CN105974822B - 一种航天器自主绕飞交会控制系统地面验证装置的验证方法 - Google Patents

一种航天器自主绕飞交会控制系统地面验证装置的验证方法 Download PDF

Info

Publication number
CN105974822B
CN105974822B CN201610412577.2A CN201610412577A CN105974822B CN 105974822 B CN105974822 B CN 105974822B CN 201610412577 A CN201610412577 A CN 201610412577A CN 105974822 B CN105974822 B CN 105974822B
Authority
CN
China
Prior art keywords
simulator
spacecraft
motion
radial
attitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610412577.2A
Other languages
English (en)
Other versions
CN105974822A (zh
Inventor
贾英民
孙施浩
贾娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610412577.2A priority Critical patent/CN105974822B/zh
Publication of CN105974822A publication Critical patent/CN105974822A/zh
Application granted granted Critical
Publication of CN105974822B publication Critical patent/CN105974822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Abstract

一种航天器自主绕飞交会控制系统地面验证装置的验证方法,属于航天控制地面仿真领域。该验证装置包括中心固定台、三轴转台目标姿态模拟器、三轴转台追踪姿态模拟器、周向运动模块、径向运动模块、垂向运动模块、九自由度运动测控系统、模拟器动力学计算系统以及航天器自主绕飞交会控制系统,采用的验证方法为基于相似理论的长度与时间量纲相似缩比方法,通过建立模拟器动力学模型,计算得到模拟器期望运动轨迹,控制模拟器跟踪期望轨迹实现航天器自主绕飞交会运动地面仿真。利用该装置的验证方法进行仿真试验,可验证全方向自主交会控制任务,特别包括航天器自主绕飞交会控制任务,与现有验证方法相比拓宽了地面验证的能力,且简单易行。

Description

一种航天器自主绕飞交会控制系统地面验证装置的验证方法
技术领域
本发明属于航天控制地面仿真领域,具体涉及一种用于一种航天器自主绕飞交会控制系统地面验证装置的验证方法。
背景技术
航天器自主绕飞交会技术是一项非常重要的空间技术,针对在轨服务任务中失效航天器的捕获和维修,首先需要使追踪器有足够时间对目标器进行全方位的状态确定,找出最佳的交会对接路径,并通过设计有效地控制方法以确保任务安全执行。在整个过程中控制系统需要具有高可靠性和高精度,因此为了降低任务风险,顺利完成航天任务,必须在地面进行充分的实验验证。
目前,国内外各航天机构针对自主绕飞交会技术地面验证问题,多采用五自由度的气浮平台,属于全物理仿真验证装置,可以模拟空间微重力环境,验证自主绕飞交会过程的动力学问题。但由于只能模拟空间五个自由度的运动状态,且喷气推力实施的轨道控制精度难以保证,因此无法准确的验证自主绕飞交会控制系统性能。
在航天器地面仿真试验过程中,针对单方向交会任务,另一种常用的手段是半物理仿真,通过动力学计算得到模拟器运动期望轨迹,控制六自由度模拟器装置跟踪期望轨迹实现与航天器运动等效的过程,能够准确的验证自主绕飞交会控制系统性能。然而经文献检索发现,目前针对绕飞交会任务的半物理仿真系统的研究还不多见,如中国发明专利申请号:200910243276.1,专利名称《人控交会对接半物理仿真试验系统》,以及中国发明专利申请号:201310547320.4,专利名称《空间飞行器交会对接多自由度半物理仿真方法及其装置》,发明的仿真试验系统中追踪模拟器都只能沿固定轨道与目标模拟器交会,无法实现绕飞交会过程。因此发明一种航天器自主绕飞交会控制系统地面验证装置具有重要意义。
另一方面,在航天器绕飞交会过程中,追踪航天器相对目标航天器初始启动距离较远以保证任务安全性,同时绕飞交会过程时间较长。由于地面验证场地有限,试验时间也不宜过长以降低试验成本,因此,地面半物理仿真中需要应用相似理论方法,对长度量纲和时间量纲进行缩比处理以满足地面试验需求。
因此,本发明针对这样一种验证试验需求,提出一种航天器自主绕飞交会控制系统地面验证装置的验证方法,可验证全方向自主交会控制任务,特别包括航天器自主绕飞交会控制任务。
发明内容
本发明的目的:克服现有技术的不足,扩展现有交会对接半物理仿真试验系统的验证能力,提供一种基于相似理论的航天器自主绕飞交会控制系统地面验证装置的试验方法,可验证全方向自主交会控制任务,特别包括航天器自主绕飞交会控制任务。
本发明设计思想是将空间追踪航天器直角坐标系下的三自由度平动转化为地面试验装置中追踪模拟器柱坐标系下的三自由度位置运动,从而可方面实现追踪模拟器绕目标模拟器的周向运动,验证绕飞交会过程。同时,验证方法基于相似理论,对长度量纲和时间量纲进行缩比处理,解决地面验证场地有限,试验时间不宜过长的约束问题。因此能够简单易行的完成航天器自主绕飞交会控制系统地面验证任务。
本发明的技术解决方案是:
一种航天器自主绕飞交会控制系统地面验证装置,由中心固定台(1)、三轴转台目标姿态模拟器(2)、三轴转台追踪姿态模拟器(3)、周向运动模块(4)、径向运动模块(5)、垂向运动模块(6)、九自由度运动测控系统(7)、模拟器动力学计算系统(8)和航天器自主绕飞交会控制系统(9)组成,在柱坐标系下实现追踪模拟器三轴位置运动,可验证全方向自主交会控制任务,特别包括航天器自主绕飞交会控制任务。
所述中心固定台包括:底座(1a)、中心径向直线导轨安装板(1b)、轴承(1c)、三轴转台安装座(1d),底座固定于试验场地中心确定地面柱坐标系原点,中心径向直线导轨安装板通过轴承与底座相连可实现绕底座中心自有转动,三轴转台安装座用于安装固定三轴转台目标姿态模拟器;
所述三轴转台目标姿态模拟器包括:三轴转台(2a)、目标航天器模拟面板(2b),三轴转台实现目标航天器姿态机动过程的地面模拟,目标航天器模拟面板用以安装相对运动状态测量标志点;
所述三轴转台追踪姿态模拟器包括:三轴转台(3a)、追踪航天器模拟面板(3b),三轴转台实现追踪航天器姿态机动过程的地面模拟,追踪航天器模拟面板用以安装相对运动状态测量敏感器;
所述周向运动模块包括:双环圆形导轨及滑块(4a)、周向滑块连接板(4b)、周向伺服电机(4c)、周向齿轮(4d)、周向圆形齿条(4e),双环圆形导轨与周向圆形齿条均固定于试验场地,周向伺服电机固定安装在周向滑块连接板上,周向伺服电机驱动周向齿轮转动,通过齿轮齿条啮合实现周向滑块连接板绕试验中心的圆周运动;
所述径向运动模块包括:径向运动连接板(5a)、径向直线导轨及滑块(5b)、径向滑块连接座(5c)、径向伺服电机(5d)、径向齿轮(5e)、径向直线齿条(5f),径向运动连接板两端分别固定于中心径向直线导轨安装板和径向滑块连接座上,径向直线导轨与径向直线齿条固定在径向运动连接板上,径向伺服电机安装在径向滑块连接座上,径向伺服电机驱动径向齿轮转动,通过齿轮齿条啮合实现径向滑块连接座沿径向直线导轨即柱坐标系径向的直线运动;
所述垂向运动模块包括:垂向运动基座(6a)、垂向直线导轨及滑块(6b)、垂向滑块连接座(6c)、垂向伺服电机(6d)、垂向齿轮(6e)、垂向直线齿条(6f),垂向运动基座固定于径向滑块连接座上,垂向直线导轨与垂向直线齿条固定在垂向运动基座上,垂向伺服电机安装在垂向滑块连接座上,垂向伺服电机驱动垂向齿轮转动,通过齿轮齿条啮合实现垂向滑块连接座沿垂向直线导轨即柱坐标系Z向的直线运动,三轴转台追踪姿态模拟器安装于垂向滑块连接座上;
所述九自由度运动测控系统包括:测量与控制三轴转台目标姿态模拟器、三轴转台追踪姿态模拟器六自由度姿态运动的敏感器和控制器,测量与控制周向运动模块、径向运动模块以及垂向运动模块三自由度运动的敏感器和控制器;
所述模拟器动力学计算系统运行目标模拟器姿态动力学模型、追踪模拟器姿态动力学模型、追踪模拟器相对目标模拟器的轨道动力学模型、直角坐标系到柱坐标系的坐标转换模型;
所述航天器自主绕飞交会控制系统运行追踪航天器控制模型,完成追踪航天器相对目标航天的姿态与轨道控制,实现追踪航天器对目标航天器的自主绕飞交会任务。
进一步,基于该装置的地面验证方法,包括基于相似理论的长度与时间量纲相似缩比方法,建立模拟器动力学模型,计算得到模拟器期望运动轨迹,控制模拟器跟踪期望轨迹实现航天器自主绕飞交会运动地面仿真。
所述基于相似理论的长度与时间量纲相似缩比方法,包括确定追踪航天器相对目标航天器初始相对距离d,自主交会任务完成所需时间t1,地面正方形试验场地边长l,地面期望试验最大时长t2,地面坐标系长度量纲的相似比系数λL,且满足时间量纲的相似比系数λT,且满足质量量纲λm可取为1(只考虑运动模拟情况);
所述模拟器动力学模型,包括模拟器姿态动力学模型、相对轨道动力学模型以及直角坐标系到柱坐标系的坐标转换模型;
模拟器姿态动力学模型如下:
初始条件:ψ0=Ψ0 θ0=Θ0 ω0=Ω0T
其中,I是航天器的惯量阵,是惯量阵相似比系数,ω是模拟器姿态角速度,M是航天器姿态控制力矩,是力矩相似比系数,ψ、θ是描述模拟器姿态的三个欧拉角,转序为3-1-2,ψ0θ0、ω0是模拟器姿态初始角和角速度,Ψ0、Φ0、Θ0、Ω0是航天器姿态初始角和角速度,由空间任务给定;
模拟器相对轨道动力学模型如下:
初始条件xct0=λLXct0,yct0=λLYct0,zct0=λLZct0,
其中,xct、yct、zct是追踪模拟器相对目标模拟器在直角坐标系下的位置,k是相对运动常数k=μ-2p-3,μ是地心引力常数,p是目标航天器运行轨道的半通径,是目标航天器轨道角速度,a是目标航天器运行轨道的半长轴,e是目标航天器运行轨道的偏心率, 是应用开普勒方程计算的目标航天器运行轨道的真近点角,是目标航天器运行轨道的平近点角,t和tp分别是目标模拟器当前运行时刻和经过模拟近地点的时刻,是目标航天器轨道角加速度,用差分方式计算得到,ax、ay、az是航天器自主交会控制系统输出的控制推力加速度,Xct0、Yct0、Zct0是自主交会任务开始时刻追踪航天器相对目标航天器的相对位置和相对速度;
直角坐标系(xct,yct,zct)到柱坐标系(r,η,z)的坐标转换模型:
所述计算模拟器期望运动轨迹,包括目标模拟器姿态运动轨迹、追踪模拟器姿态运动轨迹以及追踪模拟器在柱坐标系下的运动轨迹,控制模拟器跟踪期望运动轨迹即可实现航天器全方向自主交会运动地面验证,特别包括自主绕飞交会运动的地面验证。
本发明与现有技术相比的有益效果是:
(1)克服了现有半物理仿真试验系统无法验证绕飞交会任务的不足,通过直角坐标系到柱坐标系的转换实现绕飞过程的地面模拟验证;
(2)解决了地面验证场地有限,试验时间不宜过长的约束问题,提高了试验系统的能力。
附图说明
图1为本发明装置的整体侧视图;
图2为本发明装置的垂向模块与径向模块正视图;
图3为本发明装置的周向模块与径向模块仰视图;
图4为本发明的仿真系统结构框图
图5为本发明实施例中追踪模拟器地面相对运动轨迹平面仿真图;
图6为本发明实施例中追踪模拟器地面相对姿轨运动轨迹与追踪航天器空间相对姿轨运动轨迹图;
具体实施方式
如图1、2、3所示,为本发明涉及的验证装置各部分的结构示意图,图中包括:中心固定台(1){含底座(1a)、中心径向直线导轨安装板(1b)、轴承(1c)、三轴转台安装座(1d)}、三轴转台目标姿态模拟器(2){含三轴转台(2a)、目标航天器模拟面板(2b)}、三轴转台追踪姿态模拟器(3){含三轴转台(3a)、追踪航天器模拟面板(3b)}、周向运动模块(4){含双环圆形导轨及滑块(4a)、周向滑块连接板(4b)、周向伺服电机(4c)、周向齿轮(4d)、周向圆形齿条(4e)}、径向运动模块(5){含径向运动连接板(5a)、径向直线导轨及滑块(5b)、径向滑块连接座(5c)、径向伺服电机(5d)、径向齿轮(5e)、径向直线齿条(5f)}、垂向运动模块(6){含垂向运动基座(6a)、垂向直线导轨及滑块(6b)、垂向滑块连接座(6c)、垂向伺服电机(6d)、垂向齿轮(6e)、垂向直线齿条(6f)}、九自由度运动测控系统(7)、模拟器动力学计算系统(8)、航天器自主绕飞交会控制系统(9)。
试验过程,①通过三轴转台(2a)调整目标模拟器的姿态达到期望初始状态,并锁定当前状态;②根据实际验证的航天器绕飞交会任务,确定追踪航天器相对姿轨初始状态,由此确定模拟器姿态动力学模型和模拟器相对轨道动力学模型的初始值,并根据直角坐标系到柱坐标系的坐标转换模型计算得到追踪模拟器在地面柱坐标系下的初始位置和速度;③通过周向伺服电机(4c)、径向伺服电机(5d)、垂向伺服电机(6d)以及三轴转台(3a),调整追踪模拟器的姿态和位置达到步骤②计算出的值;④通过九自由度运动测控系统(7)、模拟器动力学计算系统(8)、航天器自主绕飞交会控制系统(9)以及装置的机械部分按图4的方式连接形成地面半物理仿真闭环系统,完成地面验证试验。
实施例
本实施例意在通过仿真说明地面模拟器在本发明提出的方法下运行状态情况。
目标航天器轨道半长轴a=6907900m,偏心率e=0.5,姿态角均为0rad,追踪航天器相对目标航天器初始位置Xct0=100m,Yct0=100m,Zct0=10m,初始速度 初始姿态角度Ψ0=0.6rad,Φ0=0.8rad,Θ0=0.7rad、Ω0=(0.5,0.3,0.5)rad/s,地面试验场地边长l=10m,基本量刚相似比系数:λL=1/20,λT=1/5,即意味着,地面模拟器相对运动距离尺度是空间航天器相对运动的1/20倍,地面试验时间是空间真实时间的1/5倍。
设计相应航天器自主绕飞交会控制算法,可得到追踪模拟器地面相对运动轨迹平面仿真图如图5所示,以及追踪模拟器地面相对姿轨运动轨迹与追踪航天器空间相对姿轨运动轨迹图如图6所示,从图5中可以看出追踪模拟器在地面试验室场地内完成了自主交会过程,从图6可以看出地面模拟器的运动轨迹从长度和时间上都符合初始设定的相似比例系数。

Claims (1)

1.一种航天器自主绕飞交会控制系统地面验证装置的验证方法,其特征在于:该装置由中心固定台(1)、三轴转台目标姿态模拟器(2)、三轴转台追踪姿态模拟器(3)、周向运动模块(4)、径向运动模块(5)、垂向运动模块(6)、九自由度运动测控系统(7)、模拟器动力学计算系统(8)以及航天器自主绕飞交会控制系统(9)组成; 其中中心固定台包括:底座(1a)、中心径向直线导轨安装板(1b)、轴承(1c)、三轴转台安装座(1d),底座固定于试验场地中心确定地面柱坐标系原点,中心径向直线导轨安装板通过轴承与底座相连可实现绕底座中心自有转动,三轴转台安装座用于安装固定三轴转台目标姿态模拟器;三轴转台目标姿态模拟器包括:三轴转台(2a)、目标航天器模拟面板(2b),三轴转台实现目标航天器姿态机动过程的地面模拟,目标航天器模拟面板用以安装相对运动状态测量标志点;三轴转台追踪姿态模拟器包括:三轴转台(3a)、追踪航天器模拟面板(3b),三轴转台实现追踪航天器姿态机动过程的地面模拟,追踪航天器模拟面板用以安装相对运动状态测量敏感器;周向运动模块包括:双环圆形导轨及滑块(4a)、周向滑块连接板(4b)、周向伺服电机(4c)、周向齿轮(4d)、周向圆形齿条(4e),双环圆形导轨与周向圆形齿条均固定于试验场地,周向伺服电机固定安装在周向滑块连接板上,周向伺服电机驱动周向齿轮转动,通过齿轮齿条啮合实现周向滑块连接板绕试验中心的圆周运动;径向运动模块包括:径向运动连接板(5a)、径向直线导轨及滑块(5b)、径向滑块连接座(5c)、径向伺服电机(5d)、径向齿轮(5e)、径向直线齿条(5f),径向运动连接板两端分别固定于中心径向直线导轨安装板和径向滑块连接座上,径向直线导轨与径向直线齿条固定在径向运动连接板上,径向伺服电机安装在径向滑块连接座上,径向伺服电机驱动径向齿轮转动,通过齿轮齿条啮合实现径向滑块连接座沿径向直线导轨即柱坐标系径向的直线运动;垂向运动模块包括:垂向运动基座(6a)、垂向直线导轨及滑块(6b)、垂向滑块连接座(6c)、垂向伺服电机(6d)、垂向齿轮(6e)、垂向直线齿条(6f),垂向运动基座固定于径向滑块连接座上,垂向直线导轨与垂向直线齿条固定在垂向运动基座上,垂向伺服电机安装在垂向滑块连接座上,垂向伺服电机驱动垂向齿轮转动,通过齿轮齿条啮合实现垂向滑块连接座沿垂向直线导轨即柱坐标系Z向的直线运动,三轴转台追踪姿态模拟器安装于垂向滑块连接座上;九自由度运动测控系统包括:测量与控制三轴转台目标姿态模拟器、三轴转台追踪姿态模拟器六自由度姿态运动的敏感器和控制器,测量与控制周向运动模块、径向运动模块以及垂向运动模块三自由度运动的敏感器和控制器;模拟器动力学计算系统运行目标模拟器姿态动力学模型、追踪模拟器姿态动力学模型、追踪模拟器相对目标模拟器的轨道动力学模型、直角坐标系到柱坐标系的坐标转换模型;航天器自主绕飞交会控制系统运行追踪航天器控制模型,完成追踪航天器相对目标航天的姿态与轨道控制,实现追踪航天器对目标航天器的自主绕飞交会任务;
利用该装置进行地面试验的验证方法为基于相似理论的长度与时间量纲相似缩比方法,通过建立模拟器动力学模型,计算得到模拟器期望运动轨迹,然后控制模拟器跟踪期望轨迹实现航天器自主绕飞交会运动地面仿真, 具体过程为:
1)确定追踪航天器相对目标航天器初始相对距离d,自主交会任务完成所需时间t1,地面正方形试验场地边长l,地面期望试验最大时长t2,地面坐标系长度量纲的相似比系数λL,且满足时间量纲的相似比系数λT,且满足在只考虑运动模拟情况时质量量纲λm可取为1;
2)确定模拟器姿态动力学模型、相对轨道动力学模型以及直角坐标系到柱坐标系的坐标转换模型;
模拟器姿态动力学模型如下:
初始条件:ψ0=Ψ0 θ0=Θ0 ω0=Ω0T
其中,I是航天器的惯量阵,是惯量阵相似比系数,ω是模拟器姿态角速度,M是航天器姿态控制力矩,是力矩相似比系数,ψ、θ是描述模拟器姿态的三个欧拉角,转序为3-1-2,ψ0θ0、ω0是模拟器姿态初始角和角速度,Ψ0、Φ0、Θ0、Ω0是航天器姿态初始角和角速度,由空间任务给定;
模拟器相对轨道动力学模型如下:
初始条件xct0=λLXct0,yct0=λLYct0,zct0=λLZct0其中,xct、yct、zct是追踪模拟器相对目标模拟器在直角坐标系下的位置,k是相对运动常数k=μ-2p-3,μ是地心引力常数,p是目标航天器运行轨道的半通径,是目标航天器轨道角速度,a是目标航天器运行轨道的半长轴,e是目标航天器运行轨道的偏心率, 是应用开普勒方程计算的目标航天器运行轨道的真近点角, 是目标航天器运行轨道的平近点角,t和tp分别是目标模拟器当前运行时刻和经过模拟近地点的时刻,是目标航天器轨道角加速度,用差分方式计算得到,ax、ay、az是航天器自主交会控制系统输出的控制推力加速度,Xct0、Yct0、Zct0是自主交会任务开始时刻追踪航天器相对目标航天器的相对位置和相对速度;
直角坐标系(xct,yct,zct)到柱坐标系(r,η,z)的坐标转换模型:
3)计算目标模拟器姿态运动轨迹、追踪模拟器姿态运动轨迹以及追踪模拟器在柱坐标系下的运动轨迹,控制模拟器跟踪期望运动轨迹即可实现航天器全方向自主交会运动地面验证,特别包括自主绕飞交会运动的地面验证。
CN201610412577.2A 2016-06-13 2016-06-13 一种航天器自主绕飞交会控制系统地面验证装置的验证方法 Active CN105974822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610412577.2A CN105974822B (zh) 2016-06-13 2016-06-13 一种航天器自主绕飞交会控制系统地面验证装置的验证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610412577.2A CN105974822B (zh) 2016-06-13 2016-06-13 一种航天器自主绕飞交会控制系统地面验证装置的验证方法

Publications (2)

Publication Number Publication Date
CN105974822A CN105974822A (zh) 2016-09-28
CN105974822B true CN105974822B (zh) 2019-02-22

Family

ID=57010403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610412577.2A Active CN105974822B (zh) 2016-06-13 2016-06-13 一种航天器自主绕飞交会控制系统地面验证装置的验证方法

Country Status (1)

Country Link
CN (1) CN105974822B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422744B (zh) * 2017-05-02 2019-11-05 中国科学院声学研究所 一种基于径向速度控制的交会时间控制方法
CN107161360B (zh) * 2017-06-07 2019-06-11 北京航空航天大学 空间任务可置换的自由基座运动再现跨尺度验证装置
CN107665616B (zh) * 2017-09-15 2019-10-22 北京控制工程研究所 一种九自由度运动模拟器相对运动等效方法及系统
CN109305394B (zh) * 2018-11-09 2020-08-07 北京空间技术研制试验中心 航天器近距离交会试验简化方法
CN110455330B (zh) * 2019-07-05 2021-10-19 哈尔滨工程大学 一种动目标多源探测的层次融合与提取地面验证系统
CN111290291B (zh) * 2019-12-30 2023-01-20 南京理工大学 用于微纳卫星交会对接的地面仿真试验系统及方法
CN112141369B (zh) * 2020-10-09 2023-10-20 哈尔滨理工大学 一种航天器平移靠拢段自主交会对接的决策与控制方法
CN112874818B (zh) * 2021-01-19 2022-08-26 杭州电子科技大学 一种航天器交会系统的有限时间状态反馈控制方法
CN116738580B (zh) * 2023-08-11 2023-11-14 杭州牧星科技有限公司 高亚音速无人机的速度-推力匹配系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268070A (zh) * 2013-04-24 2013-08-28 哈尔滨工业大学 空间多运动体相对运动缩比半物理仿真系统
CN203806153U (zh) * 2014-03-20 2014-09-03 西北工业大学 小型航天器对接装置地面试验平台
CN104598731A (zh) * 2015-01-16 2015-05-06 西北工业大学 航天器空间运动的地面等效实验设计方法
CN105159144A (zh) * 2015-09-10 2015-12-16 哈尔滨工业大学 空间飞行器控制系统地面仿真高速控制开发系统
CN105182770A (zh) * 2015-08-27 2015-12-23 北京控制工程研究所 一种基于旋翼飞行器的航天器半物理仿真实验系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116078A1 (en) * 2001-02-20 2002-08-22 Best System Inc. Control method of open type motion simulation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268070A (zh) * 2013-04-24 2013-08-28 哈尔滨工业大学 空间多运动体相对运动缩比半物理仿真系统
CN203806153U (zh) * 2014-03-20 2014-09-03 西北工业大学 小型航天器对接装置地面试验平台
CN104598731A (zh) * 2015-01-16 2015-05-06 西北工业大学 航天器空间运动的地面等效实验设计方法
CN105182770A (zh) * 2015-08-27 2015-12-23 北京控制工程研究所 一种基于旋翼飞行器的航天器半物理仿真实验系统及方法
CN105159144A (zh) * 2015-09-10 2015-12-16 哈尔滨工业大学 空间飞行器控制系统地面仿真高速控制开发系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
空间合作目标运动再现的相似度分析;赵林等;《宇航学报》;20160131;第37卷(第1期);第94-101页
空间合作目标运动再现的相似设计方法研究;孙施浩等;《宇航学报》;20140731;第35卷(第7期);第802-810页

Also Published As

Publication number Publication date
CN105974822A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105974822B (zh) 一种航天器自主绕飞交会控制系统地面验证装置的验证方法
CN100565406C (zh) 一种基于四个定位器的飞机部件位姿调整系统及方法
CN108621202B (zh) 多臂空间机器人协同精细操作地面实验系统
CN104898642B (zh) 一种用于航天器姿态控制算法的集成测试仿真系统
CN103010491B (zh) 一种气浮台抓捕试验机械臂控制方法
Wilde et al. ORION: A simulation environment for spacecraft formation flight, capture, and orbital robotics
CN107505846B (zh) 一种空间机械臂系统抗干扰姿态协调验证装置及控制方法
CN106094565B (zh) 一种航天器自主交会控制系统地面仿真试验方法
CN109515769A (zh) 多星悬吊式微重力模拟系统
CN103496449A (zh) 一种飞机侧壁部件装配调姿轨迹规划方法
CN109454472B (zh) 一种空间多自由度定位装置及其空间位置解算方法
CN105511500A (zh) 一种空间目标动态光学特性地面模拟中目标和光源控制模拟系统及方法
Gallardo et al. Six degrees of freedom experimental platform for testing autonomous satellites operations
CN103862458A (zh) 一种用于机载伺服系统的六自由度并联平台
Santaguida et al. Development of air-bearing microgravity testbed for autonomous spacecraft rendezvous and robotic capture control of a free-floating target
CN110428715A (zh) 一种磁悬浮演示航天器交会对接科教装置
CN105509577A (zh) 一种基于机械臂的目标运动模拟装置
CN202807109U (zh) 用于在轨服务的空间目标模拟系统
CN117075495A (zh) 一种基于多航天器姿态控制的地面半物理仿真系统
CN111637902A (zh) 深空小天体远距离逼近的地面演示验证系统及方法
CN114153221B (zh) 卫星高精度跟踪指向控制地面仿真系统及方法
CN103606332A (zh) 空间飞行器交会对接多自由度半物理仿真方法及其装置
CN113916499B (zh) 动平台光学测量设备跟踪性能检测系统和方法
CN114895716A (zh) 航天器高精度跟瞄控制地面仿真系统与方法
CN111290291B (zh) 用于微纳卫星交会对接的地面仿真试验系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant