CN105967178A - 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用 - Google Patents

一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用 Download PDF

Info

Publication number
CN105967178A
CN105967178A CN201610470529.9A CN201610470529A CN105967178A CN 105967178 A CN105967178 A CN 105967178A CN 201610470529 A CN201610470529 A CN 201610470529A CN 105967178 A CN105967178 A CN 105967178A
Authority
CN
China
Prior art keywords
quantum dot
graphene quantum
algae
prepared
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610470529.9A
Other languages
English (en)
Other versions
CN105967178B (zh
Inventor
唐群委
张悦
贺本林
陈海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201610470529.9A priority Critical patent/CN105967178B/zh
Publication of CN105967178A publication Critical patent/CN105967178A/zh
Application granted granted Critical
Publication of CN105967178B publication Critical patent/CN105967178B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供了一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用,本发明具体是将紫菜等原料与硫酸进行水热反应即生成石墨烯量子点。本发明充分利用靠近海洋的有利条件,选择含有还原性糖较多的藻类植物,如紫菜、海带、线性刚毛藻、裙带菜等,一步法制备石墨烯量子点,并与量子点敏化太阳能电池相结合。采用本发明制备的石墨烯量子点制备方法简便易行、价格低廉、对环境无任何污染。

Description

一种用藻类植物制备的石墨烯量子点及其在制备 量子点 敏化 太阳能电池中的应用
技术领域
本发明属于量子点技术领域,特别涉及一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用。
背景技术
纳米材料被誉为“21世纪最有前途的材料”,而石墨烯量子点因其较强的量子限边效应和带边效应而广受关注。石墨烯量子点是石墨烯家族中的新成员,石墨烯量子点除了具备石墨烯的大的比表面积、高的载流子迁移率等优异性能外,还有良好的化学惰性,较好的生物相容性等优点;还因为其尺寸极小而展现出了边界效应等一系列新的特性。正是由于石墨烯量子点的独特性质,目前已广泛应用于生物传感、光伏器件等诸多领域。
发明内容
针对现有的石墨烯量子点的制备方法,本发明提供了一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用,本发明采用简单方便的水热法制备得到的石墨烯量子点稳定性好。本发明碳源采用了裙带菜、紫菜、线性刚毛藻、海带等藻类植物,充分利用靠近海洋的条件,制备出水溶性的石墨烯量子点。制备所需原料均属于海洋植物,制备方法简单方便,具有较高的研究意义与价值。
为实现上述发明目的,本发明采用以下技术方案予以实现:
一种用藻类植物制备的石墨烯量子点,它通过以下步骤获得:
(1)、将藻类植物用水浸泡后,放入烘箱,烘干后研磨成粉状;
(2)、称取藻类植物的粉末溶解在水中;
(3)、向步骤(2)制得的溶液中加入浓硫酸,密封搅拌作为前驱体溶液;
(4)、将所述前驱体溶液移入反应釜内,放入烘箱中进行反应;
(5)、将上述反应产物过滤,放入透析膜中透析得到石墨烯量子点。
进一步的:其特征在于:所述步骤(1)中藻类植物均需用水浸泡2~4天,换水4~8次。
进一步的:所述步骤(1)中的藻类植物与步骤(2)中的浓硫酸的质量比为1:1.5~3.5。
进一步的:所述步骤(4)中烘箱温度为170℃,时间为4~8小时。
进一步的:所述步骤(5)透析膜为1000道尔顿,换水3~5次即可得到石墨烯量子点。
本发明还提供了所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用。
进一步的:所述量子点敏化太阳能电池通过以下步骤制得:
(1)、制备二氧化钛胶体,将二氧化钛胶体涂于FTO导电玻璃基体上,高温煅烧制备介孔二氧化钛薄膜,;
(2)、将步骤(1)制备的光阳极浸泡在所述制备的石墨烯量子点中,制成量子点太阳能电池的光阳极;
(3)、利用热解法制备铂对电极;
(4)、将步骤(2)制备的光阳极与步骤(3)制备的铂对电极组装成量子点敏化太阳能电池。
进一步的:所述步骤(2)中光阳极在石墨烯量子点的水溶液中浸泡时间为40~80小时。
进一步的:所述步骤(4)中液体电解质由0.01~0.06 mol/L碘、0.08~0.12 mol/L碘化锂、0.4~0.8 mol/L四丁基碘化铵和0.4~0.6 mol/L 4-叔丁基吡啶的乙腈溶液组成。
进一步的:所述量子点敏化太阳能电池的开路电压为0.3~0.6V、短路电流为0.3~0.7mA·cm-2、光电转换效率为0.1~0.3%。
本发明采用上述技术方案后,主要有以下优点:
(1)、制备工艺简单。本发明以藻类为碳源制备石墨烯量子点,只需一步合成即可得到,制备方法简单易行。
(2)、可大批量生产。本发明制备方法简单可行,可短时间内一次性制备大量的石墨烯量子点。
(3)、制备成本低。本发明所需实验药品均为常见藻类植物,尤其是具备靠近海洋的有利条件,反应物取自海洋,制备成本低。
本发明的石墨烯量子点制备方法简便易行、成本低廉,而且制备得到的石墨烯量子点发光颜色可调控、稳定性好、产率高。
附图说明
图1为本发明以紫菜为碳源所制备的石墨烯量子点的高倍透射图谱。
图2为本发明以线性刚毛藻为碳源所制备的石墨烯量子点紫外吸收图谱,图中百分比表示去离子水占总体积的百分比。
图3为本发明以线性刚毛藻为碳源所制备的石墨烯量子点的发射谱。
图4为本发明以线性刚毛藻为碳源制备的石墨烯量子点在紫外灯照射下的发光效应。
图5为本发明以紫菜为碳源制备的石墨烯量子点在电池中的J-V曲线。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细的说明。
实施例1
一、本发明用藻类植物制备的石墨烯量子点通过以下步骤制得:
1、制备石墨烯量子点的碳源:作为碳源的紫菜、海带、线性刚毛藻、裙带菜,用去离子水浸泡2~4天,换水4~8次,后放入烘箱,60~80℃放置24小时后,研磨成粉状;
2、将紫菜等作为碳源的原料称取0.3~0.6g,溶解在40mL去离子水中;
3、将所述溶液中加入质量分数为98%的浓硫酸80~200μL,密封搅拌10~20分钟作为前驱体溶液;
本发明中所述步骤(1)中的天然大分子碳源的质量与步骤(2)中的浓硫酸的质量比在1:1.5~3.5范围内,所述质量的单位为g,体积的单位为mL。
4、将步骤3所述前驱体溶液移入反应釜内,放入烘箱中进行反应;烘箱温度为140℃~180℃,时间为3~6小时;
5、将反应产物用滤纸一次过滤,放入透析膜中透析得到石墨烯量子点;所述透析膜为1000道尔顿,换水3~5次。
二、量子点敏化太阳能电池的制备
1、采用溶胶-水热法制备二氧化钛胶体,将二氧化钛胶体涂于FTO导电玻璃基体上,经400~500℃煅烧制备介孔二氧化钛薄膜;
2、将步骤1制备的二氧化钛薄膜浸泡在石墨烯量子点溶液中,浸泡时间为40~80小时;制成量子点太阳能电池的光阳极;
3、利用热解法制备铂对电极;
4、将步骤2制备的光阳极与步骤3制备的铂对电极组合,并在中间加入液体电解质组装成量子点敏化太阳能电池。
所述液体电解质由0.01~0.06 mol/L碘、0.08~0.12 mol/L碘化锂、0.4~0.8 mol/L四丁基碘化铵和0.4~0.6 mol/L 4-叔丁基吡啶的乙腈溶液组成;
本发明制得的所述量子点敏化太阳能电池开路电压为0.3~0.6V,短路电流为0.3~0.7mA·cm-2、光电转换效率为0.1~0.3%。
实施例2、本发明用藻类植物制得的石墨烯量子点的性能测试
1、图1是以紫菜为碳源所制备的石墨烯量子点的高倍透射图谱。
2、用紫外可见分光光度计进行测试。如图2所示是以线性刚毛藻为碳源一步法制备的石墨烯量子点的紫外图谱。较明显的吸收峰在280纳米左右,百分比表示去离子水占总体积的百分比,且随量子点浓度降低吸收峰强度降低。
3、用荧光光谱仪进行测试。如图3所示是以线性刚毛藻为碳源一步法制备的石墨烯量子点的发射谱。在不同激发波长的作用下,发射谱峰值出红移现象,且在激发波长为350纳米左右发射谱峰值最高。
4、用紫外灯进行照射后,如图4所示,紫外灯下以线性刚毛藻为碳源制备的石墨烯量子点发出蓝色光。
5、图5为本发明以紫菜为碳源制备的石墨烯量子点在电池中的J-V曲线。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

1.一种用藻类植物制备的石墨烯量子点,其特征在于:它通过以下步骤获得:
(1)、将藻类植物用水浸泡后,放入烘箱,烘干后研磨成粉状;
(2)、称取藻类植物的粉末溶解在水中;
(3)、向步骤(2)制得的溶液中加入浓硫酸,密封搅拌作为前驱体溶液;
(4)、将所述前驱体溶液移入反应釜内,放入烘箱中进行反应;
(5)、将上述反应产物过滤,放入透析膜中透析得到石墨烯量子点。
2.根据权利要求1所述的一种藻类植物制备石墨烯量子点的技术,其特征在于:其特征在于:所述步骤(1)中藻类植物均需用水浸泡2~4天,换水4~8次。
3.根据权利要求1所述的一种藻类植物制备石墨烯量子点的技术,其特征在于:所述步骤(1)中的藻类植物与步骤(2)中的浓硫酸的质量比为1:1.5~3.5。
4.根据权利要求1所述的一种藻类植物制备石墨烯量子点的技术,其特征在于:所述步骤(4)中烘箱温度为170℃,时间为4~8小时。
5.根据权利要求1所述的一种藻类植物制备石墨烯量子点的技术,其特征在于:所述步骤(5)透析膜为1000道尔顿,换水3~5次即可得到石墨烯量子点。
6.权利要求1所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用。
7.根据权利要求6所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用,其特征在于:所述量子点敏化太阳能电池通过以下步骤制得:
(1)、制备二氧化钛胶体,将二氧化钛胶体涂于FTO导电玻璃基体上,高温煅烧制备介孔二氧化钛薄膜,;
(2)、将步骤(1)制备的光阳极浸泡在所述制备的石墨烯量子点中,制成量子点太阳能电池的光阳极;
(3)、利用热解法制备铂对电极;
(4)、将步骤(2)制备的光阳极与步骤(3)制备的铂对电极组装成量子点敏化太阳能电池。
8.根据权利要求7所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用,其特征在于:所述步骤(2)中光阳极在石墨烯量子点的水溶液中浸泡时间为40~80小时。
9.根据权利要求7所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用,其特征在于:所述步骤(4)中液体电解质由0.01~0.06 mol/L碘、0.08~0.12 mol/L碘化锂、0.4~0.8 mol/L四丁基碘化铵和0.4~0.6 mol/L 4-叔丁基吡啶的乙腈溶液组成。
10.根据权利要求6所述的石墨烯量子点在制备量子点敏化太阳能电池中的应用,其特征在于:所述量子点敏化太阳能电池的开路电压为0.3~0.6V、短路电流为0.3~0.7mA·cm-2、光电转换效率为0.1~0.3%。
CN201610470529.9A 2016-06-24 2016-06-24 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用 Expired - Fee Related CN105967178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610470529.9A CN105967178B (zh) 2016-06-24 2016-06-24 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610470529.9A CN105967178B (zh) 2016-06-24 2016-06-24 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用

Publications (2)

Publication Number Publication Date
CN105967178A true CN105967178A (zh) 2016-09-28
CN105967178B CN105967178B (zh) 2018-04-13

Family

ID=57020454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610470529.9A Expired - Fee Related CN105967178B (zh) 2016-06-24 2016-06-24 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用

Country Status (1)

Country Link
CN (1) CN105967178B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596874A (zh) * 2017-01-20 2017-04-26 中国海洋大学 一种淀粉类食品中的碳量子点及其检测方法和应用
CN106892419A (zh) * 2017-01-20 2017-06-27 中国海洋大学 一种海产品制备的碳量子点及其检测方法和应用
CN110078059A (zh) * 2019-06-19 2019-08-02 昆明物理研究所 一种液相催化生长制备石墨烯的方法
CN114456805A (zh) * 2022-01-27 2022-05-10 中原工学院 一种海藻衍生氯原子掺杂的石墨烯量子点的制备及其长波长激发细胞成像应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176382A (zh) * 2011-01-31 2011-09-07 中国科学院上海硅酸盐研究所 石墨烯-量子点复合薄膜的制备方法及构建的太阳能电池
CN103738941A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种石墨烯量子点的制备方法
CN104045076A (zh) * 2014-01-17 2014-09-17 中国科学院上海微系统与信息技术研究所 氧化石墨烯量子点的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176382A (zh) * 2011-01-31 2011-09-07 中国科学院上海硅酸盐研究所 石墨烯-量子点复合薄膜的制备方法及构建的太阳能电池
CN103738941A (zh) * 2013-11-14 2014-04-23 盐城增材科技有限公司 一种石墨烯量子点的制备方法
CN104045076A (zh) * 2014-01-17 2014-09-17 中国科学院上海微系统与信息技术研究所 氧化石墨烯量子点的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596874A (zh) * 2017-01-20 2017-04-26 中国海洋大学 一种淀粉类食品中的碳量子点及其检测方法和应用
CN106892419A (zh) * 2017-01-20 2017-06-27 中国海洋大学 一种海产品制备的碳量子点及其检测方法和应用
CN110078059A (zh) * 2019-06-19 2019-08-02 昆明物理研究所 一种液相催化生长制备石墨烯的方法
CN114456805A (zh) * 2022-01-27 2022-05-10 中原工学院 一种海藻衍生氯原子掺杂的石墨烯量子点的制备及其长波长激发细胞成像应用

Also Published As

Publication number Publication date
CN105967178B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Chen et al. Construction of core–shell FeS2@ ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
Savari et al. Development of photo-anodes based on strontium doped zinc oxide-reduced graphene oxide nanocomposites for improving performance of dye-sensitized solar cells
Biswas et al. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting
Xu et al. Enriching photoelectrons via three transition channels in amino-conjugated carbon quantum dots to boost photocatalytic hydrogen generation
Wu et al. Flake-like NiO/WO3 pn heterojunction photocathode for photoelectrochemical water splitting
Kwon et al. Enhancing solar light-driven photocatalytic activity of mesoporous carbon–TiO2 hybrid films via upconversion coupling
CN108103525B (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN106206032A (zh) 一种用天然大分子制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用
Fan et al. Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting
CN105967178A (zh) 一种用藻类植物制备的石墨烯量子点及其在制备量子点敏化太阳能电池中的应用
Xu et al. Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting
Jamaludin et al. Natural biomass as carbon sources for the synthesis of photoluminescent carbon dots
Venditti et al. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs
Zhang et al. Visible and near-infrared driven Yb 3+/Tm 3+ co-doped InVO 4 nanosheets for highly efficient photocatalytic applications
Huang et al. Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells
CN106892419A (zh) 一种海产品制备的碳量子点及其检测方法和应用
Ramalingam et al. Achieving High‐Quality Freshwater from a Self‐Sustainable Integrated Solar Redox‐Flow Desalination Device
Rheima et al. Fabrication of a new photo-sensitized solar cell using TiO2\ZnO Nanocomposite synthesized via a modified sol-gel Technique
Jaafar et al. The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitizer for dye-sensitized solar cell (DSSC) applications
Rajan et al. Ameliorating the photovoltaic conversion efficiency of ZnO nanorod based dye-sensitized solar cells by strontium doping
Tsai et al. Fabrication of Mesoporous CoS2 Nanotube Arrays as the Counter Electrodes of Dye‐Sensitized Solar Cells
Chen et al. Efficient pollutant degradation under ultraviolet to near-infrared light irradiation and dark condition using CuSe nanosheets: Mechanistic insight into degradation
Zhang et al. Polyoxometalate modified all-weather solar cells for energy harvesting
Aboubakr et al. Effect of morphology and non-metal doping (P and S) on the activity of graphitic carbon nitride toward photoelectrochemical water oxidation
Zhang et al. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180413

Termination date: 20180624