CN105984875B - 一种TiB2纳米线阵列的制备方法 - Google Patents

一种TiB2纳米线阵列的制备方法 Download PDF

Info

Publication number
CN105984875B
CN105984875B CN201510046929.2A CN201510046929A CN105984875B CN 105984875 B CN105984875 B CN 105984875B CN 201510046929 A CN201510046929 A CN 201510046929A CN 105984875 B CN105984875 B CN 105984875B
Authority
CN
China
Prior art keywords
powder
tib
nano
product
wire array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510046929.2A
Other languages
English (en)
Other versions
CN105984875A (zh
Inventor
李俊寿
李苏
武小娟
温晋华
王明远
赵芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ordnance Engineering College of PLA
Original Assignee
Ordnance Engineering College of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ordnance Engineering College of PLA filed Critical Ordnance Engineering College of PLA
Priority to CN201510046929.2A priority Critical patent/CN105984875B/zh
Publication of CN105984875A publication Critical patent/CN105984875A/zh
Application granted granted Critical
Publication of CN105984875B publication Critical patent/CN105984875B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种TiB2纳米线阵列的制备方法。该方法根据铝热、镁热反应的基本原理和氧化铝模板法原理,以Mg+B2O3+TiO2为基本反应体系,以Al+B2O3+TiO2为辅助反应体系,以Al粉、Mg粉、B2O3粉、TiO2粉为原料,通过配料、混料、燃烧反应、研磨等工艺,制备出以MgO+TiB2为主要组成相的复合粉体,再通过过筛、酸洗、过滤、烘干等工艺,除去MgO等杂质,获得含有大量TiB2纳米线阵列的TiB2粉体。本制备方法具有原料丰富易得,制备过程简单,设备投资较少,可批量制备TiB2纳米线阵列的特点。

Description

一种TiB2纳米线阵列的制备方法
技术领域:
本发明涉及一种TiB2纳米线阵列的制备方法。
背景技术:
纳米线阵列是指纳米线整齐有序排列的纳米结构,是一种新兴的且极具发展潜力的纳米材料。纳米线除具有纳米颗粒所具有的表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应、库伦堵塞效应和量子相干效应外,还具有更为优异的力、光、电、声、磁、热、储氢、吸波等特性,纳米线作为有效传输电荷的最小通道,电荷传输速度更易控制,已成为纳米结构组装体系、纳米器件制备的重要基本单元,在电子、光电子等领域具有广阔的应用前景。纳米线阵列作为一种特殊的纳米结构,具有单根纳米线所不具有的特殊性能,已经受到各国科学家的关注,因而制备出尺寸均匀、排列有序的纳米线阵列结构显得尤为必要。目前已经制备出的有Ni和Co纳米线阵列(Whitney)、碳纳米管阵列(Kang)、ZnO纳米棒阵列(张跃等)、Bi2Te3纳米线阵列(C.Jin)等。
TiB2具有导电性、抗氧化性、高熔点、高硬度、高耐磨性、较高的强度和耐热冲击性等一系列优良性能。纳米结构TiB2兼具纳米结构与TiB2材料的优点,具有很高的研究价值。迄今为止,关于制备TiB2单相陶瓷和TiB2基复相陶瓷材料的研究已很普遍,关于TiB2纳米材料的研究报道也有一些,但因TiB2熔点很高,目前还未发现有人提供制备TiB2纳米线阵列的方法。
目前,纳米线阵列结构的制备一般需要通过模板,对设备、原料、生长条件等都有很高的要求,工艺较复杂,因而无模板的纳米线阵列结构的合成显得更有意义。
燃烧合成技术是一种利用自身反应放热来维持反应进行的材料合成技术。该技术具有设备成本低,操作简单,且产品纯度高、产量高等优点。
如何利用燃烧合成方法制备出TiB2纳米线阵列是本发明要解决的技术问题,本发明提供了制备的配方及详细的工艺流程。
发明内容:
本发明要解决的技术问题是提供一种TiB2纳米线阵列的制备方法。
本发明根据铝热、镁热反应的基本原理和氧化铝模板法原理,以Mg+B2O3+TiO2为基本反应体系,以 Al+B2O3+TiO2为辅助反应体系,以Al粉、Mg粉、B2O3粉、TiO2粉为原料,通过配料、混料、燃烧反应、研磨等工艺,制备出以MgO+TiB2为主要组成相的复合粉体,再通过过筛、酸洗、过滤、烘干等工艺,除去MgO等杂质,获得含有大量TiB2纳米线阵列的TiB2粉体。本发明所依据的化学反应式是:
5Mg+TiO2+B2O3→TiB2+5MgO
10Al+3TiO2+3B2O3→3TiB2+5Al2O3
本发明的具体步骤为:
(1)将各反应原料按重量百分数进行配比,其中:Mg粉:26.9%~42.6%;Al粉:2.2%~17.9%;TiO2粉:29.5%;B2O3粉:25.7%,将配比好的混合粉末放入混料机中,混合30~120min;
(2)将混合均匀的反应物置于石墨坩埚中,引燃燃烧合成反应;
(3)将制得的燃烧产物收集、研磨,过筛后待用;
(4)将燃烧合成并经研磨、过筛后的产物用配制浓度为5%~30%的盐酸,在20~60℃下超声波辅助酸洗10~20min;
(5)用蒸馏水将酸洗后的产物进行36次冲洗;
(6)将产物过滤后放入烘箱中,在50~120℃保温30~120min,烘干后得到含有大量TiB2纳米线阵列的TiB2粉体。
作为优选,各反应原料按重量百分数配比为:Mg粉:29.1%~35.8%;Al粉:9.0%~15.7%;TiO2粉: 29.5%;B2O3粉:25.7%。
用上述方法合成的产物主要由含有大量TiB2纳米线阵列的TiB2相组成,本制备方法具有原料丰富易得,制备过程简单易操作,设备简单,TiB2纳米线阵列产率高等特点。
附图说明:
图1是各反应原料按重量百分数Mg粉∶Al粉∶TiO2粉∶B2O3粉=26.9%∶17.9%∶29.5%∶25.7%配比制备的TiB2纳米线阵列的XRD图。
图2是各反应原料按重量百分数Mg粉∶Al粉∶TiO2粉∶B2O3粉=26.9%∶17.9%∶29.5%∶25.7%配比制备的TiB2纳米线阵列的SEM形貌。
图3是各反应原料按重量百分数Mg粉∶Al粉∶TiO2粉∶B2O3粉=26.9%∶17.9%∶29.5%∶25.7%配比制备的TiB2纳米线阵列的SEM形貌。
具体实施方式:
实施例1:
反应原料的燃烧合成步骤:
(1)称量Mg粉26.9g;Al粉17.9g;TiO2粉29.5g;B2O3粉25.7g,备用;
(2)将称量好的原料依次放入混料机中,混合60min;
(3)混合均匀后,将反应物置于石墨坩埚中,引燃燃烧合成反应;
(4)将制得的燃烧产物收集、研磨,过100目筛后待用。
合成产物的酸洗除杂步骤为:
(1)将合成的并经研磨、过筛后的产物放入烧杯中;
(2)配制浓度为20%的盐酸,在50℃下超声波辅助酸洗15min。
(3)用蒸馏水将酸洗后的产物进行4次水洗;
(4)将产物过滤后,放入烘箱中,在100℃保温60min,烘干后得到含有大量TiB2纳米线阵列的TiB2粉体。
实施例2:
反应原料的燃烧合成步骤:
(1)称量Mg粉42.6g;Al粉2.2g;TiO2粉29.5g;B2O3粉25.7g,备用;
(2)将称量好的原料依次放入混料机中,混合90min
(3)混合均匀后,将反应物置于石墨坩埚中,引燃燃烧合成反应;
(4)将制得的燃烧产物收集、研磨,过100目筛后待用。
合成产物的酸洗除杂步骤为:
(1)将合成的并经研磨、过筛后的产物放入烧杯中;
(2)配制浓度为25%的盐酸,在40℃下超声波辅助酸洗12min。
(3)用蒸馏水将酸洗后的产物进行4次水洗;
(4)将产物过滤后,放入烘箱中,在120℃保温40min,烘干后得到含有大量TiB2纳米线阵列的TiB2粉体。
实施例3:
反应原料的燃烧合成步骤:
(1)称量Mg粉29.1g;Al粉15.7g;TiO2粉29.5g;B2O3粉25.7g,备用;
(2)将称量好的原料依次放入混料机中,混合60min;
(3)混合均匀后,将反应物置于石墨坩埚中,引燃燃烧合成反应;
(4)将制得的燃烧产物收集、研磨,过100目筛后待用。
合成产物的酸洗除杂步骤为:
(1)将合成的并经研磨过、筛后的产物放入烧杯中;
(2)配制浓度为25%的盐酸,在45℃下超声波辅助酸洗10min。
(3)用蒸馏水将酸洗后的产物进行4次水洗;
(4)将产物过滤后,放入烘箱中,在110℃保温50min,烘干后得到含有大量TiB2纳米线阵列的TiB2粉体。
图1是实例1所制备的TiB2纳米线阵列的XRD图,主要由TiB2相组成,含微量的杂质相是MgAl2O4
图2是实例1所制备的TiB2纳米线阵列侧面的SEM形貌,单根TiB2纳米线呈圆锥状,初端直径大多在50nm 左右,末端直径多数为5~10nm,高度为300~600nm。图3为实例1所制备的TiB2纳米线阵列块,是有大量TiB2纳米线整齐排列而成。

Claims (1)

1.一种TiB2纳米线阵列的制备方法,其特征在于该方法包括以下步骤:
将各反应原料按重量百分数进行配比,其中:Mg粉:29.1%~35.8%;Al粉:9.0%~15.7%;TiO2粉:29.5%;B2O3粉:25.7%,将配比好的混合粉末放入混料机中,混合30~120min;
将混合均匀的反应物置于石墨坩埚中,引燃燃烧合成反应;
将制得的燃烧产物收集、研磨,过筛后待用;
将燃烧合成并经研磨、过筛后的产物用配制浓度为5%~30%的盐酸,在20~60℃下超声波辅助酸洗10~20min;
用蒸馏水将酸洗后的产物进行3~6次冲洗;
将产物过滤后放入烘箱中,在50~120℃保温30~120min,烘干后得到含有大量TiB2纳米线阵列的TiB2粉体。
CN201510046929.2A 2015-01-30 2015-01-30 一种TiB2纳米线阵列的制备方法 Expired - Fee Related CN105984875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510046929.2A CN105984875B (zh) 2015-01-30 2015-01-30 一种TiB2纳米线阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510046929.2A CN105984875B (zh) 2015-01-30 2015-01-30 一种TiB2纳米线阵列的制备方法

Publications (2)

Publication Number Publication Date
CN105984875A CN105984875A (zh) 2016-10-05
CN105984875B true CN105984875B (zh) 2018-10-23

Family

ID=57035172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510046929.2A Expired - Fee Related CN105984875B (zh) 2015-01-30 2015-01-30 一种TiB2纳米线阵列的制备方法

Country Status (1)

Country Link
CN (1) CN105984875B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108687354B (zh) * 2018-05-04 2020-09-18 北京理工大学 一种高活性Ti/2B纳米粉体的制备方法
CN114195504B (zh) * 2021-11-05 2022-10-21 中山大学 一种MgAl2O4纳米线膜的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341576A (zh) * 2001-09-27 2002-03-27 武汉理工大学 自蔓延高温还原合成法制备高纯二硼化钛陶瓷微粉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063411C (zh) * 1996-10-30 2001-03-21 大连理工大学 自蔓延高温合成控制制备(Al2O3+TiB2)泡沫陶瓷过滤器的方法
CN1211317C (zh) * 2001-12-28 2005-07-20 武汉科技大学 一种镁铝尖晶石/二硼化钛复合材料及其制造方法
CN101891215B (zh) * 2010-07-15 2011-12-28 武汉工程大学 纳米二硼化钛多晶粉的制备方法
CN103771856B (zh) * 2014-02-20 2015-04-01 武汉大学 一种Al2O3-TiB2复合陶瓷粉末的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341576A (zh) * 2001-09-27 2002-03-27 武汉理工大学 自蔓延高温还原合成法制备高纯二硼化钛陶瓷微粉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"燃烧剂对二硼化钛晶体形态的影响";李俊寿等;《第十八届全国高技术陶瓷学术年会摘要集》;20141130;第45页 *

Also Published As

Publication number Publication date
CN105984875A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
Huang et al. Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology
Li et al. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures
Atuchin et al. Morphology and structure of hexagonal MoO 3 nanorods
Hu et al. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods
Chen et al. 3D-hierarchical Cu 3 SnS 4 flowerlike microspheres: controlled synthesis, formation mechanism and photocatalytic activity for H 2 evolution from water
Yang et al. Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application
Wang et al. Synthesis of single-crystalline hollow octahedral NiO
Sun et al. Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes
CN104328478A (zh) 一种SiC晶须的制备方法
Wang et al. A simple wet chemical route for large-scale synthesis of Cu (OH) 2 nanowires
CN105984875B (zh) 一种TiB2纳米线阵列的制备方法
Ge et al. Preparation and characterization of ultrafine Fe-O compound/ammonium perchlorate nanocomposites via in-suit growth method
Miao et al. Novel NiO flower-like microspheres with abundant nanoparticles adhering to the petals: hydrothermal synthesis and their gas sensing properties
Yang et al. LaCO 3 OH microstructures with tunable morphologies: EDTA-assisted hydrothermal synthesis, formation mechanism and adsorption properties
Li et al. Fabrication of Sb2O3 nanobelt bundles via a facile ultrasound-assisted room temperature liquid phase chemical route and evaluation of their optical properties
Yan et al. Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis
Zhang et al. Microwave-assisted synthesis of Cu 2 O microcrystals with systematic shape evolution from octahedral to cubic and their comparative photocatalytic activities
Cui et al. Facile hydrothermal synthesis of novel Cu2O core-shell nanospheres via a template-free route
Maleki et al. Preparation and characterization of cadmium sulfide nanorods by novel solvothermal method
Zare et al. An investigation on a mild hydrothermal route to CuS nano and submicro structures
Li et al. Fabrication and gas sensing property of honeycomb-like ZnO
CN105439123B (zh) 一种制备碳纳米颗粒的方法
Chai et al. A rational route to synthesize Bi2S3 nanorods in large scale
Zhang et al. One-pot growth of Cu2O concave octahedron microcrystal in alkaline solution
Ni'mah et al. Synthesis of silica nanoparticles from sugarcane bagasse by sol-gel method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181023

Termination date: 20190130

CF01 Termination of patent right due to non-payment of annual fee