CN105957934A - 一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 - Google Patents
一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 Download PDFInfo
- Publication number
- CN105957934A CN105957934A CN201610263454.7A CN201610263454A CN105957934A CN 105957934 A CN105957934 A CN 105957934A CN 201610263454 A CN201610263454 A CN 201610263454A CN 105957934 A CN105957934 A CN 105957934A
- Authority
- CN
- China
- Prior art keywords
- algan
- layer
- thickness
- sic substrate
- dbr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910002704 AlGaN Inorganic materials 0.000 title claims abstract description 83
- 239000000758 substrate Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 230000010287 polarization Effects 0.000 claims abstract description 8
- 230000006698 induction Effects 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 7
- 229910018885 Pt—Au Inorganic materials 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 5
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 3
- 229910007569 Zn—Au Inorganic materials 0.000 claims description 2
- 229910002056 binary alloy Inorganic materials 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims description 2
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract description 5
- 230000005684 electric field Effects 0.000 abstract description 4
- 230000006798 recombination Effects 0.000 abstract description 4
- 238000005215 recombination Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 239000004047 hole gas Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/10—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
- H01L33/105—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
一种n‑SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及其制备方法,属于半导体发光器件领域。其依次由下电极层、n‑SiC衬底、n‑Alx0Ga1‑x0N导电缓冲层、n‑AlGaN基DBR下反射层、n‑Alx1Ga1‑x1N电流扩展层、AlGaN基极化诱导隧道结、p‑Alx2Ga1‑x2N空穴注入层、AlGaN基量子阱有源区、n‑Alx3Ga1‑x3N电子注入层、n‑AlGaN基DBR上反射层和上电极层构成,0.1≤x0、x1、x2、x3≤0.9。采用与AlGaN晶格更匹配的SiC衬底,改善AlGaN质量,提高内量子效率;利用谐振腔结构,增强TE模偏振光,提高器件光提取效率;通过隧道结实现结构倒置,减弱了极化电场的影响,提高量子阱内载流子复合发光效率。本发明进一步拓展了半导体紫外发光器件的应用范围。
Description
技术领域
本发明属于半导体发光器件领域,具体涉及一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及其制备方法。
背景技术
随着GaN(InGaN、AlGaN)基LED研发的不断深入,其技术创新与应用领域不断扩展,市场也越来越宽广,以AlGaN为主要材料的紫外LED逐渐成为科研人员的研究重点。AlGaN是直接带隙半导体材料,通过调节Al组分的含量,其带隙可在3.4eV~6.2eV之间变化,波长覆盖范围为365nm~200nm,涵盖了大部分紫外波段,是制备紫外LED的理想材料。相比于传统紫外光源,AlGaN基紫外LED具有高效节能、安全环保、可靠耐用、体积小等主要优点,随着技术的发展会逐步替代原有的紫外灯产品,具有重要研究意义。但是,目前AlGaN基紫外LED的发光效率较低,大多在10%以下,而且随着波长变短其发光效率呈指数函数下降。主要原因在于:AlGaN材料与蓝宝石衬底之间存在较大的晶格失配,这将在外延膜中产生大量位错,导致器件内量子效率低;高Al组分器件TE模(E⊥c轴)偏振光较弱,光提取效率低;量子阱内极化效应引起强极化电场,导致载流子复合发光效率降低。所以,实现高发光效率AlGaN基紫外LED是至关重要的,这也是未来紫外LED器件一个重要的研究课题之一。
发明内容
本发明的目的就是为解决上述紫外LED发光效率低问题,从提高外延层结晶质量、简化器件制作工艺和改善器件性能等方面综合考虑,在导电SiC衬底上研制带有隧道结的AlGaN基垂直结构谐振腔紫外LED。该器件结构既可改善AlGaN外延层质量,又可提高器件的光提取效率,并可以利用隧道结实现p-n结倒置结构,从而达到提升器件发光效率的目的。
本发明的技术方案是:
本发明所设计的一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片(见附图1和附图说明),其特征在于:其从下至上依次由下电极层11、n-SiC衬底1、n-Alx0Ga1-x0N导电缓冲层2、n-AlGaN基DBR下反射层3、n-Alx1Ga1-x1N电流扩展层4、AlGaN基极化诱导隧道结5、p-Alx2Ga1-x2N空穴注入层6、AlGaN基量子阱有源区7、n-Alx3Ga1-x3N电子注入层8、n-AlGaN基DBR上反射层9和上电极层10构成,其中0.1≤x0、x1、x2、x3≤0.9,电流可在上、下两电极之间垂直于外延层注入器件;本发明采用与AlGaN晶格更匹配的n-SiC作为衬底1,远小于它与蓝宝石衬底之间的晶格失配,这非常有利于改善AlGaN外延层质量,降低位错密度,提高器件内量子效率;利用n-AlGaN基DBR分别作为下反射层3和上反射层9,构成谐振腔结构,增强TE模偏振光,提高器件光提取效率;通过AlGaN基极化诱导隧道结5实现p-n结倒置结构,即LED结构倒序生长,其生长顺序为在下反射层3上依次制备n-Alx1Ga1-x1N电流扩展层4、AlGaN基极化诱导隧道结5、p-Alx2Ga1-x2N空穴注入层6、AlGaN基量子阱有源区7、n-Alx3Ga1-x3N电子注入层8。正向电流可通过n-SiC衬底1导入,依次穿过n-Alx0Ga1-x0N导电缓冲层2、n-AlGaN基DBR下反射层3、n-Alx1Ga1-x1N层电流扩展4,并最终穿过隧道结5进入p-Alx2Ga1-x2N空穴注入层6。与n型电子注入层和p型空穴注入层分别位于有源区下面和上面的常规LED结构相比,p-n结倒置结构可减弱极化电场的影响,提高量子阱内载流子复合发光效率。
如上所述的一种n-SiC衬底AlGaN基垂直导电结构谐振腔紫外LED芯片,采用n-AlGaN基DBR作为上反射层9和下反射层3形成谐振腔;其特征在于:DBR由n-Alx4Ga1-x4N层和n-Alx5Ga1-x5N层交替生长组成(0.1≤x4、x5≤0.9,且x4≠x5),每层厚度可由公式d=λ/4n(d为层厚,λ为DBR的中心波长,n为折射率)决定,通过两层组分差和对数可以控制DBR的反射率;其中,上反射层9中DBR的对数为15~20对,反射率为75%~80%;下反射层3中DBR对数为30~50对之间,反射率为95%以上;并且,通过调整谐振腔内各层厚度,可以实现谐振腔的腔模谐振波长、DBR的中心波长、有源区的发光谱峰值波长三者相匹配。
如上所述的一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片,其特征在于:AlGaN基极化诱导隧道结5由下至上依次由n-Alx6Ga1-x6N层12、Alx7Ga1-x7N极化诱导层13和p-Alx6Ga1-x6N层14构成(见附图2和附图说明,即n-Alx6Ga1-x6N层12位于n-Alx1Ga1-x1N电流扩展层4的上面,p-Alx6Ga1-x6N层14位于p-Alx2Ga1-x2N空穴注入层6的下面),其中0.1≤x6<x7≤0.9;由于AlGaN的强极化效应,在Alx7Ga1-x7N极化诱导层13界面两侧将分别产生高密度的二维空穴气和电子气,从而提高了AlGaN基极化诱导隧道结的隧穿几率和隧穿电流。
一种如上所述的n-SiC衬底AlGaN基垂直导电结构谐振腔紫外LED芯片的制备方法,其步骤如下:
(1)在n-SiC衬底1上采用MOCVD方法依次外延生长n-Alx0Ga1-x0N导电缓冲层2(厚度50~100nm)、n-AlGaN基DBR下反射层3(DBR对数在30~50对之间,反射率95%以上,厚度2~3μm)、n-Alx1Ga1-x1N电流扩展层4(厚度200~300nm)、AlGaN基极化诱导隧道结5(p-Alx6Ga1-x6N层14厚度为100~200nm,Alx7Ga1-x7N极化诱导层13厚度为5~15nm,n-Alx6Ga1-x6N层12厚度为100~200nm)、p-Alx2Ga1-x2N空穴注入层6(厚度200~300nm)、AlGaN基量子阱有源区7(量子阱由阱层Alx8Ga1-x8N和垒层Alx9Ga1-x9N交替生长组成,对数在3~5对之间,每个阱层的厚度2~5nm,每个垒层的厚度10~20nm,其中0≤x8<x9≤0.9)、n-Alx3Ga1-x3N电子注入层8(厚度200~300nm)、n-AlGaN基DBR上反射层9(DBR对数在15~20对之间,反射率控制在75%~80%之间,厚度1~2μm),从而制备得到AlGaN基谐振腔紫外LED结构;生长源为三甲基铝、三甲基镓和高纯氨气,生长温度为1000~1200℃,生长压强为100~300mbar,并利用硅烷和二茂镁分别进行n型和p型掺杂,掺杂浓度为1017~1020/cm3。
(2)在n-AlGaN基DBR上反射层9上制备上电极层10(厚度30~120nm),在n-SiC衬底背面制备下电极层11(厚度60~100nm);电极材料可以是Au、Ni等单质材料或Ni-Au、Ti-Au、Zn-Au、Pt-Au等二元合金材料,也可以是Ti-Pt-Au、Ti-Ni-Au或Ni-Pt-Au等三元合金材料,制备电极的方法可采用热蒸镀、电子束蒸镀或磁控溅射方法。
本发明的效果和益处:本发明采用与AlGaN晶格更匹配的SiC衬底,改善AlGaN质量,提高内量子效率;利用DBR形成谐振腔,提高光提取效率;通过隧道结实现pn结倒置,减弱极化电场影响,提高量子阱内载流子复合发光效率。同时,垂直结构LED可有效避免电流拥堵效应。本发明方法可以获得高效的AlGaN基紫外LED,进一步拓展半导体紫外发光器件的应用范围。
附图说明
图1:本发明所述AlGaN基垂直结构谐振腔紫外LED的结构示意图;
图2:本发明所述AlGaN基垂直结构谐振腔紫外LED结构中的AlGaN基极化诱导隧道结的结构示意图,其中“+”和“-”分别表示界面处形成的正极化电荷与负极化电荷;
图3:实施例1制备的LED的DBR的扫描电子显微镜照片;
图4:实施例1制备的LED的电注入发光谱图;
图5:常规的LED与实施例1制备的LED的光输出强度对比图。
图中标识,1为n-SiC衬底,2为n-Alx0Ga1-x0N导电缓冲层,3为下反射层(n-AlGaN基下DBR),4为n-Alx1Ga1-x1N电流扩展层,5为AlGaN基极化诱导隧道结,6为p-Alx2Ga1-x2N空穴注入层,7为AlGaN基量子阱有源区,8为n-Alx3Ga1-x3N电子注入层、9为上反射层(n-AlGaN基上DBR),10为上电极层,11为下电极层,12为n-Alx6Ga1-x6N层,13为Alx7Ga1-x7N极化诱导层,14为p-Alx6Ga1-x6N层。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施例。
实施例1:
1.采用MOCVD方法,在商用n-SiC衬底上一次性外延制备AlGaN基紫外LED结构,如图1所示。具体结构如下:在n-SiC(掺杂浓度为2×1018/cm3)衬底上1依次制备n-Al0.3Ga0.7N导电缓冲层2(厚度80nm)、n-AlGaN基DBR下反射层3(由34nm厚n-Al0.1Ga0.9N层和36nm厚n-Al0.3Ga0.7N层交替生长组成,掺杂浓度分别为2×1018/cm3和4×1018/cm3,对数为30,反射率为95%)、n-Al0.1Ga0.9N层电流扩展层4(掺杂浓度5×1017/cm3,厚度200nm)、AlGaN基极化诱导隧道结5(Al0.3Ga0.7N极化诱导层13厚度10nm,该层未掺杂;n-Al0.1Ga0.9N层12和p-Al0.1Ga0.9N层14厚度均为100nm,掺杂浓度分别为4×1018/cm3和1×1020/cm3)、p-Al0.1Ga0.9N空穴注入层6(掺杂浓度1×1020/cm3,厚度200nm)、AlGaN基量子阱有源区7(量子阱对数为3对,阱层为GaN,厚度2nm;垒层为Al0.1Ga0.9N,厚度10nm)、n-Al0.1Ga0.9N电子注入层8(掺杂浓度2×1018/cm3,厚度200nm)、n-AlGaN基DBR上反射层9(由34nm厚n-Al0.1Ga0.9N层和36nm厚n-Al0.3Ga0.7N层交替生长组成,掺杂浓度分别为2×1018/cm3和4×1018/cm3,对数为15对,反射率为75%)。生长源为三甲基铝、三甲基镓和高纯氨气,利用硅烷和二茂镁分别进行n型和p型掺杂,AlGaN导电缓冲层2生长温度为1100℃,反应压强为100mbar,其他各层生长温度均为1060℃,反应压强为300mbar。器件各层具体生长参数见表1。图3为AlGaN基DBR的扫描电子显微镜照片,可以发现周期性DBR结构形成,且界面特性良好。
2.上、下表面分别采用热蒸镀方法制备Ni/Au电极层10(厚度60nm,Ni层厚度为30nm,Au层厚度为30nm)和Ni电极层11(厚度80nm),实现垂直结构AlGaN基紫外LED。电极的具体制备工艺见表2。
3.图4所示为器件在不同驱动电流下的电致发光谱,此时器件的下电极连接直流电源的正极,上电极连接负极。在5mA、10mA、15mA、20mA、25mA和30mA的正向电流下,发光谱在360nm处均显示出紫外发射峰。从图5中还可以发现,相比常规LED,谐振腔LED器件其输出光强度较以往提高了2倍。由上面一些数据可以看出本发明方案的优越性和效果。
表1:垂直结构谐振腔紫外LED的各层生长参数
表1附注:TMGa代表三甲基镓;TMAl代表三甲基铝;Cp2Mg代表二茂镁;SiH4代表硅烷;NH3代表高纯氨气。
表2:器件电极制备工艺参数
下电极Ni | 上电极第一层Ni | 上电极第二层Au | |
蒸发时间(秒) | 80 | 30 | 20 |
腔内压力(帕斯卡) | 1.3×10-3 | 1.3×10-3 | 1.3×10-3 |
厚度(纳米) | 80 | 30 | 30 |
Claims (5)
1.一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片,其特征在于:其依次由下电极层(11)、n-SiC衬底(1)、n-Alx0Ga1-x0N导电缓冲层(2)、n-AlGaN基DBR下反射层(3)、n-Alx1Ga1-x1N电流扩展层(4)、AlGaN基极化诱导隧道结(5)、p-Alx2Ga1-x2N空穴注入层(6)、AlGaN基量子阱有源区(7)、n-Alx3Ga1-x3N电子注入层(8)、n-AlGaN基DBR上反射层(9)和上电极层(10)构成,0.1≤x0、x1、x2、x3≤0.9;
其中,n-AlGaN基DBR由n-Alx4Ga1-x4N层和n-Alx5Ga1-x5N层交替生长组成,0.1≤x4、x5≤0.9,且x4≠x5,上反射层(9)中DBR的对数为15~20对,反射率为75%~80%;下反射层(3)中DBR对数为30~50对之间,反射率为95%以上;
AlGaN基极化诱导隧道结(5)由下至上依次由n-Alx6Ga1-x6N层(12)、Alx7Ga1-x7N极化诱导层(13)和p-Alx6Ga1-x6N层(14)构成,其中0.1≤x6<x7≤0.9;
AlGaN基量子阱有源区(7)由阱层Alx8Ga1-x8N和垒层Alx9Ga1-x9N交替生长组成,对数在3~5对之间,0≤x8<x9≤0.9。
2.如权利要求1所述的一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片,其特征在于:n-Alx0Ga1-x0N导电缓冲层(2)的厚度为50~100nm、n-AlGaN基DBR下反射层(3)的厚度为2~3μm、n-Alx1Ga1-x1N电流扩展层(4)的厚度为200~300nm、p-Alx6Ga1-x6N层(14)的厚度为100~200nm、Alx7Ga1-x7N极化诱导层(13)的厚度为5~15nm、n-Alx6Ga1-x6N层(12)的厚度为100~200nm、p-Alx2Ga1-x2N空穴注入层(6)的厚度为200~300nm、AlGaN基量子阱有源区(7)中每个阱层Alx8Ga1-x8N的厚度为2~5nm、每个垒层Alx9Ga1-x9N的厚度为10~20nm、n-Alx3Ga1-x3N电子注入层(8)的厚度为200~300nm、n-AlGaN基DBR上反射层(9)的厚度为1~2μm、上电极层(10)的厚度为30~120nm、下电极层(11)的厚度为60~100nm。
3.如权利要求1所述的一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片,其特征在于:电极材料是Au、Ni单质材料,Ni-Au、Ti-Au、Zn-Au、Pt-Au二元合金材料,Ti-Pt-Au、Ti-Ni-Au、Ni-Pt-Au三元合金材料中的一种。
4.权利要求1所述的n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片的制备方法,其步骤如下:
(1)在n-SiC衬底(1)上采用MOCVD方法依次外延生长n-Alx0Ga1-x0N导电缓冲层(2)、n-AlGaN基DBR下反射层(3)、n-Alx1Ga1-x1N电流扩展层(4)、AlGaN基极化诱导隧道结(5)、p-Alx2Ga1-x2N空穴注入层(6)、AlGaN基量子阱有源区(7)、n-Alx3Ga1-x3N电子注入层(8)、n-AlGaN基DBR上反射层(9);生长源为三甲基铝、三甲基镓和高纯氨气,生长温度为1000~1200℃,生长压强为100~300mbar,利用硅烷和二茂镁分别进行n型和p型掺杂,掺杂浓度为1017~1020/cm3;
(2)在n-AlGaN基DBR上反射层(9)上制备上电极层(10),在n-SiC衬底背面制备下电极层(11),从而制备得到n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片。
5.如权利要求4所述的n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片的制备方法,其特征在于:制备上电极层(10)和下电极层(11)的方法为热蒸镀、电子束蒸镀或磁控溅射方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610263454.7A CN105957934B (zh) | 2016-04-26 | 2016-04-26 | 一种n‑SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610263454.7A CN105957934B (zh) | 2016-04-26 | 2016-04-26 | 一种n‑SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105957934A true CN105957934A (zh) | 2016-09-21 |
CN105957934B CN105957934B (zh) | 2018-02-13 |
Family
ID=56915434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610263454.7A Active CN105957934B (zh) | 2016-04-26 | 2016-04-26 | 一种n‑SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105957934B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111146314A (zh) * | 2018-11-06 | 2020-05-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | 提高氮化物半导体紫外发光二极管取光效率的方法及应用 |
CN111725367A (zh) * | 2020-06-30 | 2020-09-29 | 中南大学 | 一种垂直结构氮化物rc led和制备方法 |
CN111785819A (zh) * | 2020-06-29 | 2020-10-16 | 厦门大学 | 一种GaN基窄带发射共振腔发光二极管及其制作方法 |
CN114551653A (zh) * | 2022-01-20 | 2022-05-27 | 北京大学 | 一种利用图形化金刚石材料改善Micro-LED通信性能的方法及器件 |
CN114583026A (zh) * | 2022-05-05 | 2022-06-03 | 徐州立羽高科技有限责任公司 | 一种新型半导体深紫外光源结构 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014184136A1 (de) * | 2013-05-14 | 2014-11-20 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauelement und verfahren zu seiner herstellung |
CN104979446A (zh) * | 2015-05-26 | 2015-10-14 | 江苏新广联科技股份有限公司 | SiC衬底GaN基紫外LED外延片、SiC衬底GaN基紫外LED器件及制备方法 |
-
2016
- 2016-04-26 CN CN201610263454.7A patent/CN105957934B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014184136A1 (de) * | 2013-05-14 | 2014-11-20 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauelement und verfahren zu seiner herstellung |
CN104979446A (zh) * | 2015-05-26 | 2015-10-14 | 江苏新广联科技股份有限公司 | SiC衬底GaN基紫外LED外延片、SiC衬底GaN基紫外LED器件及制备方法 |
Non-Patent Citations (1)
Title |
---|
HONGWEI LIANG ET AL: "《Vertically conducting deep-ultraviolet light-emitting diodes with interband tunneling junction grown on 6H-SiC substrate》", 《JAPANESE JOURNAL OR APPLIED PHYSICS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111146314A (zh) * | 2018-11-06 | 2020-05-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | 提高氮化物半导体紫外发光二极管取光效率的方法及应用 |
CN111785819A (zh) * | 2020-06-29 | 2020-10-16 | 厦门大学 | 一种GaN基窄带发射共振腔发光二极管及其制作方法 |
CN111785819B (zh) * | 2020-06-29 | 2021-09-07 | 厦门大学 | 一种GaN基窄带发射共振腔发光二极管及其制作方法 |
CN111725367A (zh) * | 2020-06-30 | 2020-09-29 | 中南大学 | 一种垂直结构氮化物rc led和制备方法 |
CN114551653A (zh) * | 2022-01-20 | 2022-05-27 | 北京大学 | 一种利用图形化金刚石材料改善Micro-LED通信性能的方法及器件 |
CN114551653B (zh) * | 2022-01-20 | 2023-08-22 | 北京大学 | 一种利用图形化金刚石材料改善Micro-LED通信性能的方法及器件 |
CN114583026A (zh) * | 2022-05-05 | 2022-06-03 | 徐州立羽高科技有限责任公司 | 一种新型半导体深紫外光源结构 |
CN114583026B (zh) * | 2022-05-05 | 2022-11-29 | 徐州立羽高科技有限责任公司 | 一种半导体深紫外光源结构 |
Also Published As
Publication number | Publication date |
---|---|
CN105957934B (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107978661B (zh) | 一种带有极化诱导p型掺杂层的氮极性蓝紫光LED芯片及制备方法 | |
Hirayama et al. | 222–282 nm AlGaN and InAlGaN‐based deep‐UV LEDs fabricated on high‐quality AlN on sapphire | |
Zhang et al. | AlGaN deep-ultraviolet light-emitting diodes | |
CN105957934A (zh) | 一种n-SiC衬底AlGaN基垂直结构谐振腔紫外LED芯片及制备方法 | |
CN103367594B (zh) | 一种发光二极管及其制备方法 | |
CN105977356B (zh) | 一种具有复合电子阻挡层结构的紫外发光二极管 | |
CN103296165B (zh) | 一种可调控能带的led量子阱结构 | |
CN105679910A (zh) | 一种高出光效率的深紫外发光二极管芯片及其制备方法 | |
US8445938B2 (en) | Nitride semi-conductive light emitting device | |
CN102185056A (zh) | 提高电子注入效率的氮化镓基发光二极管 | |
CN101355127B (zh) | 提高ⅲ族氮化物发光效率的led量子阱结构及其生长方法 | |
Akiba et al. | Growth of flat p‐GaN contact layer by pulse flow method for high light‐extraction AlGaN deep‐UV LEDs with Al‐based electrode | |
Kuo et al. | Improvement in electron overflow of near-ultraviolet InGaN LEDs by specific design on last barrier | |
Chen et al. | Improvement of efficiency droop in blue InGaN light-emitting diodes with p-InGaN/GaN superlattice last quantum barrier | |
CN106098890A (zh) | 一种基于碳面SiC衬底的垂直结构氮极性GaN基绿光LED芯片及其制备方法 | |
CN104681677B (zh) | 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法 | |
CN104300058A (zh) | 一种含掺杂宽势垒结构的黄绿光led | |
Khan et al. | Milliwatt‐Power AlGaN Deep‐UV Light‐Emitting Diodes at 254 nm Emission as a Clean Alternative to Mercury Deep‐UV Lamps | |
Tzou et al. | High-efficiency InGaN/GaN core–shell nanorod light-emitting diodes with low-peak blueshift and efficiency droop | |
Zhang et al. | Recombination pathways and hole leakage behavior in InGaN/GaN multiple quantum wells with V-shaped pits | |
JP5307100B2 (ja) | 半導体発光素子 | |
CN102332510A (zh) | 采用金属有机化合物气相外延技术生长高抗静电能力发光二极管的方法 | |
Li et al. | Effect of polarization-matched n-type AlGaInN electron-blocking layer on the optoelectronic properties of blue InGaN light-emitting diodes | |
Kuo et al. | Enhancement of light power for blue InGaN LEDs by using low-indium-content InGaN barriers | |
Hirayama et al. | 226–273 nm AlGaN deep‐ultraviolet light‐emitting diodes fabricated on multilayer AlN buffers on sapphire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220507 Address after: 201913 building 11, Lane 1333, Jiangnan Avenue, Changxing Town, Chongming District, Shanghai Patentee after: Shanghai Jiadan Electronic Information Co.,Ltd. Address before: 130012 No. 2699 Qianjin Street, Jilin, Changchun Patentee before: Jilin University |
|
TR01 | Transfer of patent right |