CN106007358A - 一种用于光纤陀螺的超细径保偏光纤及其制造方法 - Google Patents

一种用于光纤陀螺的超细径保偏光纤及其制造方法 Download PDF

Info

Publication number
CN106007358A
CN106007358A CN201610325830.0A CN201610325830A CN106007358A CN 106007358 A CN106007358 A CN 106007358A CN 201610325830 A CN201610325830 A CN 201610325830A CN 106007358 A CN106007358 A CN 106007358A
Authority
CN
China
Prior art keywords
optical fibre
ultra
polarization maintaining
diameter
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610325830.0A
Other languages
English (en)
Other versions
CN106007358B (zh
Inventor
孔明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fiberhome Telecommunication Technologies Co Ltd
Original Assignee
Fiberhome Telecommunication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiberhome Telecommunication Technologies Co Ltd filed Critical Fiberhome Telecommunication Technologies Co Ltd
Priority to CN201610325830.0A priority Critical patent/CN106007358B/zh
Publication of CN106007358A publication Critical patent/CN106007358A/zh
Priority to PCT/CN2017/075534 priority patent/WO2017197957A1/zh
Application granted granted Critical
Publication of CN106007358B publication Critical patent/CN106007358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02709Polarisation maintaining fibres, e.g. PM, PANDA, bi-refringent optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/32Eccentric core or cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

本发明公开了一种用于光纤陀螺的超细径保偏光纤及其制造方法,该方法包括:通过严格控制光纤预制棒工艺参数,制备出具有优良光学特性的光纤预制棒;在拉制过程中,采用直径回控及速度自动调节实现对超细径保偏光纤包层直径的精确控制,同时,采用涂覆层直径随涂料温度可控技术实现对超细径保偏光纤涂覆层直径的精确控制;所述超细径保偏光纤为熊猫型保险光纤,其工作波长为850nm,所述超细径保偏光纤包层直径为60μm,所述超细径保偏光纤涂覆层直径为100μm。通过本发明制造出来的超细径保偏光纤不仅具有良好的光学性能、几何性能和耦合、熔接性能,而且制造难度低、成本低,适合大批量生产。

