CN106010730B - 一种石墨烯包覆纳米金刚石润滑剂的制备方法 - Google Patents

一种石墨烯包覆纳米金刚石润滑剂的制备方法 Download PDF

Info

Publication number
CN106010730B
CN106010730B CN201610429206.5A CN201610429206A CN106010730B CN 106010730 B CN106010730 B CN 106010730B CN 201610429206 A CN201610429206 A CN 201610429206A CN 106010730 B CN106010730 B CN 106010730B
Authority
CN
China
Prior art keywords
lubricant
nano diamond
graphene coated
preparation
coated nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610429206.5A
Other languages
English (en)
Other versions
CN106010730A (zh
Inventor
潘春旭
罗成志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610429206.5A priority Critical patent/CN106010730B/zh
Publication of CN106010730A publication Critical patent/CN106010730A/zh
Application granted granted Critical
Publication of CN106010730B publication Critical patent/CN106010730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种石墨烯包覆纳米金刚石润滑剂的制备方法。将涂覆有催化剂的金属基底置于乙醇火焰上方,保持5‑100分钟,取出基底,得到一种实心的碳纳米纤维。将基底上的CNFs用刮下,然后将其放入等离子烧结炉中,保持压强为一个大气压。将SPS炉快速加热至900‑2000°C。保温5‑30分钟后取出样品,即得到石墨烯包覆纳米金刚石的润滑剂。本发明利用乙醇火焰和常压低温SPS即可制备石墨烯包覆纳米金刚石的润滑油添加剂。该方法不需要特殊的高温高压等苛刻条件,具有工艺简单、操作容易、成本低、产物质量高、可控性好,以及可进行大规模生产等优点,是一种制备高效和高质量润滑剂的理想方法。

