CN106011782A - 一种超高硬度耐磨薄膜及其生产方法 - Google Patents

一种超高硬度耐磨薄膜及其生产方法 Download PDF

Info

Publication number
CN106011782A
CN106011782A CN201610582011.4A CN201610582011A CN106011782A CN 106011782 A CN106011782 A CN 106011782A CN 201610582011 A CN201610582011 A CN 201610582011A CN 106011782 A CN106011782 A CN 106011782A
Authority
CN
China
Prior art keywords
thin film
resistance thin
hardness wear
ultrahigh hardness
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610582011.4A
Other languages
English (en)
Other versions
CN106011782B (zh
Inventor
宿新泰
梁志光
梁承东
冯春全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Hongdian Jinzhu Abrasion Resistant Material LLC
Original Assignee
Xinjiang Hongdian Jinzhu Abrasion Resistant Material LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Hongdian Jinzhu Abrasion Resistant Material LLC filed Critical Xinjiang Hongdian Jinzhu Abrasion Resistant Material LLC
Priority to CN201610582011.4A priority Critical patent/CN106011782B/zh
Publication of CN106011782A publication Critical patent/CN106011782A/zh
Application granted granted Critical
Publication of CN106011782B publication Critical patent/CN106011782B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

本发明属于新材料的设计与制备技术领域,具体是涉及一种超高硬度耐磨薄膜,包含金属有机盐5‑10%,无机盐60‑90%,辅助剂0.1‑5%,表面活性剂0.5‑3%。制备步骤如下:(1)按原料配比称取金属有机盐加入到容器中并加水溶解,按照其化合价态,加入油酸钠或者油胺,搅拌均匀,在60‑90℃条件下老化24小时;(2)向上述原料中加入无机盐、辅助剂和表面活性剂并研磨均匀;(3)将上述原料置于管式马弗炉中,以氩气气氛保护将基体置于距离上述原料1‑5cm处,以5‑10℃/分钟升温速率加热至600‑800℃,调小气速至0.01SLPM,保温2‑4小时;(4)最后,冷却表面覆盖有超高硬度耐磨薄膜的基体至室温,即可得到超高硬度耐磨薄膜产品。主要应用在磨料、磨具及人工生命医学领域。

