CN105958903A - 一种太阳能发电装置 - Google Patents
一种太阳能发电装置 Download PDFInfo
- Publication number
- CN105958903A CN105958903A CN201610332696.7A CN201610332696A CN105958903A CN 105958903 A CN105958903 A CN 105958903A CN 201610332696 A CN201610332696 A CN 201610332696A CN 105958903 A CN105958903 A CN 105958903A
- Authority
- CN
- China
- Prior art keywords
- type semiconductor
- heat
- controller unit
- control valve
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title abstract description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 212
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 184
- 239000010409 thin film Substances 0.000 claims abstract description 50
- 239000004020 conductor Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 abstract 3
- 230000008859 change Effects 0.000 description 13
- 230000005611 electricity Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 241001424688 Enceliopsis Species 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005680 Thomson effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/10—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/20—Systems characterised by their energy storage means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S10/00—PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
- H02S10/30—Thermophotovoltaic systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S20/00—Supporting structures for PV modules
- H02S20/30—Supporting structures being movable or adjustable, e.g. for angle adjustment
- H02S20/32—Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S2030/10—Special components
- F24S2030/13—Transmissions
- F24S2030/135—Transmissions in the form of threaded elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种太阳能发电装置,包括薄膜太阳能电池、N型半导体、P型半导体、导热底座、蓄电池单元、控制器单元、温度传感器、水泵、电控阀门、水管、电动伸缩杆、支撑柱、螺纹伸缩杆、支撑底板以及传感头;N型半导体、P型半导体均呈“工”字型;导热底座的储水空腔内交错设置有导流挡板;两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间;N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电。本发明将太阳能发电和温差发电有效的结合,提供了一种利用太阳能和地热能的非常有效技术方案,发电效率更高。
Description
本申请是申请日为2016-02-24,申请号为2016101021165,发明名称为一种太阳能发电装置的专利申请的分案申请。
技术领域
本发明涉及一种太阳能发电装置,属于新能源发电技术领域。
背景技术
太阳能作为一种重要的清洁能源,利用太阳能的太阳能电站,既可以是大型电站,也可以是家用小型电站。大型电站通常具有大量的太阳能发电单元,而家用小型电站只要有一两个发电单元即可。每一个太阳能发电单元的采集太阳能的设备主要是若干太阳能电池板,这些太阳能电池板需要由支撑装置支撑在地面上。并且,由于地区差异、四季变化和每一天内不同时间的太阳照射角度变化的原因,太阳能电池板的角度需要调整,才能增加发电的效率。太阳能电池板角度的调整既包括适应四季变化的仰角调整,也包括适用一天内早晚变化的角度调整。
然而,在我国现有的太阳能电池板的支撑与角度调整装置(又称太阳能支架)中,没有一个完整及正规的标准技术规范,能用的支架分为:1、双轴跟踪支架,既能够适应四季变化,也能够适应一天内的早晚变化,这种设备大多采用单根立柱支撑全部重量,结构的稳定性较差,大型的太阳能电站采用的很少;2、单轴跟踪支架,只对太阳旋转角度进行跟踪,即进行适应一天内早晚时间变化的角度调整,造价也比较偏高,控制系统及运行还在总结阶段,维护成本偏高;3、固定式支架,是根据地理位置不同,设定年太阳照射角的平均值,来确定太阳能发电单元的安装角度的一种固定支架,投入成本低,但发电量偏低。综上,因此需要设计一种能够综合考虑发电效率及设备成本的太阳能电池板的支撑与角度调整装置。
温差发电器,是一种静态的固体器件,没有转动部件,体积小、寿命长,工作时无噪声,而且无须维护,成为空间电源研发的热点,大大刺激了温差电技术的发展。汤姆逊效应的物理学解释就是:金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大。像气体一样,当温度不均匀时会产生热扩散,因此自由电子从温度高端向温度低端扩散,在低温端堆积起来,从而在导体内形成电场,在金属棒两端便引成一个电势差。这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止。如何将太阳能发电和温差发电巧妙结合在一起,就是说太阳能电池在发电的过程中肯定会产生热量。如果将这个热量运到温差发电器,利用温差发电效应将太阳能发电的热能转换为电能,目前这方面的研究文章很少。
发明内容
本发明要解决的技术问题是太阳能发电产生的热能不能快速传递和利用,且发电的效率不高。
为了解决上述技术问题,本发明提供了一种太阳能发电装置,包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止。
作为本发明的进一步限定方案,所述的控制器单元采用AT89S52单片机。
作为本发明的进一步限定方案,所述的水泵的进水口可以通过一个多输入单输出的转换装置连接每个水管的电控阀门的输出口。
作为本发明的进一步限定方案,所述的电控阀门采用单片机可以直接控制的电动阀门。
本发明还提供了一种太阳能发电装置的制造方法,包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
具体步骤为:
步骤1,所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
步骤2,N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
步骤3,多个薄膜太阳能电池通过导热硅胶粘在N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;所述的导热底座的上表面通过导热硅胶粘在N型半导体、P型半导体的下表面;
步骤4,所述的N个水管均垂直于地面,并且埋于地面以下;所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;
步骤5,所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
步骤6,所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
步骤7,所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
步骤8,传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连。
本发明还提供了一种太阳能发电装置的控制方法,包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;电控阀门的编号为i,i=1,2,…,N;
具体控制方法为:
步骤1,控制器单元控制水泵启动,然后控制依次打开每个电控阀门5分钟,然后关闭该电控阀门;在每一个电控阀门打开的过程中,控制器单元将N型半导体、P型半导体的上表面的所有温度传感器采集的数值求和然后取平均值,记为Mi;控制器单元将N型半导体、P型半导体的下表面的所有温度传感器采集的数值求和然后取平均值,记为Ni;Mi与Ni作差取绝对值记为Xi,然后保存Xi;
步骤2,控制器单元控制打开max{Xi}所对应的电控阀门;
步骤3,光敏传感器实时采集传感头各个面朝向的光线强度,并由控制器单元根据接收的各个面的光线强度控制两根电动伸缩杆的伸缩长度,从而控制多个薄膜太阳能电池的朝向角度。
本发明还提供了一种太阳能发电系统,包括多个太阳能发电装置;
所述的太阳能发电装置包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;
所有太阳能发电装置的蓄电池单元并联后通过DC/AC单元连接电网。
与现有技术相比,本发明的优点在于:
第一,将太阳能发电模块与半导体温差发电模块串联起来,提供了发电电压和发电量;
第二,利用的都是清洁能源,分别是太阳能和地热能;
第三,N型半导体、P型半导体均呈“工”字型,首先,这种设计大大提高了N型半导体、P型半导体与薄膜太阳能电池、导热底座的接触面积;其次,N型半导体、P型半导体与薄膜太阳能电池、导热底座的接触面不再需要设置金属片和导热板,使得结构更加简单,最后,N型半导体、P型半导体的导热性能虽然不如导体的导热性能好,但是在温差发电的过程中,N型半导体、P型半导体的导热性能还是存在的,最终一个端面的热能还是会向另一个端面扩散,而N型半导体、P型半导体的“工”字型设计可以大大延长热能的扩散时间,从而大大提供N型半导体、P型半导体温差发电效率;
第四,在导热底座的储水空腔内交错设置导流挡板,使导流挡板在储水空腔内分隔构成水流通道,同时导流挡板的上边缘与储水空腔顶部内壁存在间隔,如此下层的水流沿水流通道曲折流动均匀扩散,上层的水流从上方的间隔快速流动,快速流动的水流起到快速散热效果,曲折流动的水流起到缓冲蓄能均匀效果,同时上下层进行热交互,确保热扩散又快又稳定均匀地进行;
第五,N个水管的长度不相同并且设置于地面下均与水泵连接,由于地下水是恒温的,并且深度不同温度不同,比如夏天的时候室外温度高,而地下水的温度低,冬天的时候室外温度低而地下水的温度高,但是当深度变化比较大时,即从宏观来说,地下水越深水温就越高。从地面往下每深100米,温度大约增加2-3摄氏度左右。地表以下5~10米的地层温度就不随室外大气温度的变化而变化,常年维持在15~17℃。这样由于N型半导体、P型半导体的上表面和下表面均设置有温度传感器,控制器单元控制水泵启动,然后循环抽取不同水管里的水,这个时候N型半导体、P型半导体的上表面和下表面设置的温度传感器采集的温度做差值,假如水泵连接20米深的水管时,温差值最大,那么水泵就一直采用20米深的水管供水,这样温差发电的发电效率是最大的,而导热底座的出水口可以连接供水装置,比如水箱等;
第六,利用传感头实时采集各个方向上的太阳光线强度,并由电压采集器将采集的电压信号发送给控制器单元进行处理,再由控制器单元根据设定控制规则来驱动两根电动伸缩杆进行伸缩动作,从而使多个薄膜太阳能电池的朝向角度始终具有最佳的太阳光线接收效率;
第七,利用两根电动伸缩杆和一根支撑柱实现三点式支撑,有效提高了支撑的稳定性,且支撑柱为下端固定、上端球形铰接的半活动式连接,电动伸缩杆为上下端球形铰接的全活动式连接,支撑柱起到单点支撑稳定的作用,两根电动伸缩杆起到双点角度调节的作用,相互配合共同完成多个薄膜太阳能电池的朝向角度调节;
第八,利用螺纹伸缩杆能够方便调节传感头的高度,防止多个薄膜太阳能电池调节朝向过程中遮挡传感头的光线,使传感头具有更好的适应能力。
附图说明
图1为本发明的太阳能发电装置结构示意图;
图2为本发明的传感头俯视结构示意图;
图3为本发明的本发明的水管、水泵的控制原理示意图;
图4为本发明的太阳能发电系统的方框示意图;
图5是本发明的散热底座结构示意图;
图6是图5中A-A处剖视图。
具体实施方式
下面结合附图对发明做进一步详细描述。
如图1-6所示,本发明的一种太阳能发电装置,包括多个薄膜太阳能电池、10个N型半导体、10个P型半导体、导热底座、蓄电池单元、控制器单元、40个温度传感器、水泵、10个电控阀门、10个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,截顶棱锥形的锥面数为8;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;导流挡板在储水空腔内分隔构成水流通道,如图5和6所示;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间,10个水管的长度分别为5米,10米,15米,20米,25米,50米,75米,100米,125米,150米,均垂直于地面设置于地面以下;
N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;所述的N个水管均垂直于地面,并且设置于地面以下;所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;电控阀门的控制端均连接控制器单元的控制信号输出端口,这样控制器单元可以控制每一个电动阀门的导通和关闭,同时控制器单元控制水泵的启动和停止。
其中,所述的控制器单元采用AT89S52单片机。所述的水泵的进水口是通过一个多输入单输出的转换装置连接每个水管的电控阀门的输出口。
其中,温度传感器分别设置于N型半导体的上下表面、P型半导体的上下表面,上表面所有的温度传感器采集的数据求平均值,下表面所有的温度传感器采集的数据求平均值,然后两个平均值取差值,差值最大时温差发电效率最高。
本发明工作原理说明:多个水管的长度不相同并且垂直设置于地面下并且均与水泵连接,由于地下水是恒温的,并且深度不同温度不同,比如夏天的时候室外温度高,而地下水的温度低,夏天白天的时候太阳光照射薄膜太阳能电池发电,发电的同时会产生一定的热量,这部分热量传递到N型半导体、P型半导体的上表面,作为热端,而地下水的温度较低,通过导热底座传递给N型半导体、P型半导体的的下表面,作为冷端,从而利于冷热端温差发电;冬天的时候反之,冬天的时候室外温度低而地下水的温度高。
当深度变化比较大时,即从宏观来说,地下水越深水温就越高。从地面往下每深100米,温度大约增加2-3摄氏度左右。地表以下5~10米的地层温度就不随室外大气温度的变化而变化,常年维持在15~17℃。
至于为什么采用了4M个温度传感器?原因如下:N型半导体、P型半导体的上表面的温度传感器采集的数值取平均值与N型半导体、P型半导体的下表面的温度传感器采集的数值取平均值做差值,差值越大温差发电效率越高;取平均值准确值差值判断更加准确。
至于为什么采用了多个水管?原因如下:夏天的时候,地下水温度较低,但是靠近地表的地下水温度也比较高,当深度达到一定程度,水温会越来越高;冬天的时候,地下水温度会较高,但是靠近地表的地下水温度也会较低,当深度达到一定程度,水温会越来越高;这样水泵通过连接多个水管,需要发电的时候可以选择出最有利于温差发电的那个水管(即N型半导体、P型半导体的上下表面温差值最大)。
控制器单元控制水泵启动,然后循环抽取不同水管里的水,这个时候N型半导体、P型半导体的上表面和下表面设置的温度传感器采集的温度做差值,假如水泵连接20米深的水管时,温差值最大,那么水泵就一直采用20米深的水管供水,这样温差发电的发电效率是最大的,而导热底座的出水口可以连接供水装置,比如水箱等。
其中,N型半导体、P型半导体均呈“工”字型,首先,这种设计大大提高了N型半导体、P型半导体与薄膜太阳能电池、导热底座的接触面积;其次,N型半导体、P型半导体与薄膜太阳能电池、导热底座的接触面不再需要设置金属片和导热板,使得结构更加简单,最后,N型半导体、P型半导体的导热性能虽然不如导体的导热性能好,但是在温差发电的过程中,N型半导体、P型半导体的导热性能还是存在的,最终一个端面的热能还是会向另一个端面扩散,而N型半导体、P型半导体的“工”字型设计可以大大延长热能的扩散时间,从而大大提高N型半导体、P型半导体温差发电效率。
在进行太阳能发电装置的姿态角度调节时,由传感头上的9个光敏传感器分别接收对应方向上的太阳光线,并由控制器单元根据各个方向上的光线强度值控制两根电动伸缩杆的伸缩长度,从而控制多个薄膜太阳能电池的朝向角度,控制器单元首先对各个面上的光线强度值进行大小排序,选择光线强度值最大的面作为朝向面,从而控制两根电动伸缩杆进行对应的伸缩控制。
本发明还提供了一种太阳能发电装置的制造方法,包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
具体步骤为:
步骤1,所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
步骤2,N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
步骤3,多个薄膜太阳能电池通过导热硅胶粘在N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;所述的导热底座的上表面通过导热硅胶粘在N型半导体、P型半导体的下表面;
步骤4,所述的N个水管均垂直于地面,并且埋于地面以下;所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;
步骤5,所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
步骤6,所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
步骤7,所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
步骤8,传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连。
本发明还提供了一种太阳能发电装置的控制方法,包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;电控阀门的编号为i,i=1,2,…,N;
具体控制方法为:
步骤1,控制器单元控制水泵启动,然后控制依次打开每个电控阀门5分钟,然后关闭该电控阀门;在每一个电控阀门打开的过程中,控制器单元将N型半导体、P型半导体的上表面的所有温度传感器采集的数值求和然后取平均值,记为Mi;控制器单元将N型半导体、P型半导体的下表面的所有温度传感器采集的数值求和然后取平均值,记为Ni;Mi与Ni作差取绝对值记为Xi,然后保存Xi;
步骤2,控制器单元控制打开max{Xi}所对应的电控阀门;
步骤3,光敏传感器实时采集传感头各个面朝向的光线强度,并由控制器单元根据接收的各个面的光线强度控制两根电动伸缩杆的伸缩长度,从而控制多个薄膜太阳能电池的朝向角度。
本发明还提供了一种太阳能发电系统,包括多个太阳能发电装置;
所述的太阳能发电装置包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;
所有太阳能发电装置的蓄电池单元并联后通过DC/AC单元连接电网。
Claims (2)
1.一种太阳能发电装置,其特征在于:包括多个薄膜太阳能电池、M个N型半导体、M个P型半导体、导热底座、蓄电池单元、控制器单元、4M个温度传感器、水泵、N个电控阀门、N个水管、两根电动伸缩杆、一根支撑柱、一根螺纹伸缩杆、一块支撑底板以及一个截顶棱锥形的传感头;其中,M≥6,N≥3,截顶棱锥形的锥面数≥6;
所述的N型半导体、P型半导体均呈“工”字型;
所述的导热底座呈方形,且内部设有储水空腔;在导热底座的左侧设有与储水空腔相连通的进水口,在导热底座的顶部设有与储水空腔相连通的出水口;在储水空腔的前侧内壁和后侧内壁之间交错设置有导流挡板,且导流挡板与进水口的进水方向相垂直;导流挡板的上边缘与储水空腔顶部内壁间隔范围在1~2厘米之间;
所述的两根电动伸缩杆和一根支撑柱支撑于导热底座和支撑底板之间,且分别位于等边三角形的三个顶点处;电动伸缩杆的上下两端分别球形铰接在导热底座和支撑底板上;支撑柱的下端固定安装在支撑底板上,上端球形铰接在导热底座上;
所述的螺纹伸缩杆竖直安装在支撑底板上,传感头安装在螺纹伸缩杆的顶端;所述的传感头的截顶面以及各个锥面上均设有光敏传感器;
传感头的各个光敏传感器的信号输出端分别与控制器单元的各个信号输入端相连;控制器单元的信号输出端与电动伸缩杆的控制端相连;
所述的N个水管的长度不相同,长度范围在5米到200米之间;
所述的N型半导体和P型半导体间隔排列,并且相邻的N型半导体和P型半导体之间串联;
所述的多个薄膜太阳能电池串联,然后与N型半导体和P型半导体串联,最后给蓄电池单元充电;
多个薄膜太阳能电池设置于N型半导体、P型半导体的上表面,并且薄膜太阳能电池与N型半导体、P型半导体的接触面绝缘;
所述的导热底座的上表面与N型半导体、P型半导体的下表面绝缘接触;
N型半导体、P型半导体的上表面和下表面均设置温度传感器,温度传感器与控制器单元电连接;
所述的N个水管均垂直于地面,并且设置于地面以下;
所述的水管分别通过电控阀门连接水泵的进水口,水泵的出水口连接导热底座的进水口;
所述的电控阀门的控制端均连接控制器单元的控制信号输出端口,同时控制器单元控制水泵的启动和停止;
所述的控制器单元采用AT89S52单片机。
所述的水泵的进水口可以通过一个多输入单输出的转换装置连接每个水管的电控阀门的输出口。
所述的电控阀门采用单片机可以直接控制的电动阀门。
2.根据权利要求1所述的一种太阳能发电装置,其特征在于:
电控阀门的编号为i,i=1,2,…,N;
具体控制方法为:
步骤1,控制器单元控制水泵启动,然后控制依次打开每个电控阀门5分钟,然后关闭该电控阀门;在每一个电控阀门打开的过程中,控制器单元将N型半导体、P型半导体的上表面的所有温度传感器采集的数值求和然后取平均值,记为Mi;控制器单元将N型半导体、P型半导体的下表面的所有温度传感器采集的数值求和然后取平均值,记为Ni;Mi与Ni作差取绝对值记为Xi,然后保存Xi;
步骤2,控制器单元控制打开max{Xi}所对应的电控阀门;
步骤3,光敏传感器实时采集传感头各个面朝向的光线强度,并由控制器单元根据接收的各个面的光线强度控制两根电动伸缩杆的伸缩长度,从而控制多个薄膜太阳能电池的朝向角度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610332696.7A CN105958903A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610332696.7A CN105958903A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
CN201610102116.5A CN105680770A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610102116.5A Division CN105680770A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105958903A true CN105958903A (zh) | 2016-09-21 |
Family
ID=56234664
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610297973.5A Pending CN105932932A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电系统 |
CN201610297205.XA Pending CN105871299A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电系统 |
CN201610301653.2A Pending CN106026855A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置的控制方法 |
CN201610102116.5A Pending CN105680770A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
CN201610301654.7A Pending CN105897121A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
CN201610332696.7A Pending CN105958903A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
CN201610300464.3A Pending CN105811857A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置的制造方法 |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610297973.5A Pending CN105932932A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电系统 |
CN201610297205.XA Pending CN105871299A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电系统 |
CN201610301653.2A Pending CN106026855A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置的控制方法 |
CN201610102116.5A Pending CN105680770A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
CN201610301654.7A Pending CN105897121A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610300464.3A Pending CN105811857A (zh) | 2016-02-24 | 2016-02-24 | 一种太阳能发电装置的制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (7) | CN105932932A (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101749828A (zh) * | 2009-09-07 | 2010-06-23 | 杭州哲达科技股份有限公司 | 暖通空调温差控制节能方法 |
CN201846280U (zh) * | 2010-11-08 | 2011-05-25 | 昆明理工大学 | 轻型太阳能车动态太阳能功率自动追踪装置 |
CN102287923A (zh) * | 2011-06-24 | 2011-12-21 | 中国科学院广州能源研究所 | 一种太阳能热电气三供系统及方法 |
CN103259458A (zh) * | 2012-02-16 | 2013-08-21 | 王广武 | 太阳能温差发电系统 |
CN203734617U (zh) * | 2014-03-18 | 2014-07-23 | 安徽工业大学 | 一种自然流水型太阳能综合利用装置 |
CN204103861U (zh) * | 2014-06-19 | 2015-01-14 | 安徽旭腾光伏电力有限公司 | 一种太阳能光电光热综合利用组件 |
CN204334473U (zh) * | 2015-01-28 | 2015-05-13 | 安徽工业大学 | 一种太阳能综合利用的双效集热器 |
CN105276862A (zh) * | 2015-09-14 | 2016-01-27 | 安徽建筑大学 | 网箱式地表水源换热器 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201332372Y (zh) * | 2008-12-26 | 2009-10-21 | 汤文渊 | 利用液冷循环冷却的余热温差发电系统 |
CN102487255B (zh) * | 2010-12-06 | 2015-12-09 | 新奥科技发展有限公司 | 太阳能综合利用装置 |
CN103017279B (zh) * | 2012-12-28 | 2015-05-20 | 上海交通大学 | 适应运行周期内负荷变化的地源热管换热系统及控制方法 |
CN203731603U (zh) * | 2014-02-28 | 2014-07-23 | 南京东创系统工程有限公司 | 地源热泵空调系统的地下热平衡及换热装置 |
CN104883126A (zh) * | 2014-03-01 | 2015-09-02 | 张庆春 | 槽式太阳能发电与聚热组合应用设备 |
CN105258395B (zh) * | 2015-10-10 | 2017-08-01 | 西安交通大学 | 一种复合式土壤源热泵系统及控制方法 |
-
2016
- 2016-02-24 CN CN201610297973.5A patent/CN105932932A/zh active Pending
- 2016-02-24 CN CN201610297205.XA patent/CN105871299A/zh active Pending
- 2016-02-24 CN CN201610301653.2A patent/CN106026855A/zh active Pending
- 2016-02-24 CN CN201610102116.5A patent/CN105680770A/zh active Pending
- 2016-02-24 CN CN201610301654.7A patent/CN105897121A/zh active Pending
- 2016-02-24 CN CN201610332696.7A patent/CN105958903A/zh active Pending
- 2016-02-24 CN CN201610300464.3A patent/CN105811857A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101749828A (zh) * | 2009-09-07 | 2010-06-23 | 杭州哲达科技股份有限公司 | 暖通空调温差控制节能方法 |
CN201846280U (zh) * | 2010-11-08 | 2011-05-25 | 昆明理工大学 | 轻型太阳能车动态太阳能功率自动追踪装置 |
CN102287923A (zh) * | 2011-06-24 | 2011-12-21 | 中国科学院广州能源研究所 | 一种太阳能热电气三供系统及方法 |
CN103259458A (zh) * | 2012-02-16 | 2013-08-21 | 王广武 | 太阳能温差发电系统 |
CN203734617U (zh) * | 2014-03-18 | 2014-07-23 | 安徽工业大学 | 一种自然流水型太阳能综合利用装置 |
CN204103861U (zh) * | 2014-06-19 | 2015-01-14 | 安徽旭腾光伏电力有限公司 | 一种太阳能光电光热综合利用组件 |
CN204334473U (zh) * | 2015-01-28 | 2015-05-13 | 安徽工业大学 | 一种太阳能综合利用的双效集热器 |
CN105276862A (zh) * | 2015-09-14 | 2016-01-27 | 安徽建筑大学 | 网箱式地表水源换热器 |
Also Published As
Publication number | Publication date |
---|---|
CN105897121A (zh) | 2016-08-24 |
CN106026855A (zh) | 2016-10-12 |
CN105871299A (zh) | 2016-08-17 |
CN105680770A (zh) | 2016-06-15 |
CN105932932A (zh) | 2016-09-07 |
CN105811857A (zh) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105932962A (zh) | 一种太阳能发电装置 | |
Atmaja | Façade and rooftop PV installation strategy for building integrated photo voltaic application | |
CN101539338A (zh) | 自行高效发电的太阳能热水器 | |
CN105811859A (zh) | 一种太阳能发电装置的制造方法 | |
CN102829542A (zh) | 太阳光伏变功率电热蓄能热水器及热水系统 | |
KR101379445B1 (ko) | 태양 추적식 트랙커를 구비한 태양광 및 태양열 복합시스템 | |
CN203100129U (zh) | 太阳光伏变功率电热蓄能热水系统 | |
CN105958903A (zh) | 一种太阳能发电装置 | |
CN105958902A (zh) | 一种太阳能发电装置的控制方法 | |
CN105932931A (zh) | 太阳能发电装置 | |
CN104426467A (zh) | 户用型光伏电池随光装置 | |
CN106679195A (zh) | 一种循环型光伏光热设备 | |
CN105978450A (zh) | 太阳能发电装置 | |
CN210921544U (zh) | 一种太阳能结合储热井跨季节蓄热装置 | |
CN212508640U (zh) | 一种新型组合式风力发电站 | |
CN105932934A (zh) | 太阳能发电装置 | |
KR20100125002A (ko) | 태양광과 태양열 및 풍력을 이용한 복합 발전장치 | |
CN105515500A (zh) | 太阳能发电装置 | |
CN105763140A (zh) | 太阳能发电系统 | |
CN116191552A (zh) | 一种风电光电光热地热柔性储能产能建筑系统 | |
CN105553388A (zh) | 太阳能发电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160921 |
|
WD01 | Invention patent application deemed withdrawn after publication |