CN105976346A - 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法 - Google Patents

基于鲁棒主成分稀疏分解的红外与可见光图像融合方法 Download PDF

Info

Publication number
CN105976346A
CN105976346A CN201610272262.2A CN201610272262A CN105976346A CN 105976346 A CN105976346 A CN 105976346A CN 201610272262 A CN201610272262 A CN 201610272262A CN 105976346 A CN105976346 A CN 105976346A
Authority
CN
China
Prior art keywords
image
coefficient
frequency sub
band
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610272262.2A
Other languages
English (en)
Other versions
CN105976346B (zh
Inventor
傅志中
王雪
王琦艺
周宁
李晓峰
徐进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610272262.2A priority Critical patent/CN105976346B/zh
Publication of CN105976346A publication Critical patent/CN105976346A/zh
Application granted granted Critical
Publication of CN105976346B publication Critical patent/CN105976346B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于鲁棒主成分稀疏分解的红外与可见光图像融合方法,属于图像处理技术领域,主要解决现有红外与可见光图像融合中可见光图像的光谱信息损失过多的问题。本发明的具体实现步骤为:对已精确配准的图像分别进行鲁棒性主成分分析得到各自的稀疏矩阵;对图像分别进行非下采样Contourlet变换,得到各自的高、低频子带图像;利用稀疏矩阵对低频子带图像和高频子带图像分别进行融合;进行非下采样Contourlet逆变换,得到融合图像。本发明可应用于已配准的红外与可见光图像融合处理中。

Description

基于鲁棒主成分稀疏分解的红外与可见光图像融合方法
技术领域
本发明涉图像处理技术领域,具体涉及红外与可见光图像的融合处理。
背景技术
红外图像的成像基于场景的热辐射特性,其不受天气情况及光照环境的影响,但是红外图像整体比较模糊,且具有较低的空间分辨率和图像对比度;然而,可见光图像基于场景的反射特性成像,可见光图像具有较高的空间分辨率、清晰的纹理信息以及丰富的图像细节成分,但其易受光照条件以及天气环境的干扰。将红外与可见光图像进行融合,可以利用两者之间良好的互补特性,将红外图像的抗干扰特性与可见光图像的光谱信息保留性结合到一起,有利于增强图像系统对场景的表达能力。
非下采样Contourlet变换作为一种重要的多尺度分析工具,由于其在时频域良好的局部特性和平移不变性,广泛地应用于图像融合领域。在基于非下采样Contourlet变换的图像融合中,高、低频子带的融合规则对融合结果有着至关重要的影响。简单的融合规则如加权平均法获得的融合图像具有较低的对比度;基于邻域特征的融合规则[Chen Y,Xiong J,Liu H L,et al.Fusion method of infrared and visible images based on neighborhood characteristic andregionalization in NSCT domain[J].Optik-International Journal for Light and Electron Optics,2014,125(17):4980-4984],其融合图像中包含了较多的红外图像中的光谱信息,而丢失了较多的可见光图像中的光谱信息;基于PCNN的融合规则[Xiang T,Yan L,Gao R.A fusion algorithmfor infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCTdomain[J].Infrared Physics&Technology,2015,69:53-61],其融合图像容易丢失源图像中的边缘信息。在上述融合规则中,融合图像中损失了较多的可见光图像中的光谱信息,而可见光图像中的光谱信息能够为场景提供丰富细节、纹理和边缘等信息。
发明内容
本发明的发明目的在于:针对现有图像融合中存在源可见光图像中光谱信息损失过多的技术问题,提供一种利用非下采样Contourlet变换的平移不变性,和鲁棒性主成分分析的稀疏特性,对红外与可见光图像进行融合,既能够充分提取出红外图像中的目标特征,又能够保留可见光图像中的丰富的光谱信息。
本发明的基于鲁棒主成分稀疏分解的红外与可见光图像融合方法,包括下列步骤:
步骤1:将输入的相同尺寸(M*N)的红外图像IR和可见光图像VI的图像矩阵分别转换为列向量Mir(对应红外图像IR)和Mvi,并进行鲁棒性主成分分析,得到各自的稀疏向量Sir和Svi。例如通过求解如下优化问题来获取:
求解优化问题minLir,Sir||Lir||*+λ||Sir||1,s.t.Mir=Lir+Sir,得到红外图像的稀疏向量Sir,其中Mir表示红外图像的列向量,Lir表示红外图像的低秩向量,||·||*表示矩阵的核范数,||·||1表示矩阵的1范数,系数λ=k/(M*N)1/2,参数k为预设值,其取值范围通常为k∈[0,1];
求解优化问题minLvi,Svi||Lvi||*+λ||Svi||1,s.t.Mvi=Lvi+Svi,得到可见光图像的稀疏向量Svi,其中Mvi表示可见光图像的列向量,Lvi表示可见光图像的低秩向量。
然后,将稀疏向量Sir和Svi分别转换成与输入图像大小相同的稀疏矩阵并归一化到[0,1]区间,得到红外图像、可见光图像的归一化稀疏矩阵sir、svi,而sir、svi中的各元素分别对应像素点的稀疏值;
步骤2:对红外图像IR和可见光图像VI进行非下采样变换,得到低频子带图像和高频子带图像系数;
步骤3:对红外图像IR和可见光图像VI分别进行低频子带图像系数融合、高频子带图像系数融合,得到融合图像的低频子带图像系数、高频子带图像系数;
其中,融合图像的低频子带图像系数为红外图像和可见光图像的低频子带图像系数的加权和,加权系数取决于红外图像的稀疏值;
当红外图像的高频子带图像系数的绝对值小于可见光的高频子带图像系数的绝对值,或红外图像与可见光图像的稀疏值之差大于预设阈值Th(通常,Th∈[01])时,融合图像的高频子带图像系数等于可见光图像的高频子带图像系数;否则,融合图像的高频子带图像系数等于红外图像的高频子带图像系数;
步骤4:基于非下采样逆变换对融合图像的低频子带图像系数和高频子带图像系数进行重构,得到融合图像。
综上所述,由于采用了上述技术方案,本发明的有益效果是:解决了现有红外与可见光图像融合中存在的可见光图像的光谱信息损失过多的问题;并较好的突出了红外图像中的目标信息。
附图说明
图1是本发明的流程图;
图2是用于实施例的红外图像,图像宽度为360,高度为270;
图3是用于实施例的可见光图像,图像宽度为360,高度为270;
图4是基于本发明的融合方法得到的融合图像示例。
具体实施方式
为使本发明的目的、方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
参见图1,本发明的基于鲁棒主成分稀疏分解的红外与可见光图像融合方法主要包括下述过程:
(1)对输入的红外图像IR和可见光图像VI进行鲁棒性主成分分析;
(2)对输入的红外图像IR和可见光图像VI进行非下采样Contourlet变换;
(3)红外图像IR和可见光图像VI的低频子带图像融合;
(4)红外图像IR和可见光图像VI的高频子带图像融合;
(5)利用非下采样Contourlet逆变换方法重构融合子带图像,得到融合图像并输出。
其中步骤(1)、(2)可并行执行,步骤(3)、(4)可并行执行,步骤(1)~(5)的其具体实现过程如下:
1)读取红外图像IR,如图2所示,图像尺寸为360×270。
2)读取可见光图像VI,如图3所示,图像尺寸为360×270。
3)将红外图像IR和可见光图像VI的图像矩阵转换为列向量Mir和Mvi,列向量的大小为97200×1。
4)求解优化问题minLir,Sir||Lir||*+λ||Sir||1,s.t.Mir=Lir+Sir,其中λ=k/(360×270)1/2,k=0.45,得到红外图像的稀疏向量Sir,其大小为97200×1。
5)求解优化问题minLvi,Svi||Lvi||*+λ||Svi||1,s.t.Mvi=Lvi+Svi,其中λ=k/(360×270)1/2,k=0.45,得到可见光图像的稀疏向量Svi,其大小为97200×1。
6)将稀疏向量Sir和Svi转换成与输入图像尺寸大小相同的稀疏矩阵S′ir和S′vi,其大小为360×270。
7)将稀疏矩阵S′ir和S′vi归一化到[0,1]区间,得到与红外图像相对应的归一化稀疏矩阵sir,和与可见光图像相对应的归一化稀疏矩阵svi,即sir、svi中的各元素分别对应像素点的稀疏值sir(m,n)、svi(m,n),其中(m,n)表示像素点坐标。
8)对红外图像IR和可见光图像VI分别进行非下采样Contourlet变换,选择拉普拉斯尺度滤波器’pyrexc’和方向滤波器’cd’,分解层次为{2,3,3,4}。得到红外图像的子带分解系数{CIRL(m,n),CIRHj,k(m,n)}和可见光图像的子带分解系数{CVIL(m,n),CVIHj,k(m,n)},其中j∈{0,1,2,3,4},k=2j,(m,n)表示像素点坐标,每个像素点的子带分解系数构成各自的子带图像(大小均为360×270)。
9)对红外图像IR的低频子带图像系数CIRL(m,n)和可见光图像VI的低频子带图像系数CVIL(m,n)进行融合,通过以下方法获得融合图像的低频子带系数CFL(m,n):
CFL(m,n)=sir(m,n)*CIRL(m,n)+(1-sir(m,n)*CVIL(m,n))
10)对红外图像IR的高频子带图像系数CIRHj,k(m,n)和可见光图像VI的高频子带图像系数CVIHj,k(m,n)进行融合,通过以下方式得到融合图像的高频子带系数CFHj,k(m,n):
当|CVIHj,k(m,n)|≥|CIRHj,k(m,n)|,或sir(m,n)-svi(m,n)>Th时,
CFHj,k(m,n)=CVIHj,k(m,n),其中Th取0.3;
在其他情况下,CFHj,k(m,n)=CIRHj,k(m,n)。
11)利用非下采样Contourlet逆变换方法对融合图像的子带图像系数{CFL(m,n),CFHj,k(m,n)}进行重构,得到融合图像,如图4,其大小为360×270。
本实施案例所得的融合图像,充分保留了可见光图像中的光谱信息,又突出了红外图像中的目标信息,具有良好的融合效果。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (6)

1.基于鲁棒主成分稀疏分解的红外与可见光图像融合方法,其特征在于,包括下列步骤:
步骤1:将输入图像的图像矩阵转换为列向量并进行鲁棒性主成分分析,得到输入图像的稀疏向量,其中输入图像包括红外图像、可见光图像;
将稀疏向量转换成与输入图像大小相同的稀疏矩阵并归一化到[0,1]区间,得到红外图像、可见光图像的稀疏值;
步骤2:对输入图像进行非下采样变换,得到低频子带图像系数和高频子带图像系数;
步骤3:对输入图像分别进行低频子带图像系数、高频子带图像系数融合,得到融合图像的低频子带图像系数、高频子带图像系数;
其中,融合图像的低频子带图像系数为红外图像和可见光图像的低频子带图像系数的加权和,加权系数取决于红外图像的稀疏值;
当红外图像的高频子带图像系数的绝对值小于可见光的高频子带图像系数的绝对值,或红外图像与可见光图像的稀疏值之差大于预设阈值Th时,融合图像的高频子带图像系数等于可见光图像的高频子带图像系数;否则,融合图像的高频子带图像系数等于红外图像的高频子带图像系数;
步骤4:基于非下采样逆变换对融合图像的低频子带图像系数和高频子带图像系数进行重构,得到融合图像。
2.如权利要求1所述的方法,其特征在于,步骤3中,在计算融合图像的低频子带图像系数时,红外图像的低频子带图像系数的加权系数为红外图像的稀疏值,可见光图像的低频子带图像系数的加权系数为数值“1”与红外图像的稀疏值的差。
3.如权利要求1或2所述的方法,其特征在于,预设阈值Th的取值范围为[0,1]。
4.如权利要求1或2所述的方法,其特征在于,步骤1中,得到输入图像的稀疏向量具体为:
求解优化问题minLir,Sir||Lir||*+λ||Sir||1,s.t.Mir=Lir+Sir,得到红外图像的稀疏向量Sir,其中Mir表示红外图像的列向量,Lir表示红外图像的低秩向量,||·||*表示矩阵的核范数,||·||1表示矩阵的1范数,系数λ=k/(M*N)1/2,参数k为预设值,M*N表示输入图像的尺寸;
求解优化问题minLvi,Svi||Lvi||*+λ||Svi||1,s.t.Mvi=Lvi+Svi,得到可见光图像的稀疏向量Svi,其中Mvi表示可见光图像的列向量,Lvi表示可见光图像的低秩向量。
5.如权利要求4所述的方法,其特征在于,参数k的取值范围为[0,1]。
6.如权利要求1或2所述的方法,其特征在于,步骤2中,对输入图像进行非下采样变换时,采用拉普拉斯尺度滤波器和方向滤波器,分解层次为{2,3,3,4}。
CN201610272262.2A 2016-04-28 2016-04-28 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法 Expired - Fee Related CN105976346B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610272262.2A CN105976346B (zh) 2016-04-28 2016-04-28 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610272262.2A CN105976346B (zh) 2016-04-28 2016-04-28 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法

Publications (2)

Publication Number Publication Date
CN105976346A true CN105976346A (zh) 2016-09-28
CN105976346B CN105976346B (zh) 2018-10-16

Family

ID=56994863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610272262.2A Expired - Fee Related CN105976346B (zh) 2016-04-28 2016-04-28 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法

Country Status (1)

Country Link
CN (1) CN105976346B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230196A (zh) * 2017-04-17 2017-10-03 江南大学 基于非下采样轮廓波和目标可信度的红外与可见光图像融合方法
CN107657217A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于运动目标检测的红外与可见光视频的融合方法
CN109886908A (zh) * 2019-02-14 2019-06-14 西安理工大学 红外图像与可见光图像融合方法
CN110070516A (zh) * 2019-03-14 2019-07-30 天津大学 一种面向医学能谱ct的图像融合方法
CN110108754A (zh) * 2019-04-25 2019-08-09 四川沐迪圣科技有限公司 基于结构化稀疏分解的光激励红外热成像缺陷检测方法
CN110110786A (zh) * 2019-05-06 2019-08-09 电子科技大学 一种基于nsct与dwt的红外与可见光图像融合方法
CN111680752A (zh) * 2020-06-09 2020-09-18 重庆工商大学 基于Framelet框架的红外与可见光图像融合方法
CN117218048A (zh) * 2023-11-07 2023-12-12 天津市测绘院有限公司 基于三层稀疏光滑模型的红外与可见光图像融合方法
CN117544863A (zh) * 2024-01-10 2024-02-09 深圳市索智科技股份有限公司 一种基于记录仪的信息采集方法、系统及记录仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093580A (zh) * 2007-08-29 2007-12-26 华中科技大学 一种基于非子采样轮廓波变换的图像融合方法
CN102800070A (zh) * 2012-06-19 2012-11-28 南京大学 基于区域和人眼对比敏感特性的异源图像融合方法
CN103455991A (zh) * 2013-08-22 2013-12-18 西北大学 一种多聚焦图像融合方法
CN104200452A (zh) * 2014-09-05 2014-12-10 西安电子科技大学 基于谱图小波变换的红外与可见光图像融合方法及其装置
CN104732504A (zh) * 2015-01-23 2015-06-24 天津大学 基于压缩感知和wbct变换的图像融合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093580A (zh) * 2007-08-29 2007-12-26 华中科技大学 一种基于非子采样轮廓波变换的图像融合方法
CN102800070A (zh) * 2012-06-19 2012-11-28 南京大学 基于区域和人眼对比敏感特性的异源图像融合方法
CN103455991A (zh) * 2013-08-22 2013-12-18 西北大学 一种多聚焦图像融合方法
CN104200452A (zh) * 2014-09-05 2014-12-10 西安电子科技大学 基于谱图小波变换的红外与可见光图像融合方法及其装置
CN104732504A (zh) * 2015-01-23 2015-06-24 天津大学 基于压缩感知和wbct变换的图像融合方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAO WAN等: "Multifocus image fusion based on robust principal component analysis", 《PATTERN RECOGNITION LETTERS》 *
YONGXIN ZHANG等: "Multi-focus image fusion based on robust principal component analysis and pulse-coupled neural network", 《OPTIK》 *
张宝华 等: "一种复合型PCNN的NSCT域多聚焦图像融合方法", 《小型微型计算机系统》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230196B (zh) * 2017-04-17 2020-08-28 江南大学 基于非下采样轮廓波和目标可信度的红外与可见光图像融合方法
CN107230196A (zh) * 2017-04-17 2017-10-03 江南大学 基于非下采样轮廓波和目标可信度的红外与可见光图像融合方法
CN107657217A (zh) * 2017-09-12 2018-02-02 电子科技大学 基于运动目标检测的红外与可见光视频的融合方法
CN107657217B (zh) * 2017-09-12 2021-04-30 电子科技大学 基于运动目标检测的红外与可见光视频的融合方法
CN109886908A (zh) * 2019-02-14 2019-06-14 西安理工大学 红外图像与可见光图像融合方法
CN109886908B (zh) * 2019-02-14 2022-02-11 西安理工大学 红外图像与可见光图像融合方法
CN110070516A (zh) * 2019-03-14 2019-07-30 天津大学 一种面向医学能谱ct的图像融合方法
CN110108754B (zh) * 2019-04-25 2021-10-22 四川沐迪圣科技有限公司 基于结构化稀疏分解的光激励红外热成像缺陷检测方法
CN110108754A (zh) * 2019-04-25 2019-08-09 四川沐迪圣科技有限公司 基于结构化稀疏分解的光激励红外热成像缺陷检测方法
CN110110786A (zh) * 2019-05-06 2019-08-09 电子科技大学 一种基于nsct与dwt的红外与可见光图像融合方法
CN111680752A (zh) * 2020-06-09 2020-09-18 重庆工商大学 基于Framelet框架的红外与可见光图像融合方法
CN117218048A (zh) * 2023-11-07 2023-12-12 天津市测绘院有限公司 基于三层稀疏光滑模型的红外与可见光图像融合方法
CN117218048B (zh) * 2023-11-07 2024-03-08 天津市测绘院有限公司 基于三层稀疏光滑模型的红外与可见光图像融合方法
CN117544863A (zh) * 2024-01-10 2024-02-09 深圳市索智科技股份有限公司 一种基于记录仪的信息采集方法、系统及记录仪

Also Published As

Publication number Publication date
CN105976346B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105976346A (zh) 基于鲁棒主成分稀疏分解的红外与可见光图像融合方法
Guorong et al. Multi‐focus image fusion based on non‐subsampled shearlet transform
CN107451984B (zh) 一种基于混合多尺度分析的红外与可见光图像融合算法
Ma et al. Contrast limited adaptive histogram equalization-based fusion in YIQ and HSI color spaces for underwater image enhancement
Shen et al. An iterative image dehazing method with polarization
CN102005037B (zh) 结合多尺度双边滤波与方向滤波的多模图像融合方法
CN105139367A (zh) 一种基于非下采样剪切波的可见光偏振图像融合方法
CN110163815A (zh) 基于多阶段变分自编码器的低照度还原方法
CN102163329A (zh) 基于尺度类推的单幅红外图像的超分辨率重建方法
Yadav et al. A review on image fusion methodologies and applications
CN110189284A (zh) 一种红外与可见光图像融合方法
Yao et al. The Retinex-based image dehazing using a particle swarm optimization method
Wang et al. Multi‐modal image fusion based on saliency guided in NSCT domain
Singh et al. A novel approach for detail-enhanced exposure fusion using guided filter
Patel et al. A review on infrared and visible image fusion techniques
Liu et al. Remote sensing image fusion method based on discrete wavelet and multiscale morphological transform in the IHS color space
Qian et al. Underwater image recovery method based on hyperspectral polarization imaging
CN106611408A (zh) 一种图像融合方法
Gao et al. Infrared and visible image fusion using dual-tree complex wavelet transform and convolutional sparse representation
Selvaraj et al. Infrared and visible image fusion using multi‐scale NSCT and rolling‐guidance filter
Mao et al. Clarity method of fog and dust image in fully mechanized mining face
CN112686830A (zh) 基于图像分解的单一深度图的超分辨率方法
Chen et al. An image fusion algorithm of infrared and visible imaging sensors for cyber-physical systems
Zhou et al. Infrared image and visible image fusion based on wavelet transform
CN102982563A (zh) 一种基于光学轮廓波变换的图像压缩方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181016

Termination date: 20210428