Description

一种石墨烯包覆纳米金刚石润滑剂的制备方法
技术领域
本发明涉及一种石墨烯包覆纳米金刚石润滑剂的制备方法,属于纳米材料领域。
背景技术
纳米金刚石具有最大的硬度、极高的导热性、高的耐磨性、良好的化学稳定性等独特的物理化学性质,自1984 年苏联科学家采用炸药爆轰法工业规模生产以来,成为众多发达国家科学工作者的研究对象。20 世纪90年代后,大量研究围绕纳米金刚石粒子在摩擦、抛光等方面的应用及摩擦学机理等展开。研究表明纳米金刚石粒子加入润滑油中,可以在摩擦副界面起到显著的耐磨减摩作用。纳米金刚石粒子在摩擦副之间的作用,包括纳米金刚石粒子对摩擦界面表面的抛光,形成一层摩擦系数极低的纳米金刚石固体边界润滑膜,以及在黑色金属摩擦副中纳米金刚石表面石墨化等。
纳米金刚石粒子也可以作为固体减摩抗磨添加剂。有研究认为纳米金刚石粒子可以在摩擦表面之间滚动形成“滚珠轴承效应”,使原来摩擦副之间的纯滑动摩擦转变为滑动和滚动的混合摩擦,从而减小了磨损。也有研究认为由于纳米尺寸效应,纳米金刚石中的碳(C)等元素在滑动摩擦力的作用下迅速渗透到了摩擦副基体中,在其表面形成了一层连续的润滑膜,从而改善了摩擦副的表面硬度和耐磨强度,可承受更高的载荷,并阻止了摩擦表面的直接接触。薄膜润滑效应在超精密制造和加工系统中广泛存在,人们对其的认识也逐步深入。虽然纳米金刚石具有优良的润滑性能,然而其制备往往需要特殊的高温高压等极其苛刻的条件,使其价格昂贵,市场上含有纳米金刚石的润滑剂产品很少,应用上受到了限制。
众所周知,石墨烯作为一种单碳原子层二维纳米材料,在力学、电学、热学和磁学等方面都具有奇特而优异的性能,如高达130 GPa 的本征强度,比钢高100倍,是目前强度最高的材料;理论值为2630 m2/g的比表面积;惊人的载流子迁移率(15000 cm2·V-1·s-1)和突出的热导率(5 000 W·m-1·K-1),等。基于石墨烯优异的力学性能,以及作为碳质固体润滑材料(零维富勒烯C60、一维碳纳米管、三维石墨) 的基本结构单元,石墨烯的摩擦学性能及石墨烯基复合润滑材料的发展成为摩擦学领域的研究热点。
石墨烯具有特殊的润滑特性主要原因是其超薄的层状结构使其极易进入接触面,减少表面的直接接触,从而使其作为润滑油添加剂表现出良好的摩擦磨损性能。2015年,在国际顶级期刊《Science》上报道了一项基于石墨烯润滑剂的最新研究进展。该研究利用石墨烯包覆纳米金刚石颗粒来实现宏观尺度的超润滑,其摩擦系数可以低至0.004。这项研究为石墨烯润滑剂的开发与应用提供了新的思路,利用这一思路有望制备出新型超润滑添加剂。而实现这一思路有两个问题需要解决:一是制备出高质量石墨烯,并实现其低成本、大规模制备;二是开发出简便易行的方法,将高质量石墨烯包覆在纳米金刚石颗粒表面。
发明内容
本发明所要解决的技术问题在于提供一种石墨烯包覆纳米金刚石润滑剂的制备方法。该方法具有工艺简单、操作容易、成本低、产物质量高、含量高、可控性好,以及可进行大规模生产等优点,是一种制备高效和高质量润滑剂的理想方法。
一种石墨烯包覆纳米金刚石润滑剂的制备方法,包括以下步骤:
(1)将涂覆有催化剂的金属基底置于乙醇火焰中,所述的催化剂为铁、钴、镍的盐溶液,保持10-20分钟,取出基底,得到一种实心的碳纳米纤维(CNFs),并将其从基底上刮下;
(2)将刮下的碳纳米纤维放入等离子烧结(SPS)炉中,保持压强为一个大气压,将SPS加热至1500-2500℃,调整放电电流为100-1000 A,放电电压为5-20 V,保持5-20分钟后取出,即得到石墨烯包覆纳米金刚石的润滑剂。
步骤(1)中所述的金属基底为铜片、铁片、镍片等任意可在乙醇火焰中稳定存在的金属薄片。
步骤(1)中所述的催化剂的浓度为1-5 mol/L。
步骤(2)中的加热速率为100-200℃/min。
本发明提出了一种全新的利用乙醇火焰和常压低温等离子烧结(SPS)技术制备石墨烯包覆纳米金刚石的方法。利用该方法可实现石墨烯包覆纳米金刚石润滑油添加剂的大规模、低成本生产。
本发明具有以下优点和有益效果:
(1)本发明用石墨烯来包覆纳米金刚石粒子,不需要高温高压等苛刻条件,工艺简单、操作容易。
(2)本发明制备成本低、产物质量高、含量高、可控性好,可进行大规模生产。
附图说明
图1 为实施例1制备的碳纳米纤维(CNFs)的扫描电镜(SEM)图;
图2 为实施例1制备的碳纳米纤维(CNFs)的透射电镜(TEM)图;
图3 为实施例1制备的碳纳米纤维(CNFs)的电子能量损失谱(EELS);
图4 为实施例2制备的石墨烯包覆纳米金刚石润滑剂的扫描电镜(SEM)图;
图5 为实施例3制备的石墨烯包覆纳米金刚石润滑剂的透射电镜(TEM)图;
图6 为实施例3制备的石墨烯包覆纳米金刚石润滑剂中石墨烯层的电子能量损失谱(EELS);
图7 为实施例3制备的石墨烯包覆纳米金刚石润滑剂中纳米金刚石颗粒的选区电子衍射花样(SADP);
图8 为实施例4制备的石墨烯包覆纳米金刚石润滑剂的X射线衍射(XRD)曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步阐述,但并不因此将本发明限制于所述的实施例范围之内。
实施例1
本实施例中制备碳纳米纤维(CNFs)的基底为铜片,催化剂为氯化铁(FeCl3)溶液。具体步骤如下:在平整光滑的铜片上涂覆一层浓度为1 mol/L的氯化铁溶液,然后将涂有氯化铁的一面朝下放入乙醇火焰中。保持10分钟后取出铜片,可以看到铜片上有一层黑色物质即为CNFs。用小刀轻轻刮下铜片上的CNFs,并取出5 mg放入10 mL乙醇中进行超声处理,待样品分散均匀后滴入铜网中,然后进行扫描电镜(SEM)、透射电子显微镜(TEM)和电子能量损失谱(EELS)表征,结果如图1、图2和图3所示。
实施例2
本实施例中制备石墨烯包覆纳米金刚石润滑剂的具体过程如下:在平整光滑的铜片上涂覆一层浓度为5 mol/L的氯化铁溶液,然后将涂有氯化铁的一面朝下放入乙醇火焰中。保持20 分钟后取出铜片,可以看到铜片上有一层黑色物质即为CNFs。用小刀轻轻刮下铜片上的CNFs,并将其置于等离子烧结(SPS)炉中。开启SPS炉,以100℃/min的速率升温至2500℃,调整放电电流为100 A,放电电压为20 V,保持20 分钟后关闭SPS炉,待冷却后取出样品进行扫描电子显微镜(SEM)观察,其形貌如图4所示。
实施例3
本实施例中制备石墨烯包覆纳米金刚石润滑剂的具体过程如下:在平整光滑的铜片上涂覆一层浓度为1 mol/L的氯化铁溶液,然后将涂有氯化铁的一面朝下放入乙醇火焰中。保持10 分钟后取出铜片,可以看到铜片上有一层黑色物质即为CNFs。用小刀轻轻刮下铜片上的CNFs,并将其置于等离子烧结(SPS)炉中。开启SPS炉,以200℃ /min的速率升温至1500℃,调整放电电流为1000 A,放电电压为5 V,保持5 分钟后关闭SPS炉。将制备的样品取出5 mg放入10 mL乙醇中进行超声处理,待样品分散均匀后滴入铜网中,然后将铜网放入透射电镜(TEM)中进行观察。其TEM微结构如图5所示,石墨烯的电子能量损失谱(EELS)如图6所示,金刚石颗粒的选区电子衍射花样(SADP)如图7所示。
实施例4
本实施例中制备石墨烯包覆纳米金刚石润滑剂的实验条件与实施例3相同。将制备的样品取出后测量其X射线衍射(XRD)曲线,如图8所示。
从以上结果可以看出,利用常压低温烧结技术能够制备出石墨烯包覆纳米金刚石的润滑油添加剂。该方法不需要特殊的高温高压等苛刻条件,工艺简单、操作容易、成本低、产物质量高、含量高、可控性好,可进行大规模生产。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种石墨烯包覆纳米金刚石润滑剂的制备方法,其特征在于包括以下步骤:
(1)将涂覆有催化剂的金属基底置于乙醇火焰中,所述的催化剂为铁的盐溶液,保持10-20分钟,取出基底,得到一种实心的碳纳米纤维,并将其从基底上刮下;
(2)将刮下的碳纳米纤维放入等离子烧结炉中,保持压强为一个大气压,将等离子烧结炉加热至1500-2500℃,调整放电电流为100-1000A,放电电压为5-20V,保持5-20分钟后取出,即得到石墨烯 包覆纳米金刚石的润滑剂。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述的金属基底为铜片、铁片或镍片。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述的催化剂的浓度为1-5mol/L。
4.根据权利要求1所述的制备方法,其特征在于:步骤(2)中的加热速率为100-200℃/min。
CN201610429206.5A 2016-06-17 2016-06-17 一种石墨烯包覆纳米金刚石润滑剂的制备方法 Active CN106010730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610429206.5A CN106010730B (zh) 2016-06-17 2016-06-17 一种石墨烯包覆纳米金刚石润滑剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610429206.5A CN106010730B (zh) 2016-06-17 2016-06-17 一种石墨烯包覆纳米金刚石润滑剂的制备方法

Publications (2)

Publication Number Publication Date
CN106010730A CN106010730A (zh) 2016-10-12
CN106010730B true CN106010730B (zh) 2018-12-14

Family

ID=57087645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610429206.5A Active CN106010730B (zh) 2016-06-17 2016-06-17 一种石墨烯包覆纳米金刚石润滑剂的制备方法

Country Status (1)

Country Link
CN (1) CN106010730B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929745B (zh) * 2018-08-17 2021-05-07 深圳南科新材科技有限公司 一种耐磨添加剂,其制备方法、用途以及含有其的润滑油
CN110835423B (zh) * 2019-12-10 2021-08-31 中国科学院金属研究所 一种基于石墨烯的复合填料及其制备方法
CN114480991B (zh) * 2021-05-12 2022-12-20 深圳丰业达科技有限公司 一种铜基铁基复合电接触材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534205A (zh) * 2011-03-15 2014-01-22 绝世环球有限责任公司 石墨烯、石墨烯衍生物及磨料纳米颗粒的简易合成以及它们的各种用途包括作为在摩擦学上有益的润滑剂添加剂使用
CN105481621A (zh) * 2014-10-13 2016-04-13 彭碳科技有限公司 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534205A (zh) * 2011-03-15 2014-01-22 绝世环球有限责任公司 石墨烯、石墨烯衍生物及磨料纳米颗粒的简易合成以及它们的各种用途包括作为在摩擦学上有益的润滑剂添加剂使用
CN105481621A (zh) * 2014-10-13 2016-04-13 彭碳科技有限公司 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation";Jianbing Zang et al.;《Carbon》;20121231(第50期);第3032-3038页 *
"Porous electrically conductive materials produced by Spark Plasma Sintering and hot pressing of nanodiamonds";Arina V.Ukhina et al.;《Ceramics International》;20151231(第41期);第12459-12463页 *
"Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames";Chunxu Pan et al.;《Micron》;20041231(第35期);第461-468页 *

Also Published As

Publication number Publication date
CN106010730A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
Elomaa et al. Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts
Su et al. Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs
Rajkumar et al. Tribological behavior of microwave processed copper–nanographite composites
Mallikarjuna et al. Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites
Suárez et al. Enhanced tribological properties of MWCNT/Ni bulk composites–Influence of processing on friction and wear behaviour
Kovalčíková et al. Mechanical and tribological properties of TiB2-SiC and TiB2-SiC-GNPs ceramic composites
Zishan et al. Tribological behaviors of SiC/h-BN composite coating at elevated temperatures
Kumar et al. Tribological characterisation of graphene oxide as lubricant additive on hypereutectic Al-25Si/steel tribopair
CN106010730B (zh) 一种石墨烯包覆纳米金刚石润滑剂的制备方法
Ali et al. M50 matrix sintered with nanoscale solid lubricants shows enhanced self-lubricating properties under dry sliding at different temperatures
Chen et al. Tribological properties of h-BN matrix solid-lubricating composites under elevated temperatures
Dyachkova et al. On the properties of composites based on sintered bronze with alumina additives
Yaman et al. Wear performance of spark plasma sintered Co/WC and cBN/Co/WC composites
Wang et al. Frictional properties of Ti3AlC2 ceramic against different counterparts in deionized water and artificial seawater
Jiang et al. Influence of carbon coating with phenolic resin in natural graphite on the microstructures and properties of graphite/copper composites
He et al. Improved lubrication performance of MoS2-Al2O3 nanofluid through interfacial tribochemistry
Lin et al. Tribology behavior of high-content graphene/nanograined Cu bulk composites from core/shell nanoparticles
Gou et al. Improvement of ambient temperature tribological properties of polycrystalline diamond compact treated by cobalt removal
Qi et al. Achieving controllable friction of ultrafine-grained graphite HPG510 by tailoring the interfacial nanostructures
Yang et al. 3DN C/SiC-MoS2 self-lubricating composites with high friction stability and excellent elevated-temperature lubrication
Luo et al. High-temperature annealing of polycrystalline diamond compact with cobalt removal and evolution of tribological properties of grinding balls
Zhang et al. Tribological behaviour of B4C-SiC composite ceramics under water lubrication: influence of counterpart
Wang et al. Effect of micrometer sized ceramic particles on the tribological properties of Polytetrafluoroethylene based composites
Zhang et al. 3D/1D heterostructure of flower-like MoS2 nanospheres anchored on carbon nanotubes for enhanced friction and wear properties as oil additives
Maurya et al. Microstructural, mechanical and tribological behavior of nanodiamonds reinforced plasma sprayed nickel-aluminum coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant