CN105942987A - 一种用于连续监测的便携式红外体温计及其温度补偿方法 - Google Patents

一种用于连续监测的便携式红外体温计及其温度补偿方法 Download PDF

Info

Publication number
CN105942987A
CN105942987A CN201610239152.6A CN201610239152A CN105942987A CN 105942987 A CN105942987 A CN 105942987A CN 201610239152 A CN201610239152 A CN 201610239152A CN 105942987 A CN105942987 A CN 105942987A
Authority
CN
China
Prior art keywords
temperature
infrared
sensor
measurement
thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610239152.6A
Other languages
English (en)
Other versions
CN105942987B (zh
Inventor
宗华
杨健
付建波
陈华健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yidu Matrix Technology Co Ltd
Original Assignee
Beijing Yidu Matrix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yidu Matrix Technology Co Ltd filed Critical Beijing Yidu Matrix Technology Co Ltd
Priority to CN201610239152.6A priority Critical patent/CN105942987B/zh
Publication of CN105942987A publication Critical patent/CN105942987A/zh
Application granted granted Critical
Publication of CN105942987B publication Critical patent/CN105942987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明公开了一种用于连续监测的便携式红外体温计及其温度补偿方法。包括硬件结构和温度补偿算法两部分。硬件结构包括两个相对于体温计主体远近错位放置的红外传感器、主控电路、电源模块、蓝牙发射单元及其他附件。两个红外传感器前后距离差为2mm到8mm,左右距离为5mm到15mm。温度补偿算法主要针对测量距离引起的误差,该算法是根据红外传感器的测量值以及两个前后错位的传感器的差值来决定温度修正量的。该发明具有可以非接触连续测量人体体温的功能,经过独特的双传感器错位设置以及相应的算法修正,得到的温度与实际温度误差小于0.1℃,满足医用温度测量需求。同时具有轻便小巧、快速测温、连续监测、结构简单等优点。

