CN105944197B - 呼吸机风机的开环控制方法和系统 - Google Patents

呼吸机风机的开环控制方法和系统 Download PDF

Info

Publication number
CN105944197B
CN105944197B CN201610323034.3A CN201610323034A CN105944197B CN 105944197 B CN105944197 B CN 105944197B CN 201610323034 A CN201610323034 A CN 201610323034A CN 105944197 B CN105944197 B CN 105944197B
Authority
CN
China
Prior art keywords
air
blower control
lung ventilator
control amount
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610323034.3A
Other languages
English (en)
Other versions
CN105944197A (zh
Inventor
戴征
丁锦
刘炜
徐勤鹏
曾小辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Mingkang Zhongjin Medical Technology Co.,Ltd.
Original Assignee
Hunan Micomme Zhongjin Medical Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Micomme Zhongjin Medical Technology Development Co Ltd filed Critical Hunan Micomme Zhongjin Medical Technology Development Co Ltd
Priority to CN201610323034.3A priority Critical patent/CN105944197B/zh
Publication of CN105944197A publication Critical patent/CN105944197A/zh
Application granted granted Critical
Publication of CN105944197B publication Critical patent/CN105944197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring

Abstract

本发明公开了一种呼吸机风机的开环控制方法及系统。所述开环控制方法包括步骤:在呼吸机的工作模式下,设定呼吸机预输出气流的目标压力P;通过流量传感器采集所述呼吸机所输出气流的实时流量值F;根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,其中,所述风机控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;根据所述风机控制量DFP控制所述呼吸机风机。本发明能够降低输出压力产生振荡的可能性,并且可以使得呼吸机风机输出在不同的流量下,均能保持稳定的压力输出。

Description

呼吸机风机的开环控制方法和系统
技术领域
本发明涉及呼吸机技术领域,尤其涉及一种呼吸机风机的开环控制方法和系统。
背景技术
随着睡眠呼吸暂停综合症患者的逐年增多,呼吸机的市场越来越大,患者对呼吸机的要求也越来越高。舒适度已经成为人们选择呼吸机的重要指标之一,舒适度不只包括触发撤换(即人机同步),也包括压力的稳定性。
目前大部分的呼吸机是压力输出型呼吸机,风机压力控制系统主要采用的是闭环控制。该闭环控制模式下,当压力传感器检测的压力大于目标压力时会降低风机功率,当压力传感器检测的压力小于目标压力时则增大风机功率,从而保证压力传感器所在位置的压力能够很好的与目标压力相吻合。但是,风机闭环控制存在如下两个主要缺点:一个是在调节过程中压力容易产生上下振荡;另一个是由于反馈和调节都只能保证压力传感所处的气道位置处的压力,而目前大多数呼吸机的压力传感器所处的位置均是在水盒前端,并且水盒前端和末端的压力还与流量有关,因而不能保证经过水盒之后的气压的稳定性。
发明内容
本发明的主要目的在于提供一种呼吸机风机的开环控制方法和系统,旨在降低输出压力产生振荡的可能性,并且可以使得呼吸机风机输出在不同的流量下,均能保持稳定的压力输出。
为实现上述目的,本发明提供一种呼吸机风机的开环控制方法,所述呼吸机风机的开环控制方法包括如下步骤:
在呼吸机的工作模式下,设定呼吸机预输出气流的目标压力P;
通过流量传感器采集所述呼吸机所输出气流的实时流量值F;
根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,其中,所述风机控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
根据所述风机控制量DFP控制所述呼吸机风机。
优选地,所述根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP的步骤具体包括:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P1≤P≤P2,且P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P3≤P≤P4,且P3在F2时对应的预设风机控制量DF2P3比P4在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
优选地,在所述设定呼吸机预输出气流的目标压力P的步骤之前还包括校准输出压力步骤,所述校准输出压力步骤包括:
在所述呼吸机的校准模式下,依次采集所述m个预设流量值在所述n个预设风机控制量下分别所对应的m*n个输出压力值,将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系保存在所述呼吸机的存储器中,以形成所述风机控制量校准表。
优选地,所述m个预设流量值按同一步长ΔF递增或递减,所述n个预设风机控制量按同一步长ΔD递增或递减。
优选地,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下。
此外,为实现上述目的,本发明还提供一种呼吸机风机的开环控制系统,所述呼吸机风机的开环控制系统包括呼吸机风机、设定模块、流量传感器、微控制器及存储器,其中:
所述设定模块用于在呼吸机的工作模式下设定呼吸机预输出气流的目标压力P;
所述流量传感器用于采集所述呼吸机所输出气流的实时流量值F并输出给所述微控制器;
所述存储器用于存储风机控制量校准表,所述控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
所述微控制器用于根据所述目标压力P、实时流量值F和所述风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,并根据所述风机控制量DFP发送控制指令给所述呼吸机风机。
优选地,所述微控制器具体用于:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,其中P1≤P≤P2,且P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,其中P3≤P≤P4,且P3在F2时对应的预设风机控制量DF2P3比P42在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
优选地,所述呼吸机风机的开环控制系统还包括校准装置,所述校准装置包括流量调节模块、流量采集模块和压力采集模块,其中:
所述流量调节模块用于在所述呼吸机的校准模式下调节呼吸机的输出气流的大小,以使所述呼吸机在不同时刻分别按所述m个预设流量值输出对应气流;
所述流量采集模块用于在所述呼吸机的校准模式下采集所述m个预设流量值;
所述微控制器还用于控制所述呼吸机风机在输出所述m个预设流量值的气流时分别按照所述n个预设风机控制量工作;
所述压力采集模块用于在所述呼吸机的校准模式下,依次采集呼吸机的输出气流在所述m个预设流量值时分别按照所述n个预设风机控制量工作所对应的m*n个输出压力值;
所述微控制器还用于将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系进行编码并保存在所述呼吸机的存储器中,以形成所述风机控制量校准表。
优选地,所述m个预设流量值按同一步长ΔF递增或递减,所述n个预设风机控制量按同一步长ΔD递增或递减。
优选地,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下。
上述呼吸机风机的开环控制方法及系统,在目标压力P和实时流量值F均已知的情况下,根据风机控制量校准表,按照预定规则可以计算出在所述实时流量值F时,输出目标压力P所需要的风机控制量DFP,只需要通过该控制量DFP控制风机即可,未引入反馈,从而能够大幅度地降低输出压力产生上下振荡的可能性,并且可以使得呼吸机风机输出在不同的流量下,均能保持稳定的压力输出。同时,该目标压力P和实时流量值F可以是从呼吸机的输出到鼻罩入口处的任意位置的压力和流量,从而能够使得呼吸机经过水盒之后,压力仍保持很好的稳定性。
附图说明
图1为本发明呼吸机风机的开环控制方法第一实施例的流程示意图;
图2为图1中步骤S40的细化流程示意图;
图3为本发明呼吸机风机的开环控制方法第二实施例的流程示意图;
图4为本发明呼吸机风机的开环控制系统第一实施例的结构示意图;
图5为本发明呼吸机风机的开环控制系统第二实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种呼吸机风机的开环控制方法。
参照图1,图1为本发明呼吸机风机的开环控制方法第一实施例的流程示意图。在本发明呼吸机风机的开环控制方法的第一实施例中,所述呼吸机风机的开环控制方法包括如下步骤:
步骤S20,在呼吸机的工作模式下,设定呼吸机预输出气流的目标压力P;
步骤S30,通过流量传感器采集所述呼吸机所输出气流的实时流量值F;
步骤S40,根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,其中,所述风机控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
步骤S50,根据所述风机控制量DFP控制所述呼吸机风机。
在步骤S20中,在呼吸机的工作模式下,可以由医护人员或者呼吸机的使用者,根据具体使用需求来设定呼吸机预输出气流的目标压力P。
在步骤S30中,通过流量传感器采集所述呼吸机所输出气流的实时流量值F时,可以是不间断地连接采集,也可以是根据预定的时间间隔来进行离散采集。
上述呼吸机风机的开环控制方法,在目标压力P和实时流量值F均已知的情况下,根据风机控制量校准表,按照预定规则可以计算出在所述实时流量值F时,输出目标压力P所需要的风机控制量DFP,只需要通过该控制量DFP控制风机即可,未引入反馈,从而能够大幅度地降低输出压力产生上下振荡的可能性,并且可以使得呼吸机风机输出在不同的流量下,均能保持稳定的压力输出。同时,该目标压力P和实时流量值F可以是从呼吸机的输出到鼻罩入口处的任意位置的压力和流量,从而能够使得呼吸机经过水盒之后,压力仍保持很好的稳定性。
参照图2,图2为图1中步骤S40的细化流程示意图。
在上述实施例中,所述根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP的步骤具体包括:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P1≤P≤P2,且P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P3≤P≤P4,且P3在F2时对应的预设风机控制量DF2P3比P4在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
上述根据所述目标压力P、实时流量值F和风机控制量校准表,计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP时的预定规则包括如下两条:第一,在流量值不变的情况下,在相邻的风机控制区间内,将压力随风机控制量的变化视为线性变化;第二,在压力不变的情况下,在相邻的流量值区间范围内,将流量随风机控制量的变化视为线性变化,这样可以简化对风机控制量DFP的计算。所述预定规则并不局限如此,在其它的实施例中,在上述两条的基础上,还可以在线性变化关系的基础上增加适当的修正系数和/或修正值。
对于流量区间[F1,F2]的确定,可以通过查表的方法,将m个预设流量值中按由小到大或从小到大的顺序排列,然后将m个预设流量值依次与实时流量值F进行比较大小,当相邻的两个预设流量值符合其中一个大于实时流量值F,而另一个小于实时流量值F时,即可确定流量区间[F1,F2]。采用查表的方法,可以适用预设流量值的递增或递减步长不相同的情况。
当预设流量值的递增或递减步长相同且均为ΔF时,还可采用如下计算方法确定流量区间[F1,F2]:
F1=[F/ΔF]*ΔF
F2=F1+ΔF
其中,[F/ΔF]表示实时流量值F除以步长ΔF并取整。
假设m=4,ΔF为40L/min,且预设流量值由0L/min递增,则可知风机控制量校准表中,存在4个预设流量值(即为0L/min,40L/min,80L/min,40L/min)。
当实时流量值F为50L/min时,采用查表的方法,直接将实时流量值F(50L/min)进行比较,可确定流量区间[F1,F2]为[40L/min,80L/min]。而采用第二种计算方法,则:
F1=[F/ΔF]*ΔF=[50/40]*40=40L/min
F2=F1+ΔF=40+40=80L/min
同样可以确定流量区间[F1,F2]为[40L/min,80L/min]。
如下表1所示,为风机控制量校准表的一示例,其中,预设流量值的个数m=4,预设风机控制量的个数n=5,对应输出压力值的个数为m*n=20,风机控制量150、350、550、750、950分别表示15%、35%、55%、75%、95%的风机控制功率,输出压力值的单位为cmH2O(厘米水柱)。表1中的数据仅仅是示例,在实际应用中,可以根据具体的应用需求,合理地设置预设流量值的个数和预设风机控制量的个数。
表1风机控制量校准表示例
以表1所示的风机控制量校准表为示例,假设目标压力P为10cmH2O,流量传感器测得的实时流量值F为60L/min,以下根据步骤S40的细化步骤,对所需要的风机控制量DFP计算进行示例性说明。
根据图1所示的风机控制量校准表,当实时流量值F为60L/min时,可以确定其所对应的流量区间[F1,F2]为[40L/min,80L/min];
确定目标压力P为10cmH2O时,在F1(40L/min)时所对应的输出压力区间[P1,P2]为[8.3,14.3],在F2(80L/min)时所对应的输出压力区间[P3,P4]为[7.1,13.0];
P1(8.3)在F1(40L/min)时对应的预设风机控制量DF1P1(350)比P2(14.3)在F1(40L/min)时对应的预设风机控制量DF1P2(550)小ΔD1(200);
P3(7.1)在F2(80L/min)时对应的预设风机控制量DF2P3(350)比P4(13.0)在F2(80L/min)时对应的预设风机控制量DF2P4(550)小ΔD2(200);
计算在预设流量值为F1(40L/min)时目标压力P(10cmH2O)所对应的风机控制量DF1P和在预设流量值为F2(80L/min)时目标压力P(10cmH2O)所对应的风机控制量DF2P,其中,
ΔF=F2-F1=80-40=40
计算在所述实时流量值F(60L/min)时,输出所述目标压力P(10cmH2O)所需要的风机控制量DFP
DFP为427.5表示42.75%的风机控制功率,即需要将呼吸机风机的实际功率控制在其额定功率的42.75%。
参照图3,图3为本发明呼吸机风机的开环控制方法第二实施例的流程示意图。在前述图1和图2所示的第一实施例的基础之上,本实施例的呼吸机风机的开环控制方法,在所述设定呼吸机预输出气流的目标压力P的步骤S20之前还包括校准输出压力步骤S10,所述校准输出压力步骤S10包括:
在所述呼吸机的校准模式下,依次采集所述m个预设流量值在所述n个预设风机控制量下分别所对应的m*n个输出压力值,将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系保存在所述呼吸机的存储器中,以形成所述风机控制量校准表。
所述步骤S10中,可以通过流量控制模块例如阀门来控制呼吸机工作在m个不同的预设流量值,并在每一个预设流量值时分别采用n个不同的预设风机控制量对呼吸机风机进行控制,进而通过压力采集模块依次采集到对应的m*n个输出压力值,然后保存在呼吸机的存储器中。其中,采集输出压力值数据时所设的预设风机控制量和预设流量值,均是为了能够使得采集到的输出压力值能够保持稳定在预定范围例如±0.5cmH2O内。
在表1所示风机控制量校准表的示例中,预设流量值是以0开始,以同一步长ΔF(40L/min)递增,而预设风机控制量则是以150(表示15%的风机控制功率)开始,以同一步骤ΔD(200)递增,分别采集在4个预设流量值(0,40L/min,80L/min,120L/min)时,分别在5个预设风机控制量(150,350,550,750,950)下的20个输出压力值。
所述步骤S10可以是在呼吸机出厂之前完成,此种情况下,可以采用与呼吸机相分离的校准装置对呼吸机实施步骤S10以完成对呼吸机的校准,这样不必为每一台呼吸机配备校准装置,从而节省呼吸机的成本。
所述步骤S10也可以是用户在首次使用时完成,此种情况下,需要为呼吸机配合校准装置,虽然增加了成本,但是,在呼吸机长期使用后出现稳定性下降的情况下,可以采用步骤S10对呼吸机再次校准,以提高长期使用后的稳定性。
在本发明的实施例所给的示例中,所述m个预设流量值按同一步长ΔF(40L/min)递增或递减,所述n个预设风机控制量按同一步长ΔD(20%的风机输出功率)递增或递减。所述m个预设流量值和n个预设风机控制量的递增或递减方法并不局限如此,在其它实施例中,所述m个预设流量值也可以是按照不相等的步长进行递增或递减,所述n个预设风机控制量也可以是按照不相等的步长进行递增或递减,只要能够使得采集到的输出压力值能够保持稳定在预定范围例如±0.5cmH2O内即可。
优选地,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下,这样通过采用本实施例中的计算方法来计算风机控制量DFP,能够使得呼吸机经过水盒之后,压力在0到120L/min的流量范围内保持很好的稳定性。
参照图4,图4为本发明呼吸机风机的开环控制系统第一实施例的结构示意图。在本发明呼吸机风机的开环控制系统的第一实施例中,所述呼吸机风机的开环控制系统包括呼吸机风机10、设定模块20、流量传感器30、微控制器40及存储器50,其中:
所述设定模块20用于在呼吸机的工作模式下设定呼吸机预输出气流的目标压力P;
所述流量传感器30用于采集所述呼吸机所输出气流的实时流量值F并输出给所述微控制器40;
所述存储器50用于存储风机控制量校准表,所述控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
所述微控制器40用于根据所述目标压力P、实时流量值F和所述风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,并根据所述风机控制量DFP发送控制指令给所述呼吸机风机10。
所述设定模块20可以是设置在呼吸机上的触摸屏或者物理按键,在呼吸机的工作模式下,可以由医护人员或者呼吸机的使用者通过操作触摸屏或者物理按键来设定呼吸机预输出气流的目标压力P。
流量传感器30采集所述呼吸机所输出气流的实时流量值F时,可以是不间断地连接采集,也可以是根据预定的时间间隔来进行离散采集。
上述呼吸机风机的开环控制方法,在目标压力P和实时流量值F均已知的情况下,根据风机控制量校准表,按照预定规则可以计算出在所述实时流量值F时,输出目标压力P所需要的风机控制量DFP,只需要通过该控制量DFP控制风机即可,未引入反馈,从而能够大幅度地降低输出压力产生上下振荡的可能性,并且可以使得呼吸机风机输出在不同的流量下,均能保持稳定的压力输出。同时,该目标压力P和实时流量值F可以是从呼吸机的输出到鼻罩入口处的任意位置的压力和流量,从而能够使得呼吸机经过水盒之后,压力仍保持很好的稳定性。
所述微控制器40具体用于:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,其中P1≤P≤P2,且P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,其中P3≤P≤P4,且P3在F2时对应的预设风机控制量DF2P3比P42在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
上述根据所述目标压力P、实时流量值F和风机控制量校准表,计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP时的预定规则包括如下两条:第一,在流量值不变的情况下,在相邻的风机控制区间内,将压力随风机控制量的变化视为线性变化;第二,在压力不变的情况下,在相邻的流量值区间范围内,将流量随风机控制量的变化视为线性变化,这样可以简化对风机控制量DFP的计算。所述预定规则并不局限如此,在其它的实施例中,在上述两条的基础上,还可以在线性变化关系的基础上增加适当的修正系数和/或修正值。
对于流量区间[F1,F2]的确定,可以通过查表的方法,将m个预设流量值中按由小到大或从小到大的顺序排列,然后将m个预设流量值依次与实时流量值F进行比较大小,当相邻的两个预设流量值符合其中一个大于实时流量值F,而另一个小于实时流量值F时,即可确定流量区间[F1,F2]。采用查表的方法,可以适用预设流量值的递增或递减步长不相同的情况。
当预设流量值的递增或递减步长相同且均为ΔF时,还可采用如下计算方法确定流量区间[F1,F2]:
F1=[F/ΔF]*ΔF
F2=F1+ΔF
其中,[F/ΔF]表示实时流量值F除以步长ΔF并取整。
假设m=4,ΔF为40L/min,且预设流量值由0L/min递增,则可知风机控制量校准表中,存在4个预设流量值(即为0L/min,40L/min,80L/min,40L/min)。
当实时流量值F为50L/min时,采用查表的方法,直接将实时流量值F(50L/min)进行比较,可确定流量区间[F1,F2]为[40L/min,80L/min]。而采用第二种计算方法,则:
F1=[F/ΔF]*ΔF=[50/40]*40=40L/min
F2=F1+ΔF=40+40=80L/min
同样可以确定流量区间[F1,F2]为[40L/min,80L/min]。
如下表2所示,为风机控制量校准表的一示例,其中,预设流量值的个数m=4,预设风机控制量的个数n=5,对应输出压力值的个数为m*n=20,风机控制量150、350、550、750、950分别表示15%、35%、55%、75%、95%的风机控制功率,输出压力值的单位为cmH2O(厘米水柱)。表1中的数据仅仅是示例,在实际应用中,可以根据具体的应用需求,合理地设置预设流量值的个数和预设风机控制量的个数。
表2风机控制量校准表示例
以表1所示的风机控制量校准表为示例,假设目标压力P为10cmH2O,流量传感器测得的实时流量值F为60L/min,以下就微控制器40对所需要的风机控制量DFP的计算进行示例性说明。
根据图1所示的风机控制量校准表,当实时流量值F为60L/min时,可以确定其所对应的流量区间[F1,F2]为[40L/min,80L/min];
确定目标压力P为10cmH2O时,在F1(40L/min)时所对应的输出压力区间[P1,P2]为[8.3,14.3],在F2(80L/min)时所对应的输出压力区间[P3,P4]为[7.1,13.0];
P1(8.3)在F1(40L/min)时对应的预设风机控制量DF1P1(350)比P2(14.3)在F1(40L/min)时对应的预设风机控制量DF1P2(550)小ΔD1(200);
P3(7.1)在F2(80L/min)时对应的预设风机控制量DF2P3(350)比P4(13.0)在F2(80L/min)时对应的预设风机控制量DF2P4(550)小ΔD2(200);
计算在预设流量值为F1(40L/min)时目标压力P(10cmH2O)所对应的风机控制量DF1P和在预设流量值为F2(80L/min)时目标压力P(10cmH2O)所对应的风机控制量DF2P,其中,
ΔF=F2-F1=80-40=40
计算在所述实时流量值F(60L/min)时,输出所述目标压力P(10cmH2O)所需要的风机控制量DFP
DFP为427.5表示42.75%的风机控制功率,即需要将呼吸机风机的实际功率控制在其额定功率的42.75%。参照图5,图5为本发明呼吸机风机的开环控制系统第二实施例的结构示意图。在前述图4所示呼吸机风机的开环控制系统的第一实施例的基础之上,本实施例的呼吸机风机的开环控制系统还包括校准装置60,所述校准装置60包括流量调节模块61、流量采集模块62和压力采集模块63,其中:
所述流量调节模块61用于在所述呼吸机的校准模式下调节呼吸机的输出气流的大小,以使所述呼吸机在不同时刻分别按所述m个预设流量值输出对应气流;
所述流量采集模块62用于在所述呼吸机的校准模式下采集所述m个预设流量值;
所述微控制器40还用于控制所述呼吸机风机10在输出所述m个预设流量值的气流时分别按照所述n个预设风机控制量工作;
所述压力采集模块63用于在所述呼吸机的校准模式下,依次采集呼吸机的输出气流在所述m个预设流量值时分别按照所述n个预设风机控制量工作所对应的m*n个输出压力值;
所述微控制器40还用于将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系进行编码并保存在所述呼吸机的存储器50中,以形成所述风机控制量校准表。
流量控制模块62可以采用阀门,其用之于来控制呼吸机工作在m个不同的预设流量值,并在每一个预设流量值时分别采用n个不同的预设风机控制量对呼吸机风机10进行控制。通过压力采集模块63可以依次采集到对应的m*n个输出压力值,然后保存在呼吸机的存储器50中。其中,采集输出压力值数据时所设的预设风机控制量和预设流量值,均是为了能够使得采集到的输出压力值能够保持稳定在预定范围例如±0.5cmH2O内。
在表2所示风机控制量校准表的示例中,预设流量值是以0开始,以同一步长ΔF(40L/min)递增,而预设风机控制量则是以150(表示15%的风机控制功率)开始,以同一步骤ΔD(200)递增,分别采集在4个预设流量值(0,40L/min,80L/min,120L/min)时,分别在5个预设风机控制量(150,350,550,750,950)下的20个输出压力值。
通过设置校准装置60,用户可以在首次使用时进行校准,从而生成风机控制量校准表,并且在呼吸机长期使用后出现稳定性下降的情况下,可以通过校准装置60对呼吸机再次校准,以提高长期使用后的稳定性。
在呼吸机风机的开环控制系统不配备校准装置60时,则可以在呼吸机出厂之前,采用外置的校准装置60对呼吸机风机的开环控制进行校准,这样不必为每一台呼吸机配备校准装置,从而节省呼吸机的成本。
在本发明的实施例所给的示例中,所述m个预设流量值按同一步长ΔF(40L/min)递增或递减,所述n个预设风机控制量按同一步长ΔD(20%的风机输出功率)递增或递减。所述m个预设流量值和n个预设风机控制量的递增或递减方法并不局限如此,在其它实施例中,所述m个预设流量值也可以是按照不相等的步长进行递增或递减,所述n个预设风机控制量也可以是按照不相等的步长进行递增或递减,只要能够使得采集到的输出压力值能够保持稳定在预定范围例如±0.5cmH2O内即可。
优选地,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下,这样通过采用本实施例呼吸机风机的开环控制系统计算得到的风机控制量DFP,能够使得呼吸机经过水盒之后,压力在0到120L/min的流量范围内保持很好的稳定性,这里的120L/min流量范围上限只是本实施例的呼吸机测试时所用的值,实际应用时并局限于这个值,在某些呼吸机中,流量范围上限可以到200L/min,甚至300L/min。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种呼吸机风机的开环控制方法,其特征在于,所述呼吸机风机的开环控制方法包括如下步骤:
在呼吸机的工作模式下,设定呼吸机预输出气流的目标压力P;
通过流量传感器采集所述呼吸机所输出气流的实时流量值F;
根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,其中,所述风机控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
根据所述风机控制量DFP控制所述呼吸机风机;
在所述设定呼吸机预输出气流的目标压力P的步骤之前还包括校准输出压力步骤,所述校准输出压力步骤包括:
在所述呼吸机的校准模式下,依次采集所述m个预设流量值在所述n个预设风机控制量下分别所对应的m*n个输出压力值,将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系保存在所述呼吸机的存储器中,以形成所述风机控制量校准表。
2.如权利要求1所述的呼吸机风机的开环控制方法,其特征在于,所述根据所述目标压力P、实时流量值F和风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP的步骤具体包括:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P1≤P≤P2,且P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的n个输出压力值中由小到大顺序排列且相邻两个值,其中P3≤P≤P4,且P3在F2时对应的预设风机控制量DF2P3比P4在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
3.如权利要求1至2项中任意一项所述的呼吸机风机的开环控制方法,其特征在于,所述m个预设流量值按同一步长ΔF递增或递减,所述n个预设风机控制量按同一步长ΔD递增或递减。
4.如权利要求3所述的呼吸机风机的开环控制方法,其特征在于,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下。
5.一种呼吸机风机的开环控制系统,其特征在于,所述呼吸机风机的开环控制系统包括呼吸机风机、设定模块、流量传感器、微控制器及存储器,其中:
所述设定模块用于在呼吸机的工作模式下设定呼吸机预输出气流的目标压力P;
所述流量传感器用于采集所述呼吸机所输出气流的实时流量值F并输出给所述微控制器;
所述存储器用于存储风机控制量校准表,所述控制量校准表中存储有m个预设流量值分别在n个预设风机控制量下所对应的m*n个输出压力值,其中m、n均为正整数;
所述微控制器用于根据所述目标压力P、实时流量值F和所述风机控制量校准表,按照预定规则计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP,并根据所述风机控制量DFP发送控制指令给所述呼吸机风机;
还包括校准装置,所述校准装置包括流量调节模块、流量采集模块和压力采集模块,其中:
所述流量调节模块用于在所述呼吸机的校准模式下调节呼吸机的输出气流的大小,以使所述呼吸机在不同时刻分别按所述m个预设流量值输出对应气流;
所述流量采集模块用于在所述呼吸机的校准模式下采集所述m个预设流量值;
所述微控制器还用于控制所述呼吸机风机在输出所述m个预设流量值的气流时分别按照所述n个预设风机控制量工作;
所述压力采集模块用于在所述呼吸机的校准模式下,依次采集呼吸机的输出气流在所述m个预设流量值时分别按照所述n个预设风机控制量工作所对应的m*n个输出压力值;
所述微控制器还用于将所述m*n个输出压力值按照与所述m个预设流量值和所述n个预设风机控制量的对应关系进行编码并保存在所述呼吸机的存储器中,以形成所述风机控制量校准表。
6.如权利要求5所述的呼吸机风机的开环控制系统,其特征在于,所述微控制器具体用于:
根据所述风机控制量校准表,确定所述实时流量值F所对应的流量区间[F1,F2],其中,F1和F2为所述m个预设流量值中按由小到大顺序排列且相邻的两个值,且F1≤F≤F2
根据所述风机控制量校准表,确定目标压力P在F1时所对应的输出压力区间[P1,P2]以及目标压力P在F2时所对应的输出压力区间[P3,P4],其中,
P1和P2为预设流量值为F1时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,且P1≤P≤P2,以及P1在F1时对应的预设风机控制量DF1P1比P2在F1时对应的预设风机控制量DF1P2小ΔD1
P3和P4为预设流量值为F2时所对应的多个输出压力值中由小到大顺序排列且相邻两个值,且P3≤P≤P4,以及P3在F2时对应的预设风机控制量DF2P3比P42在F2时对应的预设风机控制量DF2P4小ΔD2
计算在预设流量值为F1时目标压力P所对应的风机控制量DF1P和在预设流量值为F2时目标压力P所对应的风机控制量DF2P,其中,
计算在所述实时流量值F时,输出所述目标压力P所需要的风机控制量DFP
其中,ΔF=F2-F1
7.如权利要求5至6项中任意一项所述的呼吸机风机的开环控制系统,其特征在于,所述m个预设流量值按同一步长ΔF递增或递减,所述n个预设风机控制量按同一步长ΔD递增或递减。
8.如权利要求7所述的呼吸机风机的开环控制系统,其特征在于,所述步长ΔF在40L/min以下,所述步长ΔD在20%的风机输出功率以下。
CN201610323034.3A 2016-05-16 2016-05-16 呼吸机风机的开环控制方法和系统 Active CN105944197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610323034.3A CN105944197B (zh) 2016-05-16 2016-05-16 呼吸机风机的开环控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610323034.3A CN105944197B (zh) 2016-05-16 2016-05-16 呼吸机风机的开环控制方法和系统

Publications (2)

Publication Number Publication Date
CN105944197A CN105944197A (zh) 2016-09-21
CN105944197B true CN105944197B (zh) 2018-09-14

Family

ID=56912753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610323034.3A Active CN105944197B (zh) 2016-05-16 2016-05-16 呼吸机风机的开环控制方法和系统

Country Status (1)

Country Link
CN (1) CN105944197B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108283750B (zh) * 2017-12-15 2020-08-28 湖南明康中锦医疗科技发展有限公司 一种呼吸机快速升降压方法和系统
CN108211075B (zh) * 2017-12-15 2020-07-10 湖南明康中锦医疗科技发展有限公司 呼吸机风机的稳压方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244305A (zh) * 2007-12-03 2008-08-20 王鸿庆 呼吸机及压力控制方法
CN101727111A (zh) * 2008-10-15 2010-06-09 北京北方微电子基地设备工艺研究中心有限责任公司 一种腔室压力控制方法、装置及控制系统
CN102028996A (zh) * 2009-09-30 2011-04-27 北京谊安医疗系统股份有限公司 呼吸机减压装置的输出压力的调节方法和装置
CN102058922A (zh) * 2010-12-21 2011-05-18 上海力申科学仪器有限公司 家用呼吸机的控制方法
CN102518598A (zh) * 2011-12-31 2012-06-27 北京时代科仪新能源科技有限公司 离心式空压机及其控制方法和系统
CN103736185A (zh) * 2013-12-13 2014-04-23 科迈(常州)电子有限公司 一种家用呼吸机风机输出压力调节方法
CN105031787A (zh) * 2015-07-14 2015-11-11 湖南明康中锦医疗科技发展有限公司 呼吸机及涡轮控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002069878A1 (ja) * 2001-03-02 2004-09-02 令夫 木原 呼吸機能の測定システムおよびその応用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244305A (zh) * 2007-12-03 2008-08-20 王鸿庆 呼吸机及压力控制方法
CN101727111A (zh) * 2008-10-15 2010-06-09 北京北方微电子基地设备工艺研究中心有限责任公司 一种腔室压力控制方法、装置及控制系统
CN102028996A (zh) * 2009-09-30 2011-04-27 北京谊安医疗系统股份有限公司 呼吸机减压装置的输出压力的调节方法和装置
CN102058922A (zh) * 2010-12-21 2011-05-18 上海力申科学仪器有限公司 家用呼吸机的控制方法
CN102518598A (zh) * 2011-12-31 2012-06-27 北京时代科仪新能源科技有限公司 离心式空压机及其控制方法和系统
CN103736185A (zh) * 2013-12-13 2014-04-23 科迈(常州)电子有限公司 一种家用呼吸机风机输出压力调节方法
CN105031787A (zh) * 2015-07-14 2015-11-11 湖南明康中锦医疗科技发展有限公司 呼吸机及涡轮控制系统

Also Published As

Publication number Publication date
CN105944197A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5995942B2 (ja) 人工呼吸器リーク補償
US9327089B2 (en) Methods and systems for compensation of tubing related loss effects
EP3365052B1 (en) Connection of a spontaneous delivery device to a concentrator
US20140261424A1 (en) Methods and systems for phase shifted pressure ventilation
CN103893865B (zh) 一种呼吸机涡轮容量控制通气的方法
US20060196508A1 (en) Breathing assistance device, and method of regulation
CN105944197B (zh) 呼吸机风机的开环控制方法和系统
EP2542286B1 (en) Ventilation device
CN104841055B (zh) 呼吸机peep阀的控制方法、装置和系统
CN108287043B (zh) 呼吸机漏气量检测方法、装置、存储介质和计算机设备
CN102114288B (zh) 潮气量的控制方法
EP3400984A1 (en) Systems and methods for automatically adjusting a determined supply of fio2 generated from a cpap, niv or other ventilator system
US20160058963A1 (en) Breathable gas supply system, control method thereof and computer program product implementing the method
CN106730199A (zh) 持续正压力通气稳压的方法、装置及呼吸机
CN103893888B (zh) 一种脉宽调制型的麻醉机或呼吸机
CN106914159A (zh) 一种基于分流法的自适应湿度发生方法及控制装置
WO2017008549A1 (zh) 一种呼吸机的闭环容量控制方法
CN106345020B (zh) 一种呼吸机中压力控制容量模式的控制方法
CN103908726A (zh) 基于电动电控呼吸机或麻醉机主动呼气阀的自动校验方法
CN210050952U (zh) 一种弥散式制氧机供氧量的控制装置
CN105334875B (zh) 一种调节麻醉机流量计流量的方法及装置
CN103908725A (zh) 基于电动电控呼吸机或麻醉机比例阀的自动校验方法
AU2015261740B2 (en) Ventilation method and ventilation device
CN215780669U (zh) 一种呼吸支持设备自动控氧系统以及联合系统
Chatburn et al. Description of available devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 410205 Room 101, 1st floor, north of superstar entrepreneurship base, No. 8 Lujing Road, high tech Development Zone, Changsha, Hunan

Patentee after: Hunan Mingkang Zhongjin Medical Technology Co.,Ltd.

Address before: 410000 101, North 1st floor, giant star entrepreneurship base, No. 8 Lujing Road, high tech Development Zone, Changsha City, Hunan Province

Patentee before: HUNAN MICOME ZHONGJIN MEDICAL SCIENCE & TECHNOLOGY DEVELOPMENT Co.,Ltd.

CP03 Change of name, title or address