Description

一种用于光纤陀螺的超细径保偏光纤及其制造方法
技术领域
本发明涉及通信系统传输及光纤陀螺等光纤角速度传感器件领域,具体涉及一种用于光纤陀螺的超细径保偏光纤及其制造方法。
背景技术
保偏光纤(PMF),也称偏振保持光纤(Polarization MaintainingOptical Fiber),是特种光纤的一类,保偏光纤的波导结构一般包括椭圆包层保偏光纤、蝶结型保偏光纤和熊猫型保偏光纤,熊猫型保偏光纤通过在纤芯两边对称应用两个圆形应力区对纤芯产生应力,具有一系列的优点,如双折射效应高,纤芯圆度好,光纤衰减低,以及制造工艺通用性好等特点。
随着国防工业的快速发展,光纤陀螺系统向着高精度和小型化的方向发展,为了适应光纤陀螺这一发展趋势,保偏光纤作为光纤陀螺系统中必不可少的关键部件,其研制也势必朝着细芯径、高精度和大长度方向发展。
细径保偏光纤应用于光纤陀螺系统中具有以下优点:
1、减小保偏光纤直径,可以增加光纤的抗弯曲强度,也可以使光纤环圈的绕制半径减小,从而减小光纤环圈的体积,进而有利于制作小型化光纤陀螺;
2、同样长度条件下,采用细径保偏光纤绕制光纤陀螺Sagnac线圈可以大大减小环圈体积和重量,有利于制作小型化光纤陀螺;
3、同等环圈条件下,使用细径保偏光纤可以减少绕制层数,从而减少光纤之间由于层层叠加引起的相互作用,同时,由于层数减少和光纤变细、光纤环中厚度减少,当环境温度改变时,内外层光纤温度差减小,有利于改善光纤陀螺环境适应性,提高光纤陀螺温度特性。
目前国内外保偏光纤已经形成了1310nm、1550nm等工作波长的包层直径125μm、80μm,涂覆层直径为245μm、165μm、135μm等不同直径的系列产品,并且具有稳定成熟的生产工艺技术,随着光纤陀螺朝着小型化方向发展的趋势,如何在保证陀螺精度的情况下进一步减小陀螺的体积和成本,便成为困扰保偏光纤生产者的难题。
现有技术主要是通过减小光纤包层直径来达到控制光纤直径,从而实现光纤陀螺的小型化,但是一昧的追求更小包层直径的光纤,就会面临更多的技术难题:
1、光纤的光学性能指标难以达到光纤陀螺厂家的要求;
2、光纤在拉制过程中包层直径及涂覆层质量等几何性能难以控制;
3、光纤的耦合、熔接难度将会增加,进而加大了耦合、熔接损耗;
4、更细光纤直径势必加大光纤研制难度,进而增加光纤投入成本。
因此,如何研制出一种具有良好的光学性能、优良的几何性能及光纤间的耦合、熔接性能,同时能够在生产工艺中严格控制生产成本,实现光纤陀螺的小型化、低成本的保偏光纤便成为急需解决的问题。
发明内容
本发明所要解决的技术问题是研制出一种具有良好的光学性能、优良的几何性能及光纤间的耦合、熔接性能,同时能够在生产工艺中严格控制生产成本,实现光纤陀螺的小型化、低成本的保偏光纤。
为了解决上述技术问题,本发明所采用的技术方案是提供一种用于光纤陀螺的超细径保偏光纤的制造方法,包括以下步骤:
通过严格控制光纤预制棒工艺参数,制备出具有优良光学特性的光纤预制棒;
在拉制过程中,采用直径回控及速度自动调节实现对超细径保偏光纤包层直径的精确控制,同时,采用涂覆层直径随涂料温度可控技术实现对超细径保偏光纤涂覆层直径的精确控制;
所述超细径保偏光纤为熊猫型保险光纤,其工作波长为850nm,所述超细径保偏光纤包层直径为60μm,所述超细径保偏光纤涂覆层直径为100μm。
在上述技术方案中,所述光纤预制棒为圆柱形,其掺锗芯区直径在2mm~5mm之间,石英包层直径在40mm~60mm之间,应力区直径在10mm~20mm之间,通过对所述掺锗芯区直径、石英包层直径以及应力区直径的控制实现对所述超细径保偏光纤的模场直径、截止波长以及串音与拍长的控制。
在上述技术方案中,在所述光纤预制棒芯棒的制作过程中,通过严格控制PCVD沉积床的流量计开度以及沉积床的混合强压力实现对所述超细径保偏光纤剖面结构的精确控制。
在上述技术方案中,氧流量计开度为40%~90%;氟流量计开度为20%~65%;四氯化硅流量计开度为1%~45%;四氯化锗流量计开度为1%~20%。
在上述技术方案中,所述直径回控及速度自动调节主要是通过光纤拉丝塔中拉丝炉、送棒机构和主牵引轮组成的PID回控系统实现,所述超细径保偏光纤包层直径随所述拉丝炉的加热功率、送棒机构的送棒速度以及主牵引轮的转速这三个变量参数的改变而实现精确控制。
在上述技术方案中,所述拉丝炉的加热功率范围在30Kw~50Kw之间;所述送棒机构的送棒速度在0.3mm/min~1.5mm/min之间;所述主牵引轮的转速在100r/min~500r/min之间。
在上述技术方案中,通过涂料温度与拉丝速度匹配技术实现对所述超细径保偏光纤涂覆层直径的精确控制。