Description

一种用于连续监测的便携式红外体温计及其温度补偿方法
技术领域
本发明涉及温度计技术领域,尤其涉及一种用于连续监测的便携式红外体温计及其温度补偿方法。
背景技术
一切温度高于绝对零度的物体都在不停地向周围空间发射红外辐射能量,红外辐射能量的大小按波长的分布与它的表面温度有着十分密切的关系,通过对物体自身发出的红外能量的测量,能准确地测出它的表面温度。红外测温技术随着现代技术的发展日趋完善,并且逐渐渗透到各个领域。开发新型的红外测温技术,完善红外测温系统的性能是时代发展的要求。
一直以来,体温是表征人体是否健康的重要指标之一,通过体温的准确测量能够快速发现疑似病情,及早采取治疗措施。对于易发病人群或者特殊需要情景,例如婴儿、孕妇、待康复病患等,体温的连续监测便成为刚性需求。
常见的人体体温测量方法,主要分为两大类,即接触式和非接触式。接触式测量最常见的是利用水银体温计测量人体温度,如腋下、口腔等,接触式测量精度为0.1℃,能够满足体温测量的要求。但是接触式测量由于要跟人体进行直接接触,接触的紧密程度会对测量结果产生很大的影响,而且测温时间较长,需要被测者配合,对于婴幼儿,接触式测温难度很大。接触式体温计如果没有严格消毒,共用的过程中会产生交叉感染,影响待测者的健康。非接触式测量主要是用红外测温技术。红外体温计具有测温范围广,响应速度快,灵敏度高等特点。但是由于红外测温容易受干扰,如环境温度、被测物体表面发射率、测量距离等因素都会影响测量结果,以至于实际应用中测量精度不高,很难达到医用体温计0.1℃的测量精度。
针对婴幼儿用户,发烧时长时间连续监测体温,使得家长第一时间掌握病情发展,及时就医成为了年轻父母们的刚需。目前市场上主要的连续监测体温的智能穿戴设备,为了满足测量精度,大都选用接触式测量,这就需要用胶贴将测量端牢牢贴附,或者紧紧绑在被测者的皮肤上。这两种固定方式都会给使用者带来不适,尤其是婴幼儿用户,皮肤鲜嫩敏感,不可以长期使用胶贴。因此,连续监测使用非接触式测量将是更好的解决方案,如果没有尺寸和重量限制,红外测温可以采用很多方案来修正由于环境影响产生的误差,例如集成超声波测距模块和光学聚焦系统的枪式红外额温测试仪、医用红外热像仪等等。但是,随身佩戴的腋下红外连续测量方式要求测量端必须小巧轻便,而且测量精度基本上不受距离、震动等测量环境的影响,这就对技术实现提出了挑战,针对此种非接触腋下连续测量的应用场景,产生了本发明专利所描述的红外测温体温计新结构及相应的温度校准、补偿算法。填补了高精度、非接触、可佩带连续测温领域的空白。
发明内容
为了克服上述现有技术的问题,本发明提供了一种用于连续监测的便携式红外体温计及其温度补偿方法。
本发明提供的一种用于连续监测的便携式红外体温计,第一红外测温传感器与第二红外测温传感器相对于体温计主体远近错位放置,两个红外传感器前后距离差可在2mm到8mm内变化,相应的两个红外传感器左右距离可以在5mm到15mm内变化。测量时两个传感器分别测量待测者温度值T1、T2,远离体温计主体的传感器测量值为T1,靠近体温计主体的传感器测量值为T2,然后将待测者温度值T1、T2传到第一控制单元进行数据补偿处理,补偿的方法是基于单个传感器测量温度随着距离增加非线性减小且两个前后错置传感器的测量差值也随着测量距离增肌单调递减的事实规律,利用实际温度与测量差值和当前的测量值一一对应的函数关系来反推实际温度;将实际体温T发送到接收端。
其中,在两个红外传感器前后距离差为3mm,左右距离7mm的情况下数据补偿处理的公式为:T=F(ΔT,T1)=1.1833*T1-1.9643*ΔT-4.4255
其中,ΔT=T1-T2
其中,将实际体温T发送到蓝牙发射模块,蓝牙发射模块将实际体温T发射到外设接收端的蓝牙接收单元,并存储在第二控制单元中,第二控制单元调用温度显示单元进行温度显示。
本发明同时提供了一种用于连续监测的便携式红外体温计温度补偿方法,通过彼此前后错位放置的第一红外测温传感器与第二红外测温传感器,分别测量待测者温度值T1、T2,远离体温计主体的传感器测量值为T1,靠近体温计主体的传感器测量值为T2,然后将待测者温度值T1、T2传到第一控制单元进行数据补偿处理,补偿的方法是基于单个传感器测量温度随着距离增加非线性减小且两个前后错置传感器的测量差值也随着测量距离增肌单调递减的事实规律,利用实际温度与测量差值和当前的测量值一一对应的函数关系来反推实际温度;最终得到实际体温T。
其中,在两个红外传感器前后距离差为3mm,左右距离7mm的情况下所述数据补偿处理的公式为:
公式为:T=F(ΔT,T1)=1.1833*T1-1.9643*ΔT-4.4255,
其中,ΔT=T1-T2。对于不同前后距离和左右距离的传感器放置情况,此函数关系会有一定程度的调整。
有益效果:在适用距离范围内,温度校正算法可靠,实测准确,误差在0.1℃以内,满足医用测温标准;测量快速,时间响应快,变化实时反映;小巧轻便,可以长期佩戴;结构简单,成本较小。
附图说明
图1为本发明实施例的体温计内部结构图。
图2为本发明实施例的体温计俯视图。
图3为本发明实施例的体温计仰视图。
图4为本发明实施例的体温计第一控制单元连接图。
图5为本发明实施例的体温计第二控制单元连接图。
图6为本发明实施例的体温计佩戴示意图。
图7为本发明实施例1中,不同黑体温度下,补偿温度与双传感器测量差值之间的关系。
图8为图7中各条曲线的截距与黑体温度的关系拟合曲线。
图9为本发明实施例1中,在实际为37.5℃时,测量温度T1和校准后的温度随测量距离变化关系。
图10为本发明实施例1中,在实际为39.0℃时,测量温度T1和校准后的温度随测量距离变化关系。
附图标识:1智能体温计下部壳体;2第一红外测温传感器;3第二红外测温传感器;4智能体温计内部电路板;5智能体温计可充电锂电池;6内部磁体;7智能体温计上部壳体;8智能体温计电源开关;9传感器探测窗口;10无线充电电极;11蓝牙发射模块;12外部磁体;13被测者腋下衣服;14被测者腋下皮肤。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
本发明的原理是:如图1至图5所示,第一红外测温传感器2与第二红外测温传感器3相对于体温计主体远近错位放置,分别测量待测者温度值,两套温度数据都会传到第一控制单元进行数据补偿处理,处理后的数据将会发送到蓝牙发射模块,蓝牙发射模块将数据发射到外设接收端(比如手机)的蓝牙接收单元,并存储在第二控制单元中,第二控制单元调用温度显示单元进行温度显示。
如图6,此智能体温计的佩戴在被测者腋下,佩戴方式为磁性吸附。
由于红外探测单元中已经集成了对环境温度的校准系统(见MLX90615参数说明书),此处不用再考虑环境温度的修正。同样,由于本发明针对人体体温测量,且固定在腋下位置,所面对的测量物体发射率几乎无变化,因此也不用考虑发射率引起的修正。在本数学模型中,主要考虑体温计与腋下皮肤距离变化引起的测量误差,并加以修正。但是测量距离在实际应用中是相对难测的量,因此我们需要利用可测量两个传感器的测量差值与测量距离之间的函数关系,来将难测量量转化为可测量量。在本发明公开的数学模型中,利用抽象数学关系即可表达这个转化过程,无需涉及函数具体表达式。而具体的函数表达式将在具体实施方案中通过实验数据拟合确定。将被测者腋下皮肤实际温度表示为T,测量距离表示为x,第一红外测温传感器测得温度为T1,因此实际温度与测量温度和距离的函数关系表示为:
T=f(x,T1) (1)
本发明中使用独特的错位双探头结构,利用两个红外测温传感器的距离差,产生一个测量温度的差值ΔT=T1-T2。实际情况表明,在固定的物体实际温度T的情况下,测量温度随测量距离增加非线性减小,且前后错置的传感器测量差值随着测量距离增加单调递减。对于不同的实际温度,在同一个测量距离上得到的两个测量值以及他们的差值都是不同的。因此,ΔT将会与测量距离x和红外测温传感器测得温度(此处选取第一红外传感器测量值T1)相关联,其函数关系表示为:
ΔT=g(x,T1) (2)
由式(2)可以反推得到函数关系:
x=g′(ΔT,T1) (3)
即测量值T1和差值ΔT包含了测量距离的全部信息。
把式(3)带入(1)中,可以得到:
T=f(g′(ΔT,T1),T1) (4)
经整理,(4)可以表示为:
T=F(ΔT,T1) (5)
从式(5)可以看到,实际温度将是双传感器温度差ΔT和第一红外测温传感器测得温度T1的函数。因此,我们可以通过测量ΔT和T1来获得实际温度T。这便是本发明中测量距离引起的温度校准的算法的原始数学模型。
实施例1
通过实验数据拟合,可以近似得到函数T=F(ΔT,T1)具体表达形式。本实施例中,在两个红外传感器前后距离差为3mm,左右距离7mm的情况下,通过数学途径,拟合出T=F(ΔT,T1)的近似表达式。
实验标定:测试时使用恒温黑体辐射热源来模拟人体,将黑体辐射热源温度设定为T0(T0=35、35.5、36……40)度,将测温端固定在导轨上,测量随着不同的距离时两个传感器的温度差ΔT和第一测温单元的温度示数T1
经过数据分析,发现需要补偿的值(T0-T1)与两个传感器温度差值有近似的线性关系,结果如图7所示,对于不同T0时对应的线性曲线有个相对平移。
根据数据拟合结果,曲线组斜率接近于-1.66。因此补偿温度可以表示为:
T0-T1=-1.66*ΔT+h(T0) (6)
为了得到曲线组截距与实际温度T0的函数关系h(T0),我们拟合计算出了所有实验曲线的截距。从图8中可以发现这些截距与实际温度T0有近似线性关系。
根据图中的拟合公式,可得:
h(T0)=0.1549*T0-3.74
代入公式(6)可得:
T0-T1=-1.66*ΔT+0.1549*T0-3.74
经过整理可得:
T0=1.1833*T1-1.9643*ΔT-4.4255
因此,公式(5)所描述的函数关系在两个红外传感器前后距离差为3mm,左右距离7mm的情况下可以近似表示为:
T=F(ΔT,T1)=1.1833*T1-1.9643*ΔT-4.4255 (7)
利用公式(7)进行校正,得到数据如下(单位℃):
测量距离 实际温度 测量校准温度 误差 实际温度 测量校准温度 误差
1mm 37.50 37.56 0.06 39.00 38.94 -0.06
2mm 37.50 37.48 -0.02 39.00 38.93 -0.07
3mm 37.50 37.51 0.01 39.00 38.95 -0.05
4mm 37.50 37.45 -0.05 39.00 39.06 0.06
5mm 37.50 37.51 0.01 39.00 39.10 0.10
6mm 37.50 37.41 -0.09 39.00 39.02 0.02
7mm 37.50 37.40 -0.10 39.00 39.06 0.06
8mm 37.50 37.41 -0.09 39.00 38.98 -0.02
9mm 37.50 37.45 -0.05 39.00 38.94 -0.06
10mm 37.50 37.42 -0.08 39.00 38.97 -0.03
11mm 37.50 37.44 -0.06 39.00 38.98 -0.02
12mm 37.50 37.47 -0.03 39.00 39.09 0.09
13mm 37.50 37.43 -0.07 39.00 39.01 0.01
14mm 37.50 37.41 -0.09 39.00 39.00 0.00
15mm 37.50 37.40 -0.10 39.00 39.06 0.06
测量及补偿效果见图9和图10。
在该实例中,校准后的温度误差在±0.1℃以内,满足医用标准。从整体上来看,这一方案起到了很好地温度补偿作用。
实施例2:
无需具体的函数表达式,直接通过实验标定,获得T与ΔT和T1的对应关系,列为表格:
通过定标,获得上表以后,对于测量范围内的任意温度,通过测量T1和ΔT,再查表可得实际温度。由上表可知,校准的误差精度取决于定标表的精度,只有足够细分的定标表才能给出足够的修正精度。因此定标测量的数据量将会非常大,限于篇幅,此处只给出了粗测样表的一部分。但本方案的好处是规避了实施例1中数学近似带来的误差,而将误差的精度控制转变为可操作的定标实验的细分度。对于实际应用来说有重要意义。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (5)

1.一种用于连续监测的便携式红外体温计,其特征在于,
第一红外测温传感器(2)与第二红外测温传感器(3)彼此前后错位,两个红外传感器前后距离为2mm至8mm,左右距离为5mm至15mm;测量时,第一红外测温传感器(2)与第二红外测温传感器(3)分别测量待测者温度值T1、T2,其中,远离体温计主体的传感器测量值为T1,靠近体温计主体的传感器测量值为T2然后将待测者温度值T1、T2传到第一控制单元进行数据补偿处理得到实际体温T。补偿的方法是基于单个传感器测量温度随着距离增加非线性减小且两个前后错置传感器的测量差值也随着测量距离增肌单调递减的事实规律,利用实际温度与测量差值和当前的测量值一一对应的函数关系来反推实际温度;最终将实际体温T发送到接收端。
2.根据权利要求1所述的用于连续监测的便携式红外体温计,其特征在于,将实际体温T发送到蓝牙发射模块(11),蓝牙发射模块(11)将实际体温T发射到外设接收端的蓝牙接收单元,并存储在第二控制单元中,第二控制单元调用温度显示单元进行温度显示。
3.根据权利要求1或2所述的用于连续监测的便携式红外体温计,其特征在于,在两个红外传感器前后距离为3mm,左右距离为7mm的情况下,所述数据补偿函数关系为:T=F(ΔT,T1)=1.1833*T1-1.9643*ΔT-4.4255,其中,ΔT=T1-T2
4.一种用于连续监测的便携式红外体温计温度补偿方法,其特征在于,
通过彼此前后错位放置的第一红外测温传感器(2)与第二红外测温传感器(3),分别测量待测者温度值T1、T2,然后将待测者温度值T1、T2传到第一控制单元进行数据补偿处理,补偿的方法是基于单个传感器测量温度随着距离增加非线性减小且两个前后错置传感器的测量差值也随着测量距离增肌单调递减的事实规律,利用实际温度与测量差值和当前的测量值一一对应的函数关系来反推实际温度;最终得到实际体温T;其中,两个红外传感器前后距离为2mm至8mm,左右距离为5mm至15mm,远离体温计主体的传感器测量值为T1,靠近体温计主体的传感器测量值为T2
5.根据权利要求4所述的一种用于连续监测的便携式红外体温计温度补偿方法,其特征在于,在两个红外传感器前后距离差为3mm,左右距离7mm的情况下,所述数据补偿处理的公式为:
公式为:T=F(ΔT,T1)=1.1833*T1-1.9643*ΔT-4.4255,其中,ΔT=T1-T2
CN201610239152.6A 2016-04-18 2016-04-18 一种用于连续监测的便携式红外体温计及其温度补偿方法 Active CN105942987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610239152.6A CN105942987B (zh) 2016-04-18 2016-04-18 一种用于连续监测的便携式红外体温计及其温度补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610239152.6A CN105942987B (zh) 2016-04-18 2016-04-18 一种用于连续监测的便携式红外体温计及其温度补偿方法

Publications (2)

Publication Number Publication Date
CN105942987A true CN105942987A (zh) 2016-09-21
CN105942987B CN105942987B (zh) 2018-09-18

Family

ID=56918087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610239152.6A Active CN105942987B (zh) 2016-04-18 2016-04-18 一种用于连续监测的便携式红外体温计及其温度补偿方法

Country Status (1)

Country Link
CN (1) CN105942987B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013230A (zh) * 2018-01-08 2019-07-16 曹亮 一种采用多个红外传感器的测温装置及方法
CN110312919A (zh) * 2016-12-20 2019-10-08 塞克热量股份有限公司 用于热成像系统的热成像处理
CN110974186A (zh) * 2018-10-02 2020-04-10 希尔-罗姆服务公司 用于确定目标区域温度变化的温度监测系统和方法
CN111265193A (zh) * 2020-02-21 2020-06-12 中国计量大学 一种用于疫情防控卡口的现场体温筛查装置及方法
CN111307300A (zh) * 2020-04-17 2020-06-19 镇江明润信息科技有限公司 一种红外测温传感器的温度校准装置及方法
CN112155521A (zh) * 2020-09-24 2021-01-01 中国第一汽车股份有限公司 一种用于车辆的体温管理系统和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749716A (zh) * 2004-09-15 2006-03-22 精工爱普生株式会社 体温计、具有体温计的电子设备以及体温测量方法
US20080300819A1 (en) * 2007-06-02 2008-12-04 Drager Safety Ag & Co. Kgaa Device and method for measuring the body temperature of a living being
US20100329301A1 (en) * 2009-06-30 2010-12-30 Yuk-Wa Pang Remote temperature sensing device
CN103565422A (zh) * 2013-11-06 2014-02-12 江苏大学 一种医用红外测温仪及其测量补偿的方法
CN104204746A (zh) * 2012-03-30 2014-12-10 西铁城控股株式会社 接触式内部温度计
CN204169828U (zh) * 2014-08-14 2015-02-25 深圳市宇君康科技有限公司 体温测量仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749716A (zh) * 2004-09-15 2006-03-22 精工爱普生株式会社 体温计、具有体温计的电子设备以及体温测量方法
US20080300819A1 (en) * 2007-06-02 2008-12-04 Drager Safety Ag & Co. Kgaa Device and method for measuring the body temperature of a living being
US20100329301A1 (en) * 2009-06-30 2010-12-30 Yuk-Wa Pang Remote temperature sensing device
CN104204746A (zh) * 2012-03-30 2014-12-10 西铁城控股株式会社 接触式内部温度计
CN103565422A (zh) * 2013-11-06 2014-02-12 江苏大学 一种医用红外测温仪及其测量补偿的方法
CN204169828U (zh) * 2014-08-14 2015-02-25 深圳市宇君康科技有限公司 体温测量仪

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312919A (zh) * 2016-12-20 2019-10-08 塞克热量股份有限公司 用于热成像系统的热成像处理
CN110312919B (zh) * 2016-12-20 2021-03-19 塞克热量股份有限公司 用于热成像系统的热成像处理
CN110013230A (zh) * 2018-01-08 2019-07-16 曹亮 一种采用多个红外传感器的测温装置及方法
CN110974186A (zh) * 2018-10-02 2020-04-10 希尔-罗姆服务公司 用于确定目标区域温度变化的温度监测系统和方法
CN111265193A (zh) * 2020-02-21 2020-06-12 中国计量大学 一种用于疫情防控卡口的现场体温筛查装置及方法
CN111265193B (zh) * 2020-02-21 2023-09-19 中国计量大学 一种用于疫情防控卡口的现场体温筛查装置及方法
CN111307300A (zh) * 2020-04-17 2020-06-19 镇江明润信息科技有限公司 一种红外测温传感器的温度校准装置及方法
CN111307300B (zh) * 2020-04-17 2021-08-17 镇江明润信息科技有限公司 一种红外测温传感器的温度校准装置及方法
CN112155521A (zh) * 2020-09-24 2021-01-01 中国第一汽车股份有限公司 一种用于车辆的体温管理系统和车辆

Also Published As

Publication number Publication date
CN105942987B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
CN105942987A (zh) 一种用于连续监测的便携式红外体温计及其温度补偿方法
WO2021196360A1 (zh) 一种温度测量方法及系统
US10048134B2 (en) Non-contact medical thermometer with distance sensing and compensation
RU2678212C1 (ru) Система и способ измерения температуры ядра тела
KR101779761B1 (ko) 거리 측정 센서를 이용한 온도 보정 체온계 및 방법
US7479116B2 (en) Temperature measurement device
JP6763142B2 (ja) 内部温度測定装置、リスト装着型装置及び内部温度測定方法
US7981046B2 (en) Temperature measurement device
US20170128052A1 (en) Method and device for detecting physiological index
CN106289563B (zh) 温度检测方法、系统及装置
CN101031233A (zh) 医用身体深部温度计
CN107817054B (zh) 一种用于真空腔内部件的红外成像仪测温方法
EP3064917A1 (en) Temperature measurement apparatus and temperature measurement method
CN110470414A (zh) 一种体温测量系统以及用于体温测量系统的校正方法
CN109549635A (zh) 人体体温动态在线测量方法及可穿戴设备
CN112050950A (zh) 一种可穿戴式设备及用于该设备的人体体温测量方法
CN205758521U (zh) 一种用于连续监测的便携式红外体温计
CN104161498B (zh) 一种体温计
Kulkarni et al. An embedded wearable device for monitoring diabetic foot ulcer parameters
Pušnik et al. IR ear thermometers: what do they measure and how do they comply with the EU technical regulation?
CN204169834U (zh) 一种复合式体温计
CN113125014A (zh) 一种红外测体温的方法、电子设备、可读存储介质
KR101880629B1 (ko) 최소자승법을 이용한 체온 관리 시스템
US20180372659A1 (en) Thermal properties measuring device
US20200370944A1 (en) Pressure and temperature based scale

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant