CN106000315B - 轻质水泥基氧化石墨烯复合吸附材料的制备方法 - Google Patents

轻质水泥基氧化石墨烯复合吸附材料的制备方法 Download PDF

Info

Publication number
CN106000315B
CN106000315B CN201610573232.5A CN201610573232A CN106000315B CN 106000315 B CN106000315 B CN 106000315B CN 201610573232 A CN201610573232 A CN 201610573232A CN 106000315 B CN106000315 B CN 106000315B
Authority
CN
China
Prior art keywords
light cement
parts
preparation
steam
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610573232.5A
Other languages
English (en)
Other versions
CN106000315A (zh
Inventor
吕生华
孙世彧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Yi Yun Special Engineering Materials Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610573232.5A priority Critical patent/CN106000315B/zh
Publication of CN106000315A publication Critical patent/CN106000315A/zh
Application granted granted Critical
Publication of CN106000315B publication Critical patent/CN106000315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种轻质水泥基氧化石墨烯复合吸附材料,该材料由以下材料按照质量份制成:标号为42.5硅酸盐水泥600~650份,细度为2.5~2.8的砂子10~18份,水200~230份,发泡剂0.4~0.7份,氧化石墨烯纳米片层分散液200~240份;本发明还公开了水泥基氧化石墨烯复合吸附材料的制备方法,本发明能够用于吸附去除废水中的重金属离子如Cr3+、Cr6+、Ni2+、Cu2+、Pb2+、Zn2+、As5+、Hg2+,去除率达到了98%以上,具有吸附容量大、吸附速率快、选择性高以及容易分离再生等特点。

Description

轻质水泥基氧化石墨烯复合吸附材料的制备方法
技术领域
本发明属于轻质水泥基氧化石墨烯复合吸附材料技术领域,具体涉及一种轻质水泥基氧化石墨烯复合吸附材料的制备方法。
技术背景
目前,含有金属离子尤其是含有重金属离子如Cr6+、Ni2+、Cu2+、Pb2+、Zn2+、As5+、Hg2+的工业废水的处理一直是环境治理中热点研究的问题(王未君,耿存珍,吸附材料处理重金属废水研究进展,环境科技,2014,27(1):58-62)。目前去除工业废水中重金属离子的方法有多种, 如离子交换膜法、化学还原法、化学沉淀法和吸附法等,其中吸附法是一种简便高效、吸附剂可循环使用的有效方法(黄志慧,李育珍,张宁,等,无机、有机及复合吸附材料处理有机污染物的研究,化学研究与应用,2016,28(6):770-776)。常用的吸附材料主要有无机吸附剂如沸石、硅藻土、蒙脱土、分子筛、凹凸棒、二氧化硅、铝镁水滑石等,有机吸附剂如纤维素类吸附剂、树脂类吸附剂、壳聚糖类吸附剂等,碳质吸附剂如活性炭、碳纤维、碳纳米管和石墨烯等材料(张秀兰,贾鑫,鲁建江,高分子材料在重金属吸附中的研究进展,工业废水,2015,36(5):19-24)。目前这些材料都有应用,其吸附能力和效果各有特点,但是对于重金属离子的吸附去除效果存在着吸附效率低、回收再生困难、使用成本较高等问题。开发一种制备工艺简单、吸附容量大、性价比高的重金属离子吸附材料一直是研究的热点。
发明内容
本发明的目的是提供一种轻质水泥基氧化石墨烯复合吸附材料的制备方法。
为达到上述目的,本发明的技术方案是这样实现的:
待拷贝权利要求书
与现有技术相比,本发明具有以下优点:
本发明利用发泡水泥基材料作为氧化石墨烯吸附材料的基础支撑材料,具有用于提高吸附效率的多孔材料的孔径容易控制,制备工艺路线成熟,吸附材料的性能指标容易控制,制备成本相对较低;本发明方法制备的轻质水泥基氧化石墨烯复合吸附材料,能够使氧化石墨烯具有的超大的比表面积、丰富的活性基团丰富得以保持并实现其对中金属离子的良好的吸附分离的能力,能够用于含有重金属离子如Cr3+、Cr6+、Ni2+、Cu2+、Pb2+、Zn2+、Hg2+工业废水的处理,金属离子去除率达到了98%以上,具有吸附容量大、吸附速率快、选择性高以及容易分离再生等特点。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明实施例提供轻质水泥基氧化石墨烯复合吸附材料的制备方法,该复合材料由以下材料按照质量份制成:标号为42.5硅酸盐水泥600~650份,细度为2.5~2.8的砂子10~18份,水200~230份,发泡剂0.4~0.7份,氧化石墨烯纳米片层分散液200~240份。
本专利所提供的轻质水泥基氧化石墨烯复合吸附材料的制备方法,该方法包括轻质水泥基材料的制备和轻质水泥基氧化石墨烯复合吸附材料的制备。
所述轻质水泥基材料的制备:将标号为42.5硅酸盐水泥600~650份、细度为2.5~2.8的砂子10~18份、水200~230份和氧化石墨烯分散液100~120份依次加入并搅拌均匀,再加入发泡剂0.4~0.7份搅拌发泡制备发泡轻质水泥基材料,控制发泡水泥轻质材料密度为0.5~0.6g/cm3,孔径为0.1~1.4mm,于40℃下在蒸养室蒸养3~5小时,取出放置24~48小时候,测得抗压强度达到0.9MPa,得到轻质水泥基材料。
所述轻质水泥基氧化石墨烯复合吸附材料的制备:制得的轻质水泥基材料浸入氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养3~3小时,将蒸养过的轻质水泥材料第二次浸入到氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养3~5小时进行蒸养,然后将吸附有氧化石墨烯纳米片层的轻质水泥基材料在150~180℃温度下处理1.5~2小时,得到轻质水泥基氧化石墨烯复合吸附材料。
所述硅酸盐水泥为标号为42.5普通硅酸盐水泥。
所述砂子的细度为2.5~2.8,含泥量小于1%。
所述发泡剂为十二烷基硫酸钠、十二烷基苯磺酸钠和脂肪醇聚氧乙烯醚硫酸盐按照质量份1~1.2:0.8~1.0:0.3~0.5比例混合得到。
所述氧化石墨烯纳米片层分散液是由将3~5份氧化石墨烯纳米片层加入到100~150份去离子水中超声分散30分钟所得,氧化石墨烯纳米片层厚度为小于0.8 nm、长和宽度为30~90 nm。
实施例一:
步骤一:轻质水泥基材料的制备
将标号为42.5硅酸盐水泥600~650份、细度为2.5~2.8的砂子10~18份、水300~330份依次加入并搅拌均匀,再加入发泡剂0.4~0.7份搅拌发泡制备发泡轻质水泥基材料,控制发泡水泥轻质材料密度为0.5~0.6g/cm3,孔径为0.1~1.4mm,于40℃下在蒸养室蒸养3~5小时,取出放置24~48小时候,测得抗压强度达到0.9MPa,得到轻质水泥基材料。
步骤二:轻质水泥基氧化石墨烯复合吸附材料的制备
制得的轻质水泥基材料浸入氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养4~6小时,将蒸养过的轻质水泥材料第二次浸入到氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养4~6小时进行蒸养,然后将吸附有氧化石墨烯纳米片层的轻质水泥基材料在150~180℃温度下处理1.5~2小时,得到轻质水泥基氧化石墨烯复合吸附材料。
所述硅酸盐水泥为标号为42.5普通硅酸盐水泥。
所述砂子的细度为2.5~2.8,含泥量小于1%。
所述发泡剂为十二烷基硫酸钠、十二烷基苯磺酸钠和脂肪醇聚氧乙烯醚硫酸盐按照质量份1~1.2:0.8~1.0:0.3~0.5比例混合得到。
所述氧化石墨烯纳米片层分散液是由将8~10份氧化石墨烯纳米片层加入到200~240份去离子水中超声分散60分钟所得,氧化石墨烯纳米片层厚度为小于4.5 nm、长和宽为30~90 nm;其中100~120份氧化石墨烯分散液用于制备轻质发泡水泥基材料,另外100~120分氧化石墨烯纳米片层分散液用于浸入轻质发泡水泥材料。
本发明主要利用发泡的方法制备轻质水泥基材料多孔材料作为基体,将具有超大比表面积和强大吸附能力的氧化石墨烯纳米片层在覆盖在水泥基材料的表面,形成对于重金属离子具有强烈吸附作用的轻质水泥基氧化石墨烯复合吸附材料的制备方法;选择轻质水泥基附材料作为基本结构材料是由于其具有一定的力学强度和多种可调控的孔状结构,能够形成具有大比表面积的吸附材料。氧化石墨烯是一种具有超大比表面积,含有大量的羟基、羧基、环氧基等含氧基团,能够通过静电吸附、配位作用等吸附许多重金属离子;该复合材料可回收利用及再生利用,与污水分离操作简单,容易分离和洗脱,可以循环利用,成本低,效率高。

Claims (5)

1.一种轻质水泥基氧化石墨烯复合吸附材料的制备方法,其特征在于:
(1)轻质水泥基材料的制备
将标号为42.5硅酸盐水泥600~650份、细度为2.5~2.8的砂子10~18份、水200~230份和氧化石墨烯纳米片层分散液100~120份依次加入并搅拌均匀,再加入发泡剂0.4~0.7份搅拌发泡制备轻质水泥基材料,控制发泡轻质水泥基材料密度为0.5~0.6g/cm3,孔径为0.1~1.4mm,于40℃下在蒸养室蒸养3~5小时,取出放置24~48小时后,测得抗压强度不小于0.9MPa,得到轻质水泥基材料;
(2)轻质水泥基氧化石墨烯复合吸附材料的制备
将步骤(1)制得的轻质水泥基材料浸入氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养3~5小时,将蒸养过的轻质水泥基材料第二次浸入到氧化石墨烯纳米片层分散液中3~5小时,在80~90℃在蒸养室蒸养3~5小时进行蒸养,然后将吸附有氧化石墨烯纳米片层的轻质水泥基材料在150~180℃温度下处理1.5~2小时,得到轻质水泥基氧化石墨烯复合吸附材料。
2.根据权利要求1所述的轻质水泥基氧化石墨烯复合吸附材料的制备方法,其特征在于:所述砂子含泥量小于1%。
3.根据权利要求1或2所述的轻质水泥基氧化石墨烯复合吸附材料的制备方法,其特征在于:所述发泡剂为十二烷基硫酸钠、十二烷基苯磺酸钠和脂肪醇聚氧乙烯醚硫酸盐按照质量份1~1.2:0.8~1.0:0.3~0.5比例混合得到。
4.根据权利要求3所述的轻质水泥基氧化石墨烯复合吸附材料的制备方法,其特征在于:所述氧化石墨烯纳米片层分散液是由将8~10份氧化石墨烯纳米片层加入到200~240份去离子水中超声分散60分钟所得,氧化石墨烯纳米片层厚度为小于4.5nm、长和宽度为30~90 nm;其中100~120份氧化石墨烯纳米片层分散液用于制备发泡轻质水泥基材料,另外100~120份氧化石墨烯纳米片层分散液用于浸入轻质水泥基材料。
5.根据权利要求1所述的轻质水泥基氧化石墨烯复合吸附材料的制备方法所制得的轻质水泥基氧化石墨烯复合吸附材料。
CN201610573232.5A 2016-07-20 2016-07-20 轻质水泥基氧化石墨烯复合吸附材料的制备方法 Active CN106000315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610573232.5A CN106000315B (zh) 2016-07-20 2016-07-20 轻质水泥基氧化石墨烯复合吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610573232.5A CN106000315B (zh) 2016-07-20 2016-07-20 轻质水泥基氧化石墨烯复合吸附材料的制备方法

Publications (2)

Publication Number Publication Date
CN106000315A CN106000315A (zh) 2016-10-12
CN106000315B true CN106000315B (zh) 2018-10-30

Family

ID=57116678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610573232.5A Active CN106000315B (zh) 2016-07-20 2016-07-20 轻质水泥基氧化石墨烯复合吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN106000315B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633783B (zh) * 2016-11-01 2019-02-22 黎明职业大学 一种单片氧化石墨烯/聚乙二醇单甲醚甲基丙烯酰胺水相复合材料及其制备方法
CN107556035B (zh) * 2017-09-12 2020-02-21 中晶蓝实业集团有限公司 混凝土制品及其制备方法
CN109020414B (zh) * 2018-10-22 2021-03-26 太原理工大学 一种复合水泥基吸附材料及其制备方法
CN110559997A (zh) * 2019-09-29 2019-12-13 东莞理工学院城市学院 一种水泥基吸附剂及其制备方法和应用
CN112125586B (zh) * 2020-09-23 2022-07-29 常熟理工学院 巯基改性氧化石墨烯纳米片/地质聚合物复合材料的制备方法及应用
CN113149575A (zh) * 2021-04-15 2021-07-23 东南大学 一种硫铝酸盐水泥的复合材料固化剂及其制备方法
CN113277591B (zh) * 2021-06-08 2022-06-17 哈尔滨工程大学 一种二维magadiite/氧化石墨烯纳米片复合物的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623619B (zh) * 2009-07-29 2011-06-08 东南大学 发泡型工业废渣基复合脱磷材料
CN105536702A (zh) * 2015-12-25 2016-05-04 大连理工大学 吸附重金属离子的石墨烯水泥基材料及其制备方法
CN105622161B (zh) * 2016-02-18 2018-04-20 陕西科技大学 水泥基发泡轻质复合材料及制备方法

Also Published As

Publication number Publication date
CN106000315A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000315B (zh) 轻质水泥基氧化石墨烯复合吸附材料的制备方法
Chen et al. Carbon‐based sorbents with three‐dimensional architectures for water remediation
Wang et al. Preparation of porous activated carbon from semi-coke by high temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline
Jang et al. Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies
Xie et al. Polyethyleneimine modified activated carbon for adsorption of Cd (II) in aqueous solution
Zhang et al. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion
Heibati et al. Uptake of Reactive Black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms
Zhao et al. Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater
Wang et al. Halloysite nanotube@ carbon with rich carboxyl groups as a multifunctional adsorbent for the efficient removal of cationic Pb (II), anionic Cr (VI) and methylene blue (MB)
Zhou et al. Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater
Li et al. Adsorption of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxide-chitosan-poly (vinyl alcohol) hydrogels
Foo et al. The environmental applications of activated carbon/zeolite composite materials
Liu et al. Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: adsorption behavior and mechanism
Ji et al. Dynamic adsorption of Cu (II) from aqueous solution by zeolite/cellulose acetate blend fiber in fixed-bed
CN103464102A (zh) 一种用于去除河流底泥污染物的多孔复合吸附剂及其制备工艺
CN102824898B (zh) 一种三维多孔抗压限胀型膨润土吸附材料及其制备方法
Qu et al. Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption
Saadat et al. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions
CN105148831B (zh) 一种杭锦土2#土负载纳米零价铁的吸附材料及制法和应用
Ma et al. Electrospun nanofibrous polyethylenimine mat: A potential adsorbent for the removal of chromate and arsenate from drinking water
Lin et al. Surface area and pore size tailoring of mesoporous silica materials by different hydrothermal treatments and adsorption of heavy metal ions
Wu et al. One-step fabrication of magnetic carbon nanocomposite as adsorbent for removal of methylene blue
Hou et al. MIL-101 (Cr)/graphene hybrid aerogel used as a highly effective adsorbent for wastewater purification
Xu et al. Uniform magnetic chitosan microspheres with radially oriented channels by electrostatic droplets method for efficient removal of Acid Blue
Zhang et al. Removal of ammonium and heavy metals by cost-effective zeolite synthesized from waste quartz sand and calcium fluoride sludge

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201211

Address after: 241080 No.23 Sanshan street, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Patentee after: Wu Junxi

Address before: 710021 Shaanxi city of Xi'an province Weiyang University City

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220809

Address after: 751100 Ningxia Qingtongxia Industrial Park, Wuzhong City, Ningxia Hui Autonomous Region (New Material Block, intersection of Jinger Road and Weier Road)

Patentee after: NINGXIA YI YUN SPECIAL ENGINEERING MATERIALS CO.,LTD.

Address before: 241080 No.23 Sanshan street, Sanshan Economic Development Zone, Wuhu City, Anhui Province

Patentee before: Wu Junxi

TR01 Transfer of patent right