CN105949134A - 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法 - Google Patents

一种磺胺嘧啶铁钯纳米复合粒子及其制备方法 Download PDF

Info

Publication number
CN105949134A
CN105949134A CN201610283329.2A CN201610283329A CN105949134A CN 105949134 A CN105949134 A CN 105949134A CN 201610283329 A CN201610283329 A CN 201610283329A CN 105949134 A CN105949134 A CN 105949134A
Authority
CN
China
Prior art keywords
sulfadiazine
palladium
ferrum
solution
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610283329.2A
Other languages
English (en)
Other versions
CN105949134B (zh
Inventor
吴克琳
李星
赵亚云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou Kechuang Incubator Co.,Ltd.
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201610283329.2A priority Critical patent/CN105949134B/zh
Publication of CN105949134A publication Critical patent/CN105949134A/zh
Application granted granted Critical
Publication of CN105949134B publication Critical patent/CN105949134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/69Benzenesulfonamido-pyrimidines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种磺胺嘧啶铁钯纳米复合粒子及其制备方法,本发明中将一定比例的两种金属盐溶液加入到含有的磺胺嘧啶有机配体中,在一定温度下水热反应,反应结束冷却至室温,过滤,干燥,制得相应的金属‑配体纳米复合粒子。制备过程简单,成本低,适合大量生产;通过控制反应物的用量、反应时间和反应温度,实现磺胺嘧啶铁钯纳米复合粒子粒径的大小及分散性的有效调控。本发明制备的磺胺嘧啶铁钯纳米复合粒子是一种含有铁和钯的功能化纳米粒子,性能稳定,可用于催化C‑C键偶联反应,催化效率高,产率可达95%以上。因此该磺胺嘧啶铁钯纳米复合粒子在催化领域具有广阔的应用前景。

Description

一种磺胺嘧啶铁钯纳米复合粒子及其制备方法
技术领域
本发明属于纳米材料催化领域,具体涉及到用于催化碳碳偶联反应的一种磺胺嘧啶铁钯纳米复合粒子及其制备方法。
背景技术
构成纳米材料的纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。如今,纳米颗粒的研究是一大热门,真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(SaarlandUniversity)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。
纳米材料研究的价值很高、深而广之,这里仅仅涉及其催化方面的作用。由于纳米微粒粒径小、比表面积大、表面原子数增多并且生成不饱键,这就使得纳米微粒具有高的表面活性。并且粒径越小,表面原子数所占比率越大;比表面积越大,表面粗糙度越大,增加了化学反应的接触面,使其具有优良的催化性能。纳米催化剂由于其高效的还原或氧化作用,在催化或光催化领域的应用非常广泛,与普通商用催化剂相比,表现出高活性和高选择性等优异的催化性能。在反应中,纳米催化剂的尺寸、形貌、表面性质等对其活性和选择性起到了关键的作用。纳米催化剂制备过程中的条件,如原料浓度、反应时间、反应温度、溶剂比例和表面活性剂等,对于控制制备纳米催化剂至关重要。目前,人们对各种纳米催化剂的制备和应用做了大量研究,取得了丰硕的成果,同时也提出了纳米催化剂在实际应用中出现的许多问题。本发明立足于绿色、廉价、简易、可工业化放大的制备方法,来获得磺胺嘧啶铁钯纳米粒子。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种制备过程简单且成本低的可作为高效催剂的磺胺嘧啶铁钯纳米复合粒子及其制备方法。
本发明为解决上述技术问题所采用的技术方案为:一种可作为高效催剂的磺胺嘧啶铁钯纳米粒子复合粒子的制备方法,包括以下步骤:
将磺胺嘧啶溶于适量的蒸馏水中,配制成有机配体溶液;
将铁盐溶于适量的弱酸性水中,配制成铁盐溶液;
将钯盐溶于适量的蒸馏水中,配制成钯盐溶液;
将上述铁盐溶液与钯盐溶液混合,形成混合溶液,将混合溶液快速加入到机配体溶液中,然后将含有铁盐、钯盐和磺胺嘧啶有机配体的溶液转移到有聚四氟乙烯内衬的不锈钢反应釜中,120~160℃水热反应12~24h,反应结束冷却至室温,过滤,干燥,即获得所述磺胺嘧啶铁钯纳米复合粒子材料。
所述铁盐、钯盐和磺胺嘧啶有机配体的溶液中,铁、钯与磺胺嘧啶物质的量之比为3:1:4~3:1:8。
优选的,所述铁盐为氯化铁和硝酸铁中的任意一种;
优选的,所述钯盐为氯化钯和醋酸钯中的任意一种;
优选的,所述磺胺嘧啶有机配体的物质的量浓度为2~4mmol/L。
本发明提供一种磺胺嘧啶铁钯纳米复合粒子,所述磺胺嘧啶铁钯纳米复合粒子是根据上述磺胺嘧啶铁钯纳米复合粒子的制备方法制备得到。
优选地,所述磺胺嘧啶铁钯纳米复合粒子作为高效催化剂,用于催化碳-碳键偶联反应。
与现有技术相比,本发明的优点如下:
(1)上述有机配体磺胺嘧啶具有不对称的独特的结构,同时含有氨基等吸电子基团,对配体电子的离域性产生独特的影响,从而对配体的电子层结构产生影响,因而形成的化合物具有独特的物理化学性质。
(2)由于上述磺胺嘧啶电子的离域性强且具有不对称性,可以和铁离子和钯离子在不同方向进行配位,形成磺胺嘧啶铁钯纳米复合粒子。此纳米粒子性能稳定,在催化碳-碳键偶联反应中,显示了较高的反应活性,产率可达95%以上。
(3)上述磺胺嘧啶铁钯纳米复合粒子制备过程简单,成本低,适合大量生产。
(4)本发明通过选用两种不同的金属盐,控制反应时间、反应温度,实现磺胺嘧啶铁钯纳米复合粒子粒径的大小及分散性的有效调控,获得粒径不同的磺胺嘧啶铁钯纳米复合粒子,其在催化领域有广阔的应用前景。
附图说明
图1为本发明磺胺嘧啶铁钯纳米复合粒子材料的扫描电镜图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
称取3mmol的Fe(NO3)3·9H2O溶于15mL pH为5的水溶液中,将1mmol的PaCl2溶于和10mL的蒸馏水中,将铁和钯的溶液混合,形成混合溶液;称取4mmol的磺胺嘧啶溶于20mL蒸馏水中,在搅拌状态下,将铁和钯的溶液混合快速加入到磺胺嘧啶溶液中,然后将含有铁、钯和磺胺嘧啶配体的溶液转移到有聚四氟乙烯内衬的不锈钢反应釜中,120℃水热反应24h,反应结束冷却至室温,过滤,干燥,即获得所述磺胺嘧啶铁钯纳米复合粒子材料。用扫描电镜观察所得纳米复合粒子的形貌,如图1所示。
实施例2
称取3mmol的FeCl3溶于15mL pH为5的水溶液中,将1mmol的PaCl2溶于和10mL的蒸馏水中,将铁和钯的溶液混合,形成混合溶液;称取8mmol的磺胺嘧啶溶于20mL蒸馏水中,在搅拌状态下,将铁和钯的溶液混合快速加入到磺胺嘧啶溶液中,然后将含有铁、钯和磺胺嘧啶配体的溶液转移到有聚四氟乙烯内衬的不锈钢反应釜中,160℃水热反应12h,反应结束冷却至室温,过滤,干燥,即获得所述磺胺嘧啶铁钯纳米复合粒子材料。
实施例3
称取3mmol的Fe(NO3)3·9H2O溶于15mL pH为5的水溶液中,将1mmol的醋酸钯溶于和10mL的蒸馏水中,将铁和钯的溶液混合,形成混合溶液;称取6mmol的磺胺嘧啶溶于20mL蒸馏水中,在搅拌状态下,将铁和钯的溶液混合快速加入到磺胺嘧啶溶液中,然后将含有铁、钯和磺胺嘧啶配体的溶液转移到有聚四氟乙烯内衬的不锈钢反应釜中,140℃水热反应20h,反应结束冷却至室温,过滤,干燥,即获得所述磺胺嘧啶铁钯纳米复合粒子材料。
以实施例1,实施例2和实施例3制备的磺胺嘧啶铁钯纳米复合粒子为例,进行催化反应:
使用实施例1制备的磺胺嘧啶铁钯纳米复合粒子作为催化剂进行催化反应,反应条件为:将1.0mmol对碘苯乙醚、1.2mmol对甲基苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由3mL水和4mL乙醇组成,反应温度为90℃,反应时间为8h,采用柱色谱法分离产物,产率为99%。反应方程式如下:
使用实施例2制备的磺胺嘧啶铁钯纳米复合粒子作为催化剂进行催化反应,反应条件为:将1.0mmol对溴苯甲醚、1.2mmol对甲基苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由3mL水和4mL乙醇组成,反应温度为90℃,反应时间为8h,采用柱色谱法分离产物,产率为97%。反应方程式如下:
使用实施例3制备的磺胺嘧啶铁钯纳米复合粒子作为催化剂进行催化反应,反应条件为:将1.0mmol对碘苯乙醚、1.2mmol苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由3mL水和4mL乙醇组成,反应温度为90℃,反应时间为8h,采用柱色谱法分离产物,产率为98%。该反应方程式如下:

Claims (3)

1.一种磺胺嘧啶铁钯纳米复合粒子的制备方法,其特征在于所述制备方法包括以下步骤:
将磺胺嘧啶溶于适量的蒸馏水中,配制成有机配体溶液;
将铁盐溶于适量的pH为5的弱酸性水中,配制成铁盐溶液;
将钯盐溶于适量的蒸馏水中,配制成钯盐溶液;
将上述铁盐溶液与钯盐溶液混合,形成混合溶液,将混合溶液快速加入到机配体溶液中,然后将含有铁盐、钯盐和磺胺嘧啶有机配体的溶液转移到有聚四氟乙烯内衬的不锈钢反应釜中,120~160℃水热反应12~24h,反应结束冷却至室温,过滤,干燥,即获得所述磺胺嘧啶铁钯纳米复合粒子材料;
所述铁盐、钯盐和磺胺嘧啶有机配体的溶液中,铁、钯与磺胺嘧啶物质的量之比为3:1:4~3:1:8;
所述铁盐为氯化铁和硝酸铁中的任意一种;
所述钯盐为氯化钯和醋酸钯中的任意一种;
所述磺胺嘧啶有机配体的物质的量浓度为2~4mmol/L。
2.一种磺胺嘧啶铁钯纳米复合粒子,其特征在于,所述磺胺嘧啶铁钯纳米复合粒子根据权利要求1所述的磺胺嘧啶铁钯纳米复合粒子的制备方法制备得到。
3.一种如权利要求2所述的磺胺嘧啶铁钯纳米复合粒子,其特征在于,所述磺胺嘧啶铁钯纳米复合粒子作为高效催化剂,用于催化碳-碳键偶联反应。
CN201610283329.2A 2016-04-29 2016-04-29 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法 Active CN105949134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610283329.2A CN105949134B (zh) 2016-04-29 2016-04-29 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610283329.2A CN105949134B (zh) 2016-04-29 2016-04-29 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法

Publications (2)

Publication Number Publication Date
CN105949134A true CN105949134A (zh) 2016-09-21
CN105949134B CN105949134B (zh) 2018-07-20

Family

ID=56913240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610283329.2A Active CN105949134B (zh) 2016-04-29 2016-04-29 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法

Country Status (1)

Country Link
CN (1) CN105949134B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319915A (zh) * 2018-10-18 2019-02-12 东南大学 一种螯合剂β-ADA改性的Fe3O4复合材料及其制备方法和去除水中抗生素污染应用
CN110536492A (zh) * 2019-08-19 2019-12-03 株洲市长明石墨烯材料有限公司 一种石墨烯电加热膜及其制备方法
CN110642795A (zh) * 2019-10-24 2020-01-03 西安工业大学 一种合成纳米磺胺嘧啶铜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951611A (zh) * 2013-12-02 2014-07-30 宁波大学 一种螺芴吡啶钯纳米颗粒及其制备方法
CN104128201A (zh) * 2014-08-01 2014-11-05 宁波大学 一种铁纳米催化剂及其制备方法
CN104668577A (zh) * 2015-02-05 2015-06-03 宁波大学 一种镍微纳米粒子及其制备方法
CN104722334A (zh) * 2015-02-05 2015-06-24 宁波大学 一种钯鱼精蛋白纳米粒子及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951611A (zh) * 2013-12-02 2014-07-30 宁波大学 一种螺芴吡啶钯纳米颗粒及其制备方法
CN104128201A (zh) * 2014-08-01 2014-11-05 宁波大学 一种铁纳米催化剂及其制备方法
CN104668577A (zh) * 2015-02-05 2015-06-03 宁波大学 一种镍微纳米粒子及其制备方法
CN104722334A (zh) * 2015-02-05 2015-06-24 宁波大学 一种钯鱼精蛋白纳米粒子及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张淑凤: "磺胺类药物金属配合物及脱氢松香酸金属配合物的合成、晶体结构和性质研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109319915A (zh) * 2018-10-18 2019-02-12 东南大学 一种螯合剂β-ADA改性的Fe3O4复合材料及其制备方法和去除水中抗生素污染应用
CN109319915B (zh) * 2018-10-18 2021-06-11 东南大学 一种螯合剂β-ADA改性的Fe3O4复合材料及其制备方法和去除水中抗生素污染应用
CN110536492A (zh) * 2019-08-19 2019-12-03 株洲市长明石墨烯材料有限公司 一种石墨烯电加热膜及其制备方法
CN110642795A (zh) * 2019-10-24 2020-01-03 西安工业大学 一种合成纳米磺胺嘧啶铜的制备方法

Also Published As

Publication number Publication date
CN105949134B (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
Xiong et al. Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis
Ke et al. Dopant-induced modification of active site structure and surface bonding mode for high-performance nanocatalysts: CO oxidation on capping-free (110)-oriented CeO2: Ln (Ln= La–Lu) nanowires
KR20200037832A (ko) 탄소-코팅된 전이금속 나노복합체, 이의 제조 및 용도
Jin et al. CO oxidation catalyzed by two-dimensional Co3O4/CeO2 nanosheets
Feng et al. Sea-urchin-like hollow CuMoO4–CoMoO4 hybrid microspheres, a noble-metal-like robust catalyst for the fast hydrogen production from ammonia borane
CN111167440B (zh) 一种氨硼烷水解析氢用催化剂及其制备方法
Ma et al. Layered sphere-shaped TiO2 capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation
Zhao et al. Ultra-small platinum nanoparticles encapsulated in sub-50 nm hollow titania nanospheres for low-temperature water–gas shift reaction
Huang et al. Bimetallic nickel molybdate supported Pt catalyst for efficient removal of formaldehyde at low temperature
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
CN105949134A (zh) 一种磺胺嘧啶铁钯纳米复合粒子及其制备方法
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
CN101186328A (zh) 单晶类钙钛矿型氧化物La2CuO4纳微米棒的制备方法
Cui et al. Iron-based composite nanostructure catalysts used to produce COx-free hydrogen from ammonia
Chen et al. Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology
She et al. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst
Yang et al. Boosted carbon resistance of ceria-hexaaluminate by in-situ formed CeFexAl1− xO3 as oxygen pool for chemical looping dry reforming of methane
Liu et al. Microwave-assisted synthesis of 2D Zr-MOF nanosheets supported gold nanocomposites as efficient catalysts for the reduction of 4-nitrophenol
Wen et al. Engineering order mesoporous CeCoOx catalyst via in-situ confined encapsulation strategy for VOCs catalytic combustion
Zhou et al. Dimension-manipulated ceria nanostructures (0D uniform nanocrystals, 2D polycrystalline assembly, and 3D mesoporous framework) from cerium octylate precursor in solution phases and their CO oxidation activities
Wang et al. Selective oxidation of glycerol to glyceraldehyde with H 2 O 2 catalyzed by CuNiAl hydrotalcites supported BiOCl in Neutral Media
Xiao et al. The effect of hydrogenated TiO2 to the Au/TiO2 catalyst in catalyzing CO oxidation
Yang et al. Construction of 3DOM Fe2O3/CuO heterojunction nanomaterials for enhanced AP decomposition
Zhang et al. Fe3C nanoclusters integrated with Fe single-atom planted in nitrogen doped carbon derived from truncated hexahedron zeolitic imidazolate framework for the efficient transfer hydrogenation of halogenated nitrobenzenes
Wu et al. MOF-derived Fe–N–C with interconnected mesoporous structure for halonitrobenzenes hydrogenation: Role of dicyandiamide on the growth of active sites and pore structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201127

Address after: Room 1,020, Nanxun Science and Technology Pioneering Park, No. 666 Chaoyang Road, Nanxun District, Huzhou City, Zhejiang Province, 313000

Patentee after: Huzhou You Yan Intellectual Property Service Co.,Ltd.

Address before: 315211 Zhejiang Province, Ningbo Jiangbei District Fenghua Road No. 818

Patentee before: Ningbo University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211125

Address after: 256600 No. 1, Gaosi Road, high tech Industrial Development Zone, Binzhou City, Shandong Province

Patentee after: Binzhou Kechuang Incubator Co.,Ltd.

Address before: 313000 room 1020, science and Technology Pioneer Park, 666 Chaoyang Road, Nanxun Town, Nanxun District, Huzhou, Zhejiang.

Patentee before: Huzhou You Yan Intellectual Property Service Co.,Ltd.

TR01 Transfer of patent right