在上述技术方案中,涂料温度在20℃~40℃之间;拉丝速度在100m/min~500m/min之间。
本发明还提供了一种用于光纤陀螺的超细径保偏光纤,包括超细径保偏光纤芯区、超细径保偏光纤包层和超细径保偏光纤应力区,所述超细径保偏光纤芯区位于所述超细径保偏光纤包层的中心,所述超细径保偏光纤应力区对称分布在所述超细径保偏光纤芯区两侧且位于所述超细径保偏光纤包层中,
所述超细径保偏光纤为熊猫型保险光纤,其工作波长为850nm,所述超细径保偏光纤包层的直径为60μm,所述超细径保偏光纤的涂覆层直径为100μm。
本发明的提供了一种用于光纤陀螺的超细径保偏光纤及其制造方法,通过本发明制造出来的超细径保偏光纤不仅具有良好的光学性能、几何性能和耦合、熔接性能,而且制造难度低、成本低,适合大批量生产。
附图说明
图1为本发明实施例提供的一种用于光纤陀螺的超细径保偏光纤的剖面结构示意图;
图2为本发明实施例提供的一种用于光纤陀螺的超细径保偏光纤的制造方法流程图;
图3为本发明实施例提供的一种用于光纤陀螺的超细径保偏光纤的拉制示意图;
图4为本发明实施例提供的一种用于光纤陀螺的超细径保偏光纤的包层直径分布图;
图5为本发明实施例提供的一种用于光纤陀螺的超细径保偏光纤的涂覆层直径分布图。
具体实施方式
本发明的目的在于提供一种用于光纤陀螺的超细径保偏光纤及其制造方法,通过本发明制造出来的超细径保偏光纤不仅具有良好的光学性能、几何性能和耦合、熔接性能,而且制造难度低、成本低,适合大批量生产。
下面结合说明书附图和具体实施方式对本发明做出详细的说明。
本发明实施例提供了一种用于光纤陀螺的超细径保偏光纤,如图1所示,为超细径保偏光纤的剖面结构示意图,上述超细径保偏光纤为熊猫型保偏光纤,包括超细径保偏光纤芯区1、超细径保偏光纤包层2和超细径保偏光纤应力区3,超细径保偏光纤芯区1位于超细径保偏光纤包层2的中心,超细径保偏光纤应力区3对称分布在超细径保偏光纤芯区1两侧且位于超细径保偏光纤包层2中,其中,超细径保偏光纤芯区1由光纤预制棒中的芯棒在拉丝过程中形成,超细径保偏光纤应力区3由光纤预制棒中的应力棒在拉丝过程中形成。
超细径保偏光纤包层2的直径为60μm,超细径保偏光纤的涂覆层直径为100μm,超细径保偏光纤的工作波长为850nm。
本发明实施例还提供了一种用于光纤陀螺的超细径保偏光纤的制造方法,如图2所示,包括以下步骤:
S1、通过严格控制光纤预制棒工艺参数来实现对超细径保偏光纤剖面结构的精确控制,制备出具有优良光学特性的光纤预制棒。
S2、在拉制过程中,采用直径回控及速度自动调节等拉丝技术实现对超细径保偏光纤包层直径的精确控制,同时,采用涂覆层直径随涂料温度可控技术实现对超细径保偏光纤涂覆层直径的精确控制。
上述超细径保偏光纤为熊猫型保偏光纤,其工作波长为850nm,超细径保偏光纤包层直径为60μm,超细径保偏光纤涂覆层直径为100μm,本方案在保证超细径保偏光纤的光学性能不变的情况下,进一步减小了超细径保偏光纤包层直径和涂覆层直径,实现了光纤陀螺的小型化。
上述光纤预制棒为圆柱形,其掺锗芯区直径在2mm~5mm之间;石英包层直径在40mm~60mm之间;应力区直径在10mm~20mm之间,通过对芯区直径、包层直径以及应力区直径的控制能够实现对超细径保偏光纤的模场直径、截止波长以及串音与拍长等性能的控制。
对超细径保偏光纤包层直径的控制和超细径保偏光纤涂覆层直径的控制为同步实施过程,二者在相同时间段内分别实现对超细径保偏光纤包层直径和涂覆层直径的精确控制。
在光纤预制棒中芯棒的制作过程中,通过严格控制PCVD(PlasmaChemical Vapor Deposition,等离子体化学气相沉积)沉积床的流量计开度以及沉积床的混合强压力来实现对超细径保偏光纤剖面结构的精确控制,具体为:氧流量计开度为40%~90%;氟流量计开度为20%~65%;四氯化硅流量计开度为1%~45%;四氯化锗流量计开度为1%~20%。
在步骤S2中,直径回控及速度自动调节主要是通过光纤拉丝塔中拉丝炉、送棒机构和主牵引轮组成的PID回控系统实现,超细径保偏光纤包层直径随拉丝炉的加热功率、送棒机构的送棒速度以及主牵引轮的转速这三个变量参数的改变而实现精确控制,具体为:拉丝炉的加热功率范围在30Kw~50Kw之间;送棒机构的送棒速度在0.3mm/min~1.5mm/min之间;主牵引轮的转速在100r/min~500r/min之间。
在步骤S2中,采用涂覆层直径随涂料温度可控技术,即除了传统的采用模具孔径来控制涂覆层直径外,本发明还采用了改变涂料温度的方式,通过涂料温度与拉丝速度匹配技术实现对超细径保偏光纤涂覆层直径的精确控制,具体为:涂料温度为20℃~40℃之间;拉丝速度为100m/min~500m/min之间。
如图3所示,为超细径保偏光纤的拉制示意图,具体过程如下:
将光纤预制棒5固定于光纤拉丝塔上的送棒机构4,光纤预制棒5在拉丝炉6中于1800℃~2000℃下进行熔融拉丝,形成裸光纤14,裸光纤14经过裸光纤测井仪7进行实时监控,裸光纤14的直径随拉丝炉6的加热功率、送棒机构4的送棒速度以及主牵引轮15的转速这三个变量参数的改变而实现自动控制,裸光纤14的直径控制在60μm,形成超细径光纤,超细径光纤通过固化装置10进行固化,经过换向轮12,在张力轮13提供的拉丝张力作用下,被拉制成超细径保偏光纤。
光纤拉丝塔上同样设有涂覆层控制系统8及涂覆装置9,通过建立涂料温度-粘度模型和涂料温度-拉丝速度模型来实现涂料温度与拉丝速度严格匹配,从而实现对超细径保偏光纤涂覆层直径的精确控制,超细径保偏光纤涂覆层直径通过光纤测井仪11进行实时监控,超细径保偏光纤涂覆层直径控制在100μm,最后,超细径保偏光纤由主牵引轮15牵引,由收丝系统1进行承绕。
如图4和图5所示,分别为超细径保偏光纤的包层直径和涂覆层直径的分布图。
下面通过三个具体实施例对本发明进行详细描述:
实施例1:
选择光纤预制棒直径为52.5mm,芯区直径为3.9mm,应力区直径为14.8mm的超细径保偏光纤预制棒,将其固定在送棒机构上,送棒速度为0.5mm/min,在1900℃左右的温度下进行熔融拉丝,拉丝炉加热功率为47Kw,主牵引轮的转速为150r/min,涂料温度为20℃,所制备的超细径保偏光纤包层直径为60μm,涂覆层直径为100μm;该光纤主要测试指标如表1所示。
表1超细偏振保持光纤性能指标
指标 指标值
工作波长 850nm
截止波长(850nm) 730nm
模场直径(850nm) 4.4μm
拍长 1.2mm
全温串音 -30dB@1km
全温损耗变化 0.1dB/km
实施例2:
选择光纤预制棒直径为54.5mm,芯区直径为4.2mm,应力区直径为14.8mm的超细径保偏光纤预制棒,将其固定在送棒机构上,送棒速度为0.4mm/min,在1900℃左右的温度下进行熔融拉丝,拉丝炉加热功率为49Kw,主牵引轮的转速为170r/min,涂料温度为22℃,所制备的超细径保偏光纤包层直径为60μm,涂覆层直径为100μm;该光纤主要测试指标如表2所示。
表2超细偏振保持光纤性能指标
指标 指标值
工作波长 850nm
截止波长(850nm) 740nm
模场直径(850nm) 4.5μm
拍长 1.1mm
全温串音 -33dB@1km
全温损耗变化 0.1dB/km
实施例3:
选择光纤预制棒直径为55.5mm,芯区直径为4.3mm,应力区直径为15.8mm的超细径保偏光纤预制棒,将其固定在送棒机构上,送棒速度为0.5mm/min,在1900℃左右的温度下进行熔融拉丝,拉丝炉加热功率为50Kw,主牵引轮的转速为220r/min,涂料温度为23℃,所制备的超细径保偏光纤包层直径为60μm,涂覆层直径为100μm;该光纤主要测试指标如表3所示。
表3超细偏振保持光纤性能指标
指标 指标值
工作波长 850nm
截止波长(850nm) 760nm
模场直径(850nm) 4.7μm
拍长 1.0mm
全温串音 -36dB@1km
全温损耗变化 0.09dB/km
本发明实现了包层直径为60μm,涂覆层直径为100μm的用于光纤陀螺的超细径保偏光纤及其制造方法,在保证超细径保偏光纤的光学性能的情况下,进一步减小了包层直径和涂覆层直径,实现了光纤陀螺的小型化,同时,该超细径保偏光纤可在850nm的波长下进行工作。
与现有技术相比,本发明的有益效果为:
1、实现了包层直径为60μm,涂覆层直径为100μm的用于光纤陀螺的超细径保偏光纤的制造,与现有的涂覆层直径为135μm的光纤相比,相同长度下光纤环的体积可减小45%,利于减小光纤陀螺的外形尺寸,实现光纤陀螺的微型化;
2、本发明是在传统的熊猫型保偏光纤的生产线上进行,无需增加额外的工艺设备,且在单位重量的光纤预制棒消耗上可生产出更长光纤,同时,涂覆层直径的减少使得单位长度内的消耗涂料更少,从而提高了光纤生产效率,降低了光纤材料成本。
3、通过本发明制造的超细径熊猫型保偏光纤,能够在850nm的波长下进行工作,从而能使后续的光纤陀螺匹配光源可选用850nm,进而降低了光纤陀螺元器件的成本,有利于市场推广。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (9)