Description

一种超高硬度耐磨薄膜及其生产方法
技术领域
本发明属于新材料的设计与制备技术领域,具体是涉及一种超高硬度耐磨薄膜及其生产方法。主要应用于磨具、刀具等强韧化领域,在磨料、磨具、人工生命医学领域具有重要应用前景。
背景技术
金刚石薄膜是性能最好的硬质耐磨保护薄膜材料之一,但是其昂贵的价格和复杂的制备工艺在一定程度上,限制了其实际应用。类金刚石薄膜材料,由于具有相对低廉的价格和优异的耐磨性能和稳定性,引起人们广泛关注。类金刚石薄膜是近来兴起的一种以sp3和 sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度、高电阻率、良好光学性能以及优秀的摩擦学特性。
类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度、高电阻率、良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)—碳碳以 sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键。
然而, 它与工业中常用的铁基材料存在“触媒效应”,即镀的刀具在加工黑色金属的过程中高硬度砂键会转化成软的护键,使耐磨性急剧下降, 因此限制了它的应用范围和年限。 柳襄怀等采用离子束辅助沉积功技术制备出了用于满足电磁功能要求的“石墨化”的膜,提出存在高硬度“碳结构”。其后,英国某公司采用全封闭非平衡磁控溅射制备出了高硬度碳膜镀层。
类金刚石薄膜都是亚稳态材料,在制备方法中需要有荷能离子轰击生长表面这一关键。自从Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。这之中有两个法分别为气相法和沉积法。气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。 沉积法又分为直接沉淀法、共沉淀法和均匀沉淀法等,都是利用生成沉淀的液相反应来制取。但是,上述这些方法存在着工艺复杂,条件苛刻,成本较高等问题,这些问题制约着类金刚石耐磨薄膜的发展和产业化应用,有必要开发新型制备技术。
本发明以金属有机盐为原料,通过其与金属无机盐、表面活性剂、辅助剂等材料混合并研磨,将其在高温下热解,产生的气体产物沉积与金属或陶瓷制件表面,形成一层高强度耐磨薄膜。这种方法不仅可以用于矿产磨具,刀具,齿轮,还可以用于人工髋关节、人工牙齿等领域,具有重要的经济价值和社会效益。
发明内容
本发明的目的在于提供一种以价格低廉金属有机盐为原料,通过简单的气相沉积的工艺制备一种超高硬度耐磨薄膜,并期望其在耐磨材料行业中得到重要的应用。
本发明的技术方案:一种超高硬度耐磨薄膜,该薄膜由下述原料按照质量百分比制成:金属有机盐 5-10%,无机盐 60-90%,辅助剂 0.1-5%,表面活性剂 0.5-3%,各原料质量百分比之和为百分之百。所述金属有机盐为铁或钛或钴或镍或铜或铬元素的油酸盐或者油胺盐形式。所述无机盐为氯化钠和/或氯化钾。所述辅助剂为尿素和/或三聚氰胺。所述表面活性剂为十六烷基三甲基溴化铵或者十六烷基三甲基氯化铵。
一种超高硬度耐磨薄膜的生产方法,该生产方法的制备步骤如下:
(1)按上述的原料配比称取金属有机盐加入到容器中并加水溶解,按照其化合价态,加入油酸钠或者油胺,搅拌均匀,在60-90℃条件下,于敞开口体系中老化24小时,烘干备用;
(2)然后,向上述原料中加入无机盐、辅助剂和表面活性剂并研磨均匀,备用;
(3)将上述原料置于管式马弗炉中,以氩气气氛保护,条件:0.04SLPM,将金属或陶瓷基体置于距离上述原料1-5cm处,以5-10℃/分钟升温速率加热至600-800℃,调小气速至0.01SLPM,保温2-4小时;
(4)最后,冷却表面覆盖有超高硬度耐磨薄膜的基体至室温,即可得到超高硬度耐磨薄膜产品。
本发明的有益效果是:采用Fe、Ti、Co、Ni等金属的油酸/油胺盐,与氯化钠/氯化钾等无机盐相混合研磨,氩气保护焙烧,气相沉积结合紧密的耐磨薄膜,工艺过程简单,原料成本低廉,可以大规模应用。
附图说明
附图1是以氯化铁前驱体为例子,本发明的工艺流程图。第一步是制备油酸铁并老化;第二步与盐混合,第三步,将其置于氮气或者氩气保护气氛下焙烧,高温下沉积获得薄膜。图2为对FeCrNi合金钢板镀耐磨薄膜后的SEM图。可以看出,薄膜大致为两层,厚度为1微米左右。图3为镀耐磨薄膜FeCrNi合金钢球使用一周前后的照片图。可以看出,经过一周连续使用,薄膜基本没有磨损。图4为本工艺在氧化铝陶瓷基体上沉积薄膜前后产物图。可以看出,陶瓷基体均匀地负载了一层近透明薄膜。
具体实施方式
实施例1、一种超高硬度耐磨薄膜,该薄膜由下述原料按照质量百分比制成:金属有机盐 5-10%,无机盐 60-90%,辅助剂 0.1-5%,表面活性剂 0.5-3%,各原料质量百分比之和为百分之百。所述金属有机盐为铁或钛或钴或镍或铜或铬元素的油酸盐或者油胺盐形式。所述无机盐为氯化钠和/或氯化钾。所述辅助剂为尿素和/或三聚氰胺。所述表面活性剂为十六烷基三甲基溴化铵或者十六烷基三甲基氯化铵。
实施例2、一种超高硬度耐磨薄膜的生产方法,该生产方法的制备步骤如下:
(1)按权利要求1中所述的原料配比称取金属有机盐加入到容器中并加水溶解,按照其化合价态,加入油酸钠或者油胺,搅拌均匀,在60-90℃条件下,于敞开口体系中老化24小时,烘干备用;
(2)然后,向上述原料中加入无机盐、辅助剂和表面活性剂并研磨均匀,备用;
(3)将上述原料置于管式马弗炉中,以氩气气氛保护,条件:0.04SLPM,将金属或陶瓷基体置于距离上述原料1-5cm处,以5-10℃/分钟升温速率加热至600-800℃,调小气速至0.01SLPM,保温2-4小时;
(4)最后,冷却表面覆盖有超高硬度耐磨薄膜的基体至室温,即可得到超高硬度耐磨薄膜产品。
实施例3、一种超高硬度耐磨薄膜的生产方法,包括下述步骤组成:(1)称取27克的六水合氯化铁和6克水,加入到烧杯中,加入91.2克的油酸钠,搅拌均匀,在烘箱中,60-90℃老化24小时,烘干得到前驱物;
(2)向上述原料中加入1180克的氯化钠或者氯化钾,或者二者任意比例的混合物,并加入3.6克十六烷基三甲基溴化铵和6.0克尿素,并研磨均匀;
(3)将上述原料置于管式马弗炉中,以氩气气氛保护(0.04SLPM),将金属/陶瓷基体置于距离上述原料1-5cm处,以5-10℃/分钟升温速率加热至600-800℃,调小气速至0.01SLPM,保温2-4小时;
(4)冷却至室温即可得到产品。
实施例4、一种超高硬度耐磨薄膜的生产方法,包括下述步骤组成:将实施例3中的27克六水合氯化铁换成23.8克氯化钴,其余条件不变,即可制得超高硬度耐磨薄膜产品。
实施例5、一种超高硬度耐磨薄膜的生产方法,包括下述步骤组成:
(1)称取15.4克TiCl3·4H2O溶液,加入7.5克油胺和水,将混合物充分搅拌0.5-3小时得到油酸钛溶液,备用;
(2)将步骤(1)制备好的前驱体在60-90℃烘箱中烘干并老化;
(3)向上述原料中加入1180克的氯化钠或者氯化钾,或者二者任意比例的混合物,并加入3.6克十六烷基三甲基溴化铵和6.0克尿素,并研磨均匀;
(4)将上述原料置于管式马弗炉中,以氩气气氛保护(0.04SLPM),将金属/陶瓷基体置于距离上述原料1-5厘米处,以5-10℃/分钟升温速率加热至600-800℃,调小气速至0.01SLPM,保温2-4小时;冷却至室温即可得到产品。

Claims (6)

1.一种超高硬度耐磨薄膜,其特征在于,该薄膜由下述原料按照质量百分比制成:金属有机盐 5-10%,无机盐 60-90%,辅助剂 0.1-5%,表面活性剂 0.5-3%,各原料质量百分比之和为百分之百。
2.根据权利要求1所述的一种超高硬度耐磨薄膜,其特征在于,所述金属有机盐为铁或钛或钴或镍或铜或铬元素的油酸盐或者油胺盐形式。
3.根据权利要求1所述的一种超高硬度耐磨薄膜,其特征在于,所述无机盐为氯化钠和/或氯化钾。
4.根据权利要求1所述的一种超高硬度耐磨薄膜,其特征在于,所述辅助剂为尿素和/或三聚氰胺。
5.根据权利要求1所述的一种超高硬度耐磨薄膜,其特征在于,所述表面活性剂为十六烷基三甲基溴化铵或者十六烷基三甲基氯化铵。
6.一种超高硬度耐磨薄膜的生产方法,其特征在于,该生产方法的制备步骤如下:
(1)按权利要求1中所述的原料配比称取金属有机盐加入到容器中并加水溶解,按照其化合价态,加入油酸钠或者油胺,搅拌均匀,在60-90℃条件下,于敞开口体系中老化24小时,烘干备用;
(2)然后,向上述原料中加入无机盐、辅助剂和表面活性剂并研磨均匀,备用;
(3)将上述原料置于管式马弗炉中,以氩气气氛保护,条件:0.04SLPM,将金属或陶瓷基体置于距离上述原料1-5cm处,以5-10℃/分钟升温速率加热至600-800℃,调小气速至0.01SLPM,保温2-4小时;
(4)最后,冷却表面覆盖有超高硬度耐磨薄膜的基体至室温,即可得到超高硬度耐磨薄膜产品。
CN201610582011.4A 2016-07-21 2016-07-21 一种超高硬度耐磨薄膜及其生产方法 Expired - Fee Related CN106011782B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610582011.4A CN106011782B (zh) 2016-07-21 2016-07-21 一种超高硬度耐磨薄膜及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610582011.4A CN106011782B (zh) 2016-07-21 2016-07-21 一种超高硬度耐磨薄膜及其生产方法

Publications (2)

Publication Number Publication Date
CN106011782A true CN106011782A (zh) 2016-10-12
CN106011782B CN106011782B (zh) 2018-07-03

Family

ID=57117251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610582011.4A Expired - Fee Related CN106011782B (zh) 2016-07-21 2016-07-21 一种超高硬度耐磨薄膜及其生产方法

Country Status (1)

Country Link
CN (1) CN106011782B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955212A (en) * 1992-12-08 1999-09-21 Osaka Diamond Industrial Co., Ltd. Superhard film-coated member and method of manufacturing the same
US20030059542A1 (en) * 2001-09-21 2003-03-27 George Edward Creech Method for coating internal surfaces
CN101818332A (zh) * 2010-03-23 2010-09-01 中国地质大学(北京) 一种超硬自润滑金刚石/类金刚石复合多层涂层材料及制备方法
CN102242341A (zh) * 2011-07-01 2011-11-16 中南钻石股份有限公司 一种耐高温钛膜超硬复合材料及其生产工艺
CN105543759A (zh) * 2015-12-18 2016-05-04 合肥中澜新材料科技有限公司 一种高硬度耐腐蚀发动机汽缸内壁耐磨涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955212A (en) * 1992-12-08 1999-09-21 Osaka Diamond Industrial Co., Ltd. Superhard film-coated member and method of manufacturing the same
US20030059542A1 (en) * 2001-09-21 2003-03-27 George Edward Creech Method for coating internal surfaces
CN101818332A (zh) * 2010-03-23 2010-09-01 中国地质大学(北京) 一种超硬自润滑金刚石/类金刚石复合多层涂层材料及制备方法
CN102242341A (zh) * 2011-07-01 2011-11-16 中南钻石股份有限公司 一种耐高温钛膜超硬复合材料及其生产工艺
CN105543759A (zh) * 2015-12-18 2016-05-04 合肥中澜新材料科技有限公司 一种高硬度耐腐蚀发动机汽缸内壁耐磨涂层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHASHA CHU ET AL.: ""Controlled synthesis of CoO/C and Co/C nanocomposites via a molten salt method and their lithium-storage properties"", 《NEW J.CHEM.》 *
李炳均等: ""钢的含碳量对氯基熔盐被覆TiC层厚度及硬度的影响"", 《金属热处理》 *

Also Published As

Publication number Publication date
CN106011782B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
Yan et al. Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel
Liu et al. Enhancement of wear and corrosion resistance of iron-based hard coatings deposited by high-velocity oxygen fuel (HVOF) thermal spraying
Zhang et al. TiN coating of tool steels: a review
Chu et al. Microstructure and properties of TiN/Fe-based amorphous composite coatings fabricated by reactive plasma spraying
CN105088108B (zh) 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层
Asl et al. Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings
WO2016070658A1 (zh) Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备
He et al. Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders
Wu et al. Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropy alloy coatings
CN103469200B (zh) 一种制备纳米表面涂层的方法
Zhang et al. Al2O3-coated h-BN composite powders and as-prepared Si3N4-based self-lubricating ceramic cutting tool material
Yang et al. Microstructure evolution of thermal spray WC–Co interlayer during hot filament chemical vapor deposition of diamond thin films
Li et al. Microstructure and growth behavior of Hf (Ta) C ceramic coating synthesized by low pressure chemical vapor deposition
Sun et al. Enhancement of oxidation resistance via titanium boron carbide coatings on diamond particles
CN101148769A (zh) 一种直接在钢材上生长纳米晶氮化铬薄膜的方法
Sarjas et al. Wear resistance of HVOF sprayed coatings from mechanically activated thermally synthesized Cr3C2–Ni spray powder
Gu et al. Effects of laser scanning rate and Ti content on wear of novel Fe-Cr-B-Al-Ti coating prepared via laser cladding
Yu-Jie et al. Corrosion behaviour of multilayer CrN coatings deposited by hybrid HIPIMS after oxidation treatment
Yurkova et al. Synthesis of high-entropy AlNiCoFeCrTi coating by cold spraying
Mariani et al. Tribological evaluation of NbC and VC layers produced by thermo-reactive diffusion treatment in ductile cast irons with varying composition
Vallimanalan et al. Synthesis, characterisation and erosion behaviour of AlCoCrMoNi high entropy alloy coating
CN111020579B (zh) 一种在钛合金上制备TiB2颗粒增强高熵合金涂层的方法
CN106011782A (zh) 一种超高硬度耐磨薄膜及其生产方法
Wang et al. Effect of Ni doping on the microstructure and toughness of CrAlN coatings deposited by magnetron sputtering
CN116875933A (zh) 抑制高温脱碳的wc涂层合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180703

CF01 Termination of patent right due to non-payment of annual fee