磁信号进行特征提取。
对待测缺陷所在的整个管道进行漏磁检测,并将得到的漏磁信号数据进行特征提取,信号特征提取方法与步骤103一致。
步骤4:确定样本数据和待测数据,并将样本数据分为训练样本数据和测试样本数据。
将标准管道和待测管道前若干米的缺陷形状参数及其对应的漏磁信号特征数据作为样本数据,每组样本数据包括缺陷形状参数及其漏磁信号特征数据,并将样本数据按一定比例随机分为训练样本数据和测试样本数据,本实施例中,在样本数据中随机选取70%的数据作为训练样本数据,剩余的样本数据作为测试样本数据,具体实施中,随机选取的比例可以按实际情况进行适当调试,待测管道其他的漏磁信号特征数据作为待测数据。
步骤5:通过训练样本数据建立Adaboost-RBF神经网络初始模型。
将训练样本数据中的缺陷的漏磁信号特征数据作为该模型的输入,统一给定RBF网络神经元参数,运用递增法选取神经网络个数,计算神经网络的样本输出权值,缺陷的长度、宽度及深度作为该模型的输出。初始模型的建立过程如图6所示,具体包括如下步骤。
步骤501:将训练样本数据、测试样本数据和待测数据中的特征提取数据分别进行归一化处理。
步骤502:初始化RBF神经网络。本实施例选择高斯函数作为RBF神经网络的基函数,其计算公式为:
φ = exp ( - | | x - C | | 2 σ 2 )
其中,x表示神经网络的输入数据;C为基函数中心,本实例利用K-均值聚类方法求得;σ为散布常数,散布常数根据经验取值范围为1至20。
神经元个数均为固定值,且取值不超过训练样本数据数量。
网络输出公式为:
Y R B F = Σ i = 1 p ω i φ ( x i ) = Σ i = 1 p ω i exp ( - | | x i - C | | 2 σ 2 )
其中,i表示RBF神经网络隐含层节点数,p为隐含层节点总数;ω为神经网络权值。
步骤503:初始化Adaboost样本权值,初始权值都取1/Nx,其中Nx为训练样本数据组数量。
步骤504:训练样本每组数据乘以初始权值作为训练集Set1,以训练集Set1中的缺陷漏磁信号特征值数据作为输入,以缺陷形状参数作为输出,训练步骤502中的RBF神经网络,得到RBF神经网络子模型1,其输出结果记为Y1
步骤505::提取出输出结果中与训练样本中数据中已知的缺陷性转参数数据组的相对误差超过设定阂值的数据组,记为错误结果,其中设定阂值为5%,统计错误结果数记为Nx-fault,计算模型错误率Δ1。错误率计算公式为:
Δ 1 = N x - f a u l t N x
步骤506:根据错误率,调整Adaboost样本权值,增大误差较大的数据组的样本权值,本实例中分别增大一倍;减小误差较小的数据组的样本权值,本实例中分别减小一倍,得到新的Adaboost样本权值。
步骤507:将每组训练样本数据与新的对应的样本权值相乘,得到新的子训练集Set2,并用来训练新的RBF神经网络,记为RBF神经网络子模型2,其输出结果记为Y2,并提取出其中结果误差超过设定阂值的数据组,计算错误率Δ2,方法同子模型1。
步骤508:重复步骤507,直至得到错误率小于阂值的子模型。
步骤506:建立Adaboost-RBF神经网络初始模型,初始模型的输出公式为:
Y A - R B F = Σ k = 1 n w k Y k = Σ k = 1 n w k [ Σ i = 1 p ω i exp ( - | | x i - C | | 2 σ 2 ) ]
其中,n为RBF神经网络子模型的个数;YA-RBF为Adaboost-RBF神经网络初始模型的输出,即缺陷形状参数;Yk为第k个RBF神经网络子模型的输出结果;wk为Yk的权值,其取值与对应错误率Δk有关,权值计算公式为:
w k = 1 n ( 1 - Δ k Σ k = 1 n Δ k ) + 1 n 2
步骤6:利用测试样本数据校正步骤5中建立的Adaboost-RBF神经网络初始模型。
将测试样本数据中缺陷的漏磁信号特征数据输入步骤4中建立的Adaboost-RBF神经网络初始模型,得到输出为缺陷形状参数YA-RBFi∈R3,i=1…N,其中YA-RBFi为三维变量,此处N为测试样本数据个数;
计算模型输出的缺陷形状参数与测试样本数据中缺陷形状参数的相对误差,将其中相对误差超过阂值的结果记为错误结果,本实施例中,相对误差阂值预设为10%,当相对误差超过10%时,记为错误结果,统计模型输出的错误结果数记为Nfault,并计算模型错误率,模型错误率Δ计算公式为:
Δ = N f a u l t N
本实施例中,模型错误率阂值预设为5%,当模型错误率Δ<5%时,当前Adaboost-RBF神经网络模型为最终可用的Adaboost-RBF神经网络模型,进入步骤7,否则,重新调节RBF神经网络的神经元个数与散布常数,重新选择的神经元个数与散布常数在初始的神经元个数与散布常数附近一定范围内变动,再返回步骤5,重新建立Adaboost-RBF神经网络初始模型。
步骤7:将待测数据输入Adaboost-RBF神经网络模型,输出缺陷的形状参数,即缺陷的长度、宽度及深度,完成对管道缺陷漏磁信号的反演。
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并放在关键的训练数据上面。Adaboost算法能使RBF神经网络方法在保持其原有的计算速度快的优势上,有效地提高其计算精度。
本实施例提供的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,将RBF神经网络方法与Adaboost算法结合,运用Adaboost-RBF神经网络模型对管道缺陷形状进行反演,建立了Adaboost-RBF神经网络模型,能够对管道缺陷进行快速的缺陷形状重构,具有学习速度快,精度高,泛化性能好等特点,通过漏磁检测得到的信号数据,该模型能快速准确地反演缺陷形状,判断该缺陷的严重性,从而预防管道泄漏,避免损失。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (10)

1.一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,包括:
步骤1:对标准缺陷进行漏磁检测,并将其漏磁信号进行特征提取,得到缺陷漏磁信号波形特征值;
步骤2:利用标尺等工具人工测量待测缺陷所在管道起点处前若干米的缺陷形状参数;
步骤3:对待测缺陷所在管道进行漏磁检测,并将其漏磁信号进行特征提取;
步骤4:确定样本数据和待测数据,并将所述样本数据分为训练样本数据和测试样本数据;
步骤5:通过训练样本数据建立Adaboost-RBF神经网络初始模型;
步骤6:利用测试样本数据校正所述Adaboost-RBF神经网络初始模型,得到Adaboost-RBF神经网络最终模型;
步骤7:将所述待测数据输入所述Adaboost-RBF神经网络最终模型,得到待测缺陷的形状参数,完成对待测管道漏磁信号的反演。
2.根据权利要求1所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述标准缺陷为按照国家标准NB/T 47013.12-2015中附录B的规范在标准管上加工所得,所述标准管为与所述待测缺陷所在管道材质相同、规格相同的管道。
3.根据权利要求2所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述标准缺陷的加工应可以分为三组,分别满足缺陷长度单一变化、缺陷宽度单一变化和缺陷深度单一变化,且每组尺寸范围应满足实际可能情况。
4.根据权利要求1所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述特征提取的过程包括:
步骤a:根据缺陷实际轴向位置与设备提供的位置信息,确定缺陷对应信号的位置;
步骤b:统计每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量;
步骤c:提取每个缺陷处波形波动最明显的波形,得到缺陷漏磁信号波形特征值。
5.根据权利要求4所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述缺陷漏磁信号波形分为单峰双谷和双峰双谷两种情况,所述缺陷漏磁信号波形特征值包括:
信号波形的平均峰谷值,表示信号波形的波峰与其最近的波谷的纵向差值的平均值;
幅度阈值长度,表示满足信号阈值强度时,对应点之间的横向距离;
信号能量,表示漏磁信号的二阶中心距;
信号微分峰谷平均距离,表示信号波形微分后波形的波峰与其最近的波谷的横向距离的平均值;
信号微分平均峰谷值,表示信号波形微分后波形的波峰与其最近的波谷的纵向差值的平均值;
信号周向长度,表示每个缺陷对应区域波动剧烈的信号所在的信号采集频道的数量。
6.根据权利要求1所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述步骤4的具体确定方法为:将所述标准管道和待测管道前若干米的缺陷形状参数及其对应的漏磁信号特征值数据作为所述样本数据,每组所述样本数据包括缺陷形状参数及其漏磁信号的特征提取数据;所述待测管道上剩余的其他漏磁信号特征数据作为待测数据;所述样本数据按一定比例随机分为训练样本数据和测试样本数据。
7.根据权利要求1所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述步骤5的具体方法包括:
步骤501:将所述训练样本数据、测试样本数据和待测数据中的漏磁信号特征值数据分别进行归一化处理;
步骤502:初始化RBF神经网络,确定基函数、散步常数和神经元个数;
步骤503:初始化Adaboost样本权值;
步骤504:将所述训练样本数据中的每组数据乘以初始权值作为训练集Set1;以所述训练集Set1中的缺陷漏磁信号特征值数据作为输入,以缺陷形状参数作为输出,训练初始化的所述RBF神经网络,得到RBF神经网络子模型1,其输出结果记为Y1
步骤505:计算所述输出结果Y1中的数据组与训练样本数据中已知的缺陷性转参数数据组的相对误差,选出所述相对误差超过预设阈值的输出结果数据组,并记为错误结果,统计错误结果数,计算子模型1的错误率;
步骤506:根据所述步骤505得到的错误率,调整Adaboost样本权值,增大误差较大的数据组的样本权值,减小误差较小的数据组的样本权值,得到新的Adaboost样本权值;
步骤507:将每组训练样本数据与对应的所述新的Adaboost样本权值相乘,得到新的子训练集Set2,并用来训练新的RBF神经网络,记为RBF神经网络模型2,其输出结果记为Y2,计算子模型2的错误率,方法同步骤505和步骤506;
步骤508:重复步骤507,直至得到错误率小于阈值的子模型;
步骤509:建立Adaboost-RBF神经网络初始模型,初始模型的输出公式为:
Y A - RBF = Σ k = 1 n w k Y k
其中,n为RBF神经网络子模型的个数;YA-RBF为Adaboost-RBF神经网络初始模型的输出,即缺陷形状参数;Yk为第k个RBF神经网络子模型的输出结果;wk为Yk的权值。
8.根据权利要求1所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述步骤6的具体方法为:
步骤601:将所述测试样本数据中缺陷的漏磁信号特征数据输入所述Adaboost-RBF神经网络初始模型,得到输出为缺陷形状参数;
步骤602:计算所述初始模型输出的缺陷形状数据与所述测试样本数据中缺陷形状参数的相对误差,当所述相对误差超过预设误差阈值时,将对应输出记为错误结果,并统计模型输出的错误结果数,计算模型错误率;
步骤603:当模型错误率小于预设错误率阈值时,当前Adaboost-RBF神经网络模型为最终可用的Adaboost-RBF神经网络模型,进入所述步骤7,否则,重新调节RBF神经网络的神经元个数与散布常数,再返回所述步骤5,重新建立Adaboost-RBF神经网络初始模型。
9.根据权利要求8所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述重新调节的神经元个数与散布常数在初始的神经元个数与散布常数附近一定范围内变动。
10.根据权利要求1至9任一项所述的一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法,其特征在于,所述缺陷形状参数包括相应缺陷的长度、宽度和深度;所述长度为所述缺陷的轴向最长距离,所述宽度为所述缺陷的周向最长距离,所述深度为所述缺陷的径向最长距离。
CN201610488711.7A 2016-06-29 2016-06-29 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法 Expired - Fee Related CN106018545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610488711.7A CN106018545B (zh) 2016-06-29 2016-06-29 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610488711.7A CN106018545B (zh) 2016-06-29 2016-06-29 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法

Publications (2)

Publication Number Publication Date
CN106018545A true CN106018545A (zh) 2016-10-12
CN106018545B CN106018545B (zh) 2019-05-14

Family

ID=57085277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610488711.7A Expired - Fee Related CN106018545B (zh) 2016-06-29 2016-06-29 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法

Country Status (1)

Country Link
CN (1) CN106018545B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870957A (zh) * 2017-03-21 2017-06-20 东北大学 一种管道缺陷漏磁信号的特征提取方法
CN106950276A (zh) * 2017-03-21 2017-07-14 东北大学 一种基于卷积神经网络的管道缺陷深度的反演方法
CN107024532A (zh) * 2017-04-12 2017-08-08 东北大学 一种基于窗体特征的漏磁管道缺陷位置提取方法
CN107301271A (zh) * 2017-05-23 2017-10-27 哈尔滨工业大学深圳研究生院 一种钢丝绳外层损伤漏磁检测定量算法
CN108302329A (zh) * 2018-01-25 2018-07-20 福建双环能源科技股份有限公司 一种露点数据异常检测方法
CN109325544A (zh) * 2018-10-11 2019-02-12 东北大学 一种基于中层特征的管道异常分类方法
CN109613109A (zh) * 2018-12-19 2019-04-12 智云安科技(北京)有限公司 一种管道漏磁检测数据自动分析系统
CN109632942A (zh) * 2019-02-21 2019-04-16 东北大学 一种基于sl的管道缺陷尺寸的反演方法
CN110096790A (zh) * 2019-04-28 2019-08-06 东北大学 一种基于强化学习的不规则缺陷漏磁信号反演方法
CN110470729A (zh) * 2019-07-31 2019-11-19 浙江树人学院(浙江树人大学) 一种基于电涡流的油田套管缺陷无损检测方法
CN110599460A (zh) * 2019-08-14 2019-12-20 深圳市勘察研究院有限公司 基于混合卷积神经网络的地下管网检测评估云系统
CN111448453A (zh) * 2017-10-06 2020-07-24 罗森瑞士股份公司 确定缺陷的几何结构的方法以及确定负荷能力极限的方法
CN111815561A (zh) * 2020-06-09 2020-10-23 中海石油(中国)有限公司 一种基于深度时空特征的管道缺陷及管道组件的检测方法
CN111861985A (zh) * 2020-06-09 2020-10-30 中海油能源发展装备技术有限公司 一种基于自适应模糊神经网络的漏磁缺陷深度识别方法
CN112345626A (zh) * 2020-10-30 2021-02-09 东北大学 一种基于异构场信号的管道缺陷智能反演方法
CN113075289A (zh) * 2021-03-31 2021-07-06 北京理工大学 一种金属圆柱缺陷参数检测方法及系统
CN115062515A (zh) * 2022-06-23 2022-09-16 中国矿业大学 一种管道壁厚、焊缝余高及缺陷尺寸的量化方法
CN115081485A (zh) * 2022-07-04 2022-09-20 中特检深燃安全技术服务(深圳)有限公司 一种基于ai的漏磁内检测数据自动分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122571A (ja) * 2000-10-12 2002-04-26 Kenzo Miya 欠陥検査方法と欠陥検査装置
CN102122351A (zh) * 2011-03-01 2011-07-13 哈尔滨工程大学 一种基于rbf神经网络的管道缺陷智能识别方法
CN104034794A (zh) * 2014-06-12 2014-09-10 东北大学 一种基于极限学习机的管道漏磁缺陷检测方法
CN104899868A (zh) * 2015-05-12 2015-09-09 清华大学 三维漏磁检测缺陷复合反演成像方法
CN104965941A (zh) * 2015-06-02 2015-10-07 上海电力学院 基于改进的人工蜂群算法的漏磁检测缺陷重构方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122571A (ja) * 2000-10-12 2002-04-26 Kenzo Miya 欠陥検査方法と欠陥検査装置
CN102122351A (zh) * 2011-03-01 2011-07-13 哈尔滨工程大学 一种基于rbf神经网络的管道缺陷智能识别方法
CN104034794A (zh) * 2014-06-12 2014-09-10 东北大学 一种基于极限学习机的管道漏磁缺陷检测方法
CN104899868A (zh) * 2015-05-12 2015-09-09 清华大学 三维漏磁检测缺陷复合反演成像方法
CN104965941A (zh) * 2015-06-02 2015-10-07 上海电力学院 基于改进的人工蜂群算法的漏磁检测缺陷重构方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王文豪 等: "基于AdaBoost RBF神经网络的火灾烟雾检测", 《河南理工大学学报(自然科学版)》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950276B (zh) * 2017-03-21 2020-05-05 东北大学 一种基于卷积神经网络的管道缺陷深度的反演方法
CN106950276A (zh) * 2017-03-21 2017-07-14 东北大学 一种基于卷积神经网络的管道缺陷深度的反演方法
CN106870957B (zh) * 2017-03-21 2019-02-05 东北大学 一种管道缺陷漏磁信号的特征提取方法
CN106870957A (zh) * 2017-03-21 2017-06-20 东北大学 一种管道缺陷漏磁信号的特征提取方法
CN107024532A (zh) * 2017-04-12 2017-08-08 东北大学 一种基于窗体特征的漏磁管道缺陷位置提取方法
CN107301271A (zh) * 2017-05-23 2017-10-27 哈尔滨工业大学深圳研究生院 一种钢丝绳外层损伤漏磁检测定量算法
CN107301271B (zh) * 2017-05-23 2020-05-29 哈尔滨工业大学深圳研究生院 一种钢丝绳外层损伤漏磁检测定量方法
CN111448453A (zh) * 2017-10-06 2020-07-24 罗森瑞士股份公司 确定缺陷的几何结构的方法以及确定负荷能力极限的方法
CN108302329A (zh) * 2018-01-25 2018-07-20 福建双环能源科技股份有限公司 一种露点数据异常检测方法
CN109325544A (zh) * 2018-10-11 2019-02-12 东北大学 一种基于中层特征的管道异常分类方法
CN109325544B (zh) * 2018-10-11 2021-10-19 东北大学 一种基于中层特征的管道异常分类方法
CN109613109A (zh) * 2018-12-19 2019-04-12 智云安科技(北京)有限公司 一种管道漏磁检测数据自动分析系统
CN109632942B (zh) * 2019-02-21 2022-08-26 东北大学 一种基于集成学习的管道缺陷尺寸的反演方法
CN109632942A (zh) * 2019-02-21 2019-04-16 东北大学 一种基于sl的管道缺陷尺寸的反演方法
CN110096790A (zh) * 2019-04-28 2019-08-06 东北大学 一种基于强化学习的不规则缺陷漏磁信号反演方法
CN110096790B (zh) * 2019-04-28 2022-05-20 东北大学 一种基于强化学习的不规则缺陷漏磁信号反演方法
CN110470729A (zh) * 2019-07-31 2019-11-19 浙江树人学院(浙江树人大学) 一种基于电涡流的油田套管缺陷无损检测方法
CN110470729B (zh) * 2019-07-31 2022-12-02 浙江树人学院(浙江树人大学) 一种基于电涡流的油田套管缺陷无损检测方法
CN110599460A (zh) * 2019-08-14 2019-12-20 深圳市勘察研究院有限公司 基于混合卷积神经网络的地下管网检测评估云系统
CN111815561A (zh) * 2020-06-09 2020-10-23 中海石油(中国)有限公司 一种基于深度时空特征的管道缺陷及管道组件的检测方法
CN111861985A (zh) * 2020-06-09 2020-10-30 中海油能源发展装备技术有限公司 一种基于自适应模糊神经网络的漏磁缺陷深度识别方法
CN111815561B (zh) * 2020-06-09 2024-04-16 中海石油(中国)有限公司 一种基于深度时空特征的管道缺陷及管道组件的检测方法
CN111861985B (zh) * 2020-06-09 2024-04-16 中海油能源发展装备技术有限公司 一种基于自适应模糊神经网络的漏磁缺陷深度识别方法
WO2022088226A1 (zh) * 2020-10-30 2022-05-05 东北大学 一种基于异构场信号的管道缺陷智能反演方法
CN112345626B (zh) * 2020-10-30 2022-07-29 东北大学 一种基于异构场信号的管道缺陷智能反演方法
CN112345626A (zh) * 2020-10-30 2021-02-09 东北大学 一种基于异构场信号的管道缺陷智能反演方法
CN113075289A (zh) * 2021-03-31 2021-07-06 北京理工大学 一种金属圆柱缺陷参数检测方法及系统
CN113075289B (zh) * 2021-03-31 2024-05-07 北京理工大学 一种金属圆柱缺陷参数检测方法及系统
CN115062515A (zh) * 2022-06-23 2022-09-16 中国矿业大学 一种管道壁厚、焊缝余高及缺陷尺寸的量化方法
CN115062515B (zh) * 2022-06-23 2023-09-12 中国矿业大学 一种管道壁厚、焊缝余高及缺陷尺寸的量化方法
CN115081485A (zh) * 2022-07-04 2022-09-20 中特检深燃安全技术服务(深圳)有限公司 一种基于ai的漏磁内检测数据自动分析方法

Also Published As

Publication number Publication date
CN106018545B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN106018545A (zh) 一种基于Adaboost-RBF协同的管道缺陷漏磁反演方法
CN110288032B (zh) 一种车辆行驶轨迹类型检测方法及装置
CN107463967A (zh) 多源航迹关联机器学习系统
CN106441888A (zh) 一种高速列车滚动轴承故障诊断方法
CN108615071A (zh) 模型测试的方法及装置
CN104035431B (zh) 用于非线性过程监控的核函数参数的获取方法和系统
CN111260063B (zh) 基于遗传算法的模拟电路故障定位与参数辨识方法
CN102902981B (zh) 基于慢特征分析的暴力视频检测方法
CN105891321B (zh) 铁磁性材料结构力学性能的微磁检测标定方法
CN107506938A (zh) 一种基于机器学习的物料质量评估方法
CN105572572A (zh) 基于wknn-lssvm的模拟电路故障诊断方法
CN110263934A (zh) 一种人工智能数据标注方法和装置
CN105989410A (zh) 一种重叠核脉冲分解方法
CN105094118A (zh) 一种飞机发动机压气机失速故障检测方法
CN107832789A (zh) 基于平均影响值数据变换的特征加权k近邻故障诊断方法
CN110455512A (zh) 基于深度自编码器dae的旋转机械多集成故障诊断方法
CN112465124A (zh) 孪生深度时空神经网络模型获取/故障诊断方法、装置
CN105241665A (zh) 一种基于IRBFNN-AdaBoost分类器的滚动轴承故障诊断方法
CN114330486A (zh) 基于改进Wasserstein GAN的电力系统不良数据辨识方法
CN109358185A (zh) 基于极限学习机的橡胶配方性能预测模型及预测方法
CN110348094A (zh) 基于影响网络的石油管道泄漏检测方法及系统
CN103439646A (zh) 一种模拟电路测试矢量生成方法
CN102938068B (zh) 桥梁结构多体系损伤识别方法
CN111460128B (zh) 一种基于认知诊断的计算机化自适应测验方法
CN106295667A (zh) 一种基于遗传算法选择最优光谱谱段的方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20200629