1.一种用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,包括以下步骤:
通过严格控制光纤预制棒工艺参数,制备出具有优良光学特性的光纤预制棒;
在拉制过程中,采用直径回控及速度自动调节实现对超细径保偏光纤包层直径的精确控制,同时,采用涂覆层直径随涂料温度可控技术实现对超细径保偏光纤涂覆层直径的精确控制;
所述超细径保偏光纤为熊猫型保险光纤,其工作波长为850nm,所述超细径保偏光纤包层直径为60μm,所述超细径保偏光纤涂覆层直径为100μm。
2.如权利要求1所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,所述光纤预制棒为圆柱形,其掺锗芯区直径在2mm~5mm之间,石英包层直径在40mm~60mm之间,应力区直径在10mm~20mm之间,通过对所述掺锗芯区直径、石英包层直径以及应力区直径的控制实现对所述超细径保偏光纤的模场直径、截止波长以及串音与拍长的控制。
3.如权利要求1所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,在所述光纤预制棒芯棒的制作过程中,通过严格控制PCVD沉积床的流量计开度以及沉积床的混合强压力实现对所述超细径保偏光纤剖面结构的精确控制。
4.如权利要求3所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,氧流量计开度为40%~90%;氟流量计开度为20%~65%;四氯化硅流量计开度为1%~45%;四氯化锗流量计开度为1%~20%。
5.如权利要求1所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,所述直径回控及速度自动调节主要是通过光纤拉丝塔中拉丝炉、送棒机构和主牵引轮组成的PID回控系统实现,所述超细径保偏光纤包层直径随所述拉丝炉的加热功率、送棒机构的送棒速度以及主牵引轮的转速这三个变量参数的改变而实现精确控制。
6.如权利要求5所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,所述拉丝炉的加热功率范围在30Kw~50Kw之间;所述送棒机构的送棒速度在0.3mm/min~1.5mm/min之间;所述主牵引轮的转速在100r/min~500r/min之间。
7.如权利要求1所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,通过涂料温度与拉丝速度匹配技术实现对所述超细径保偏光纤涂覆层直径的精确控制。
8.如权利要求7所述的用于光纤陀螺的超细径保偏光纤的制造方法,其特征在于,涂料温度在20℃~40℃之间;拉丝速度在100m/min~500m/min之间。
9.一种用于光纤陀螺的超细径保偏光纤,其特征在于,包括超细径保偏光纤芯区、超细径保偏光纤包层和超细径保偏光纤应力区,所述超细径保偏光纤芯区位于所述超细径保偏光纤包层的中心,所述超细径保偏光纤应力区对称分布在所述超细径保偏光纤芯区两侧且位于所述超细径保偏光纤包层中,
所述超细径保偏光纤为熊猫型保险光纤,其工作波长为850nm,所述超细径保偏光纤包层的直径为60μm,所述超细径保偏光纤的涂覆层直径为100μm。
CN201610325830.0A 2016-05-17 2016-05-17 一种用于光纤陀螺的超细径保偏光纤及其制造方法 Active CN106007358B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610325830.0A CN106007358B (zh) 2016-05-17 2016-05-17 一种用于光纤陀螺的超细径保偏光纤及其制造方法
PCT/CN2017/075534 WO2017197957A1 (zh) 2016-05-17 2017-03-03 一种用于光纤陀螺的超细径保偏光纤及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610325830.0A CN106007358B (zh) 2016-05-17 2016-05-17 一种用于光纤陀螺的超细径保偏光纤及其制造方法

Publications (2)

Publication Number Publication Date
CN106007358A true CN106007358A (zh) 2016-10-12
CN106007358B CN106007358B (zh) 2019-03-01

Family

ID=57098473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610325830.0A Active CN106007358B (zh) 2016-05-17 2016-05-17 一种用于光纤陀螺的超细径保偏光纤及其制造方法

Country Status (2)

Country Link
CN (1) CN106007358B (zh)
WO (1) WO2017197957A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197957A1 (zh) * 2016-05-17 2017-11-23 烽火通信科技股份有限公司 一种用于光纤陀螺的超细径保偏光纤及其制造方法
CN108107504A (zh) * 2016-11-25 2018-06-01 武汉长盈通光电技术有限公司 一种保圆光纤及其制备方法
CN108873158A (zh) * 2018-06-27 2018-11-23 深圳金信诺高新技术股份有限公司 一种小直径光纤及其制备方法
CN111290073A (zh) * 2018-12-07 2020-06-16 武汉长盈通光电技术有限公司 一种60微米细径熊猫型保偏光纤及其制备方法
CN111352188A (zh) * 2020-01-09 2020-06-30 陕西华燕航空仪表有限公司 一种光纤熔接方法
CN114924346A (zh) * 2022-05-31 2022-08-19 长飞光纤光缆股份有限公司 保偏三层涂敷光纤、涂敷方法、光纤环制备方法及应用
CN108873158B (zh) * 2018-06-27 2024-06-07 深圳金信诺高新技术股份有限公司 一种小直径光纤及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635126A (zh) * 2020-04-21 2020-09-08 艾菲博(宁波)光电科技有限责任公司 一种多芯单模/多芯少模通信光纤的制备工艺及制备装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156607A1 (en) * 2003-01-17 2004-08-12 Farroni Julia A. Multimode polarization maintaining double clad fiber
CN101367608A (zh) * 2008-10-14 2009-02-18 长飞光纤光缆有限公司 熊猫型保偏光纤的制造方法
CN101391861A (zh) * 2008-10-28 2009-03-25 长飞光纤光缆有限公司 一种保偏光纤大规格组合光纤预制棒及其制造方法
CN101811822A (zh) * 2010-04-16 2010-08-25 长飞光纤光缆有限公司 一种pcvd工艺制作大直径光纤芯棒的方法
CN102213791A (zh) * 2011-07-12 2011-10-12 武汉长盈通光电技术有限公司 细径熊猫型保偏光纤
CN103941331A (zh) * 2014-05-07 2014-07-23 江苏亨通光纤科技有限公司 一种聚酰亚胺涂覆光纤及其加工工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018605A (en) * 1997-12-31 2000-01-25 Siecor Operations Photoinitiator--tuned optical fiber and optical fiber ribbon and method of making the same
US8452146B2 (en) * 2007-11-06 2013-05-28 Prysmian S.P.A. Process for manufacturing an optical fiber and an optical fiber so obtained
CN102910812B (zh) * 2012-10-22 2015-02-04 武汉烽火锐光科技有限公司 一种保偏光纤的制备方法
CN104536085B (zh) * 2015-01-07 2017-06-20 烽火通信科技股份有限公司 一种细径保偏光纤
CN106007358B (zh) * 2016-05-17 2019-03-01 烽火通信科技股份有限公司 一种用于光纤陀螺的超细径保偏光纤及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156607A1 (en) * 2003-01-17 2004-08-12 Farroni Julia A. Multimode polarization maintaining double clad fiber
CN101367608A (zh) * 2008-10-14 2009-02-18 长飞光纤光缆有限公司 熊猫型保偏光纤的制造方法
CN101391861A (zh) * 2008-10-28 2009-03-25 长飞光纤光缆有限公司 一种保偏光纤大规格组合光纤预制棒及其制造方法
CN101811822A (zh) * 2010-04-16 2010-08-25 长飞光纤光缆有限公司 一种pcvd工艺制作大直径光纤芯棒的方法
CN102213791A (zh) * 2011-07-12 2011-10-12 武汉长盈通光电技术有限公司 细径熊猫型保偏光纤
CN103941331A (zh) * 2014-05-07 2014-07-23 江苏亨通光纤科技有限公司 一种聚酰亚胺涂覆光纤及其加工工艺

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197957A1 (zh) * 2016-05-17 2017-11-23 烽火通信科技股份有限公司 一种用于光纤陀螺的超细径保偏光纤及其制造方法
CN108107504A (zh) * 2016-11-25 2018-06-01 武汉长盈通光电技术有限公司 一种保圆光纤及其制备方法
CN108873158A (zh) * 2018-06-27 2018-11-23 深圳金信诺高新技术股份有限公司 一种小直径光纤及其制备方法
CN108873158B (zh) * 2018-06-27 2024-06-07 深圳金信诺高新技术股份有限公司 一种小直径光纤及其制备方法
CN111290073A (zh) * 2018-12-07 2020-06-16 武汉长盈通光电技术有限公司 一种60微米细径熊猫型保偏光纤及其制备方法
CN111352188A (zh) * 2020-01-09 2020-06-30 陕西华燕航空仪表有限公司 一种光纤熔接方法
CN111352188B (zh) * 2020-01-09 2022-05-24 陕西华燕航空仪表有限公司 一种光纤熔接方法
CN114924346A (zh) * 2022-05-31 2022-08-19 长飞光纤光缆股份有限公司 保偏三层涂敷光纤、涂敷方法、光纤环制备方法及应用
CN114924346B (zh) * 2022-05-31 2024-01-05 长飞光纤光缆股份有限公司 保偏三层涂敷光纤、涂敷方法、光纤环制备方法及应用

Also Published As

Publication number Publication date
WO2017197957A1 (zh) 2017-11-23
CN106007358B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN106007358A (zh) 一种用于光纤陀螺的超细径保偏光纤及其制造方法
Nagel et al. An overview of the modified chemical vapor deposition (MCVD) process and performance
JP2971373B2 (ja) 径方向で熱伝導率変化を有する光ファイバ母材の製法
US4395270A (en) Method of fabricating a polarization retaining single-mode optical waveguide
EP0381473B1 (en) Polarization-maintaining optical fiber
US4478489A (en) Polarization retaining single-mode optical waveguide
CN104391351B (zh) 一种抗弯曲多模光纤
CN102757179B (zh) 一种大规格光纤预制棒的制备方法
US20070204657A1 (en) Manufacture of depressed index optical fibers
CN111290073A (zh) 一种60微米细径熊猫型保偏光纤及其制备方法
CN107632338A (zh) 抗弯曲单模光纤及其制作方法
EP1870382B1 (en) Method for overcladding an optical fiber preform
CN102442774A (zh) 超低双折射光纤的制造方法及旋转拉伸塔
US4932990A (en) Methods of making optical fiber and products produced thereby
CA1128756A (en) Method of fabricating optical fibers
CN105866880A (zh) 一种保偏光纤的制备方法
CN103708721B (zh) 一种保偏光纤预制棒的制造装置及制造方法
CN106199825B (zh) 一种传感光纤及其制备方法和传感光纤环
CA1122079A (en) Manufacture of monomode fibers
US7013678B2 (en) Method of fabricating graded-index optical fiber lenses
KR100426394B1 (ko) 외부증착공법을 이용한 대형 프리폼 제조시에 증착입자를제어하는 방법 및 장치
CA1170876A (en) Fiber with coarse index gradient
JP2556350B2 (ja) Na変換光ファイバの製造方法
JPH0310204A (ja) 非線形光ファイバおよびその製造法
JP2010163339A (ja) 光ファイバの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Kong Ming

Inventor after: Liu Zhijian

Inventor after: Luo Wenyong

Inventor after: Ke Yili

Inventor after: Du Cheng

Inventor after: Lei Qiong

Inventor after: Li Wei

Inventor after: Zhao Lei

Inventor before: Kong Ming

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant