CN105935828B - 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法 - Google Patents

一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法 Download PDF

Info

Publication number
CN105935828B
CN105935828B CN201610368862.9A CN201610368862A CN105935828B CN 105935828 B CN105935828 B CN 105935828B CN 201610368862 A CN201610368862 A CN 201610368862A CN 105935828 B CN105935828 B CN 105935828B
Authority
CN
China
Prior art keywords
transfer
pulse
current
short circuiting
project
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610368862.9A
Other languages
English (en)
Other versions
CN105935828A (zh
Inventor
罗怡
朱亮
许洁
韩静韬
余艇
唐小张
杨贵友
李正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Technology
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN201610368862.9A priority Critical patent/CN105935828B/zh
Publication of CN105935828A publication Critical patent/CN105935828A/zh
Application granted granted Critical
Publication of CN105935828B publication Critical patent/CN105935828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Abstract

本发明公开了一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法,该方法根据电弧三维快速成形制造工艺过程的特点,设计了三种不同的脉冲电流模式,从而获得不同的脉冲MIG电弧工作模式和熔滴过渡模式。借助脉冲MIG电弧提供的热、力作用模式,实现对自动同步送进的金属丝材的熔化和强制熔滴实现不同形式的平稳过渡,并使熔滴堆叠成形,实现金属构件的三维快速成形制造。利用本发明能够实现常用金属结构的高效成形制造,具有制造成本低、成形效率高、热变形小、技术适应性强等优点。

Description

一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造 方法
技术领域
本发明涉及一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法,适用于以同步送丝形式实现不锈钢、铝合金等金属材料的电弧三维快速成形制造。
背景技术
直接制造金属零件以及金属部件,是制造业对金属材料三维快速成形制造技术提出的终极目标。早在20世纪90年代三维快速成形制造技术发展的初期,研究人员便已经尝试基于各种快速原型制造方法实现金属制件的制备。与立体光造型(Stereolithography,SLA)、叠层制造(Laminated object manufacturing, LOM)、熔融沉积成型(Fuseddeposition modeling, FDM)等快速原型制造技术相比,选择性激光烧结技术(Selectedlasersintering, SLS)由于其使用粉末材料的特点,为制备金属制件提供了一种最直接的可能。随着大功率激光器在快速成形技术中的逐步应用,SLS技术随之发展成为选区激光熔化成形技术(Selective laser melting, SLM)。该技术利用高能量的激光束照射预先铺覆好的金属粉末材料,将其直接熔化并固化成形获得金属制件。在SLM技术发展的同时,基于激光堆焊和激光熔覆技术,逐渐形成了金属成形制造技术研究的另一重要分枝——激光快速成形技术(Laser rapid forming, LRF)或激光立体成形技术(Laser solid forming,LSF)。该技术利用高能量激光束将与光束同轴喷射或侧向喷射的金属粉末直接熔化为液态,通过运动控制,将熔化后的液态金属按照预定的轨迹堆积凝固成形,获得从尺寸和形状上非常接近于最终零件的“近形”制件,并经过后续的小余量加工后以及必要的后处理获得最终的金属制件。
SLM技术和LRF技术作为金属快速成形制造技术的两个主要研究热点,引领着当前金属快速成形制造技术的发展。采用激光等高能束热源进行金属材料的快速成形制造,其设备复杂、价格昂贵,而且成形工艺复杂,成形零件微观组织的致密度不高。为了克服这些方法的缺陷,开发设备简单、制造效率高、零件致密度和力学性能好的金属材料的快速成形制造新工艺成为了全球研究的热点。
电弧快速成形制造技术就是在上述背景之下兴起的,使用焊接电弧作为热源,采用焊接设备及工艺方法制成由全焊缝金属组成的零件,因此又称为电弧快速成形技术。其中,熔化极惰性气体保护(Metal Inert Gas,MIG)焊接电弧在焊接应用中具有较高的填充效率,因此,将其应用于金属构件的快速成形制造具有较好的可行性。但是,常规MIG电弧存在电弧热输入高、电弧和熔滴过渡稳定性差,成形后得到的金属构件热变形大的缺陷。因此,常规MIG电弧应用于快速成形制造具有一定的局限性。脉冲电弧热源单脉冲能量高、电弧力较大,使电弧具有平均热输入低、电弧指向性好、熔滴过渡平稳等特点,可以实现低成本、高效率、高稳定性的成形制造,这为实现金属构件的三维快速成形制造带来了新的可能。
发明内容
本发明针对金属构件的成形制造,提供一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法,该方法能够实现不锈钢、铝合金、钛合金等金属构件的三维快速成形制造。
本发明采取以下技术方案:
一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法,该方法借助脉冲MIG电弧提供的热、力作用模式,实现对自动同步送进的金属丝材的熔化和强制熔滴实现不同形式的平稳过渡,并使熔滴堆叠成形。
所述制造方法的步骤如下:
(1)安装基板,并可靠装夹,水平固定;
(2)调整MIG焊枪方向,使其与基板平面垂直;
(3)零件三维建模、分层切片,生成成形制造程序;
(4)移动MIG焊枪至基点位置,提前送出保护气,引弧使脉冲MIG电弧开始工作,同时启动送丝机构,使金属丝材随脉冲电流的输出同步送进,成形制造过程开始;
(5)制造过程结束时,先熄灭脉冲MIG电弧和关停送丝机构,延迟停止保护气,结束全部制造流程。
所述步骤(4)的脉冲电流为复合脉冲,选自三种脉冲电流模式中的任意一种,使成形制造过程获得三种不同的熔滴过渡模式,其中,脉冲电流模式一、二适用于频率为200Hz以下的脉冲设置,脉冲电流模式三适用于频率为200Hz以上的脉冲设置.
脉冲电流模式一:射滴过渡电流脉冲与短路过渡半长时电流脉冲的复合模式,一个脉冲电流周期包括四个射滴过渡电流脉冲和一个短路过渡半长时电流脉冲。其中,短路过渡半长时电流脉冲的持续时间为射滴过渡电流脉冲持续时间的二分之一,短路过渡半长时电流脉冲的峰值与射滴过渡电流脉冲的基值相等。由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴过渡,由短路过渡半长时电流脉冲强制熔滴实现一脉一滴的短路过渡;
脉冲电流模式二:射滴过渡电流脉冲与短路过渡长时电流脉冲的复合模式,一个脉冲电流周期包括三个射滴过渡电流脉冲和一个短路过渡长时电流脉冲。其中,短路过渡长时电流脉冲的持续时间与射滴过渡电流脉冲持续时间相同,短路过渡长时电流脉冲的峰值与射滴过渡电流脉冲的基值相等。由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴过渡,由短路过渡长时电流脉冲强制实现1~2个熔滴的短路过渡;
脉冲电流模式三:射滴过渡电流脉冲与短路过渡短时电流脉冲的复合模式,一个脉冲电流周期包括三个射滴过渡电流脉冲和三个短路过渡短时电流脉冲。其中,短路过渡短时电流脉冲的持续时间与射滴过渡电流脉冲持续时间相同,短路过渡短时电流脉冲的峰值与射滴过渡电流脉冲的基值相等。由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴过渡,由短路过渡短时电流脉冲强制熔滴实现一脉一滴的短路过渡。
所述产生脉冲MIG电弧的电源为直流电源,电极接法为金属丝材为阳极接电源正极,基板为阴极接电源负极。
本发明的创新在于根据电弧三维快速成形制造工艺过程的特点,设计了三种不同的脉冲电流模式,从而获得不同的脉冲MIG电弧工作模式和熔滴过渡模式。利用脉冲MIG电弧提供的热量,实现对自动同步送进的金属丝材的熔化;利用脉冲MIG电弧较大的电弧力,获得良好的电弧指向性和稳定性,强制熔滴实现不同形式的平稳过渡,使熔滴实现堆叠成形;利用脉冲MIG电弧相对较低的平均热输入,降低成形构件的内应力和热变形。从而充分发挥电弧三维快速成形的技术优势,实现金属构件的低成本、高效率成形制造。
本发明与现有技术相比具有以下优点:
(1)制造成本低,熔滴沉积率高,金属构件成形效率高;
(2)脉冲电弧热输入低,热变形小,容易实现加工精度的提升;
(3)适应性强,适合多种金属材料和结构的三维快速成形制造。
附图说明
图1是基于脉冲电流强制熔滴过渡的电弧三维快速成形制造系统组成示意图。
图2是脉冲电流模式一的电流脉冲波形示意图。
图3是脉冲电流模式二的电流脉冲波形示意图。
图4是脉冲电流模式三的电流脉冲波形示意图。
图5是实施例1制造的铝合金构件样品。
图6是实施例2制造的铝合金构件样品。
图7是实施例3制造的铝合金构件样品。
图中,1电源、2送丝机、3气瓶、4 MIG焊枪、5三维运动控制器、6基板、7成形件、8电弧、9前进方向、10射滴过渡电流脉冲、11短路过渡半长时电流脉冲、12短路过渡长时电流脉冲、13短路过渡短时电流脉冲。
具体实施方式
下面结合附图和具体实施例,进一步阐述本发明。
参见图1,本发明方法采用的电弧三维快速成形制造系统由1电源、送丝机2、气瓶3、MIG焊枪4、三维运动控制器5和基板6等构成。基板6装夹在工作台上,工作台由三维运动控制器5控制运动。MIG焊枪4进行电弧焊,送丝机2进行送丝,气瓶3提供保护气体。
实施例1:
本例采用的基板为厚度4mm的6061铝合金板,金属丝材选用直径为1.2mm的AlSi系铝合金焊丝。将脉冲电流模式设置为模式一,设定射滴过渡电流脉冲的峰值为240A,基值为80A,短路过渡半长时电流脉冲的基值电流为25A,电压平均值为21V,脉冲频率为180Hz,工作台前进速度为12mm/s。使用的保护气体为纯氩气,且保护气体流量为20L/min。使金属丝材接电源正极,基板接电源负极。安装基板,并可靠水平固定,调整MIG焊枪方向,使其与基板平面垂直。完成零件的三维建模、分层切片,生成成形制造程序。移动MIG焊枪至基点位置,提前送出保护气,引弧使脉冲MIG电弧开始工作,同时启动送丝机构,使金属丝材自动地与脉冲电流的节奏变化同步送进,成形制造过程开始。结束时,先熄灭脉冲MIG电弧和关停送丝机构,延迟停止保护气,结束全部制造流程。通过实施例成形并机械加工完成的金属构件如图5所示。
实施例2:
采用的基板为厚度4mm的6061铝合金板,金属丝材选用直径为1.2mm的AlSi系铝合金焊丝。将脉冲电流模式设置为模式三,设定射滴过渡电流脉冲的峰值为260A,基值为75A,短路过渡短时电流脉冲的基值电流为25A,电压平均值为22V,脉冲频率为300Hz,工作台前进速度为12mm/s。使用的保护气体为纯氩气,且保护气体流量为20L/min。使金属丝材接电源正极,基板接电源负极。安装基板,并可靠水平固定,调整MIG焊枪方向,使其与基板平面垂直。完成零件的三维建模、分层切片,生成成形制造程序。移动MIG焊枪至基点位置,提前送出保护气,引弧使脉冲MIG电弧开始工作,同时启动送丝机构,使金属丝材自动地与脉冲电流的节奏变化同步送进,成形制造过程开始。结束时,先熄灭脉冲MIG电弧和关停送丝机构,延迟停止保护气,结束全部制造流程。通过实施例成形并机械加工完成的金属构件如图6所示。
实施例3
采用的基板为厚度4mm的6061铝合金板,金属丝材选用直径为1.0mm的AlSi系铝合金焊丝。将脉冲电流模式设置为模式二,设定射滴过渡电流脉冲的峰值为220A,基值为70A,短路过渡长时电流脉冲的基值电流为25A,电压平均值为21V,脉冲频率为200Hz,工作台前进速度为10mm/s。使用的保护气体为纯氩气,且保护气体流量为18L/min。使金属丝材接电源正极,基板接电源负极。安装基板,并可靠水平固定,调整MIG焊枪方向,使其与基板平面垂直。完成零件的三维建模、分层切片,生成成形制造程序。移动MIG焊枪至基点位置,提前送出保护气,引弧使脉冲MIG电弧开始工作,同时启动送丝机构,使金属丝材自动地与脉冲电流的节奏变化同步送进,成形制造过程开始。结束时,先熄灭脉冲MIG电弧和关停送丝机构,延迟停止保护气,结束全部制造流程。通过实施例成形并机械加工完成的金属构件如图7所示。

Claims (1)

1. 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法,其特征在于,所述方法借助脉冲 MIG 电弧提供的热、力作用模式,实现对自动同步送进的金属丝材的熔化和强制 熔滴的不同形式的平稳过渡,使熔滴堆叠成形;所述方法的步骤如下:
(1)安装基板,并可靠装夹,水平固定;
(2)调整 MIG 焊枪方向,使其与基板平面垂直;
(3)零件三维建模、分层切片,生成成形制造程序;
(4)移动 MIG 焊枪至基点位置,提前送出保护气,引弧使脉冲 MIG 电弧开始工作,同时启动送丝机构,使金属丝材随脉冲电流的输出同步送进,成形制造过程开始;
(5)制造过程结束时,先熄灭脉冲 MIG 电弧和关停送丝机构,延迟停止保护气,结束全部制造流程;
所述步骤(4)的脉冲电流为复合脉冲,选自三种脉冲电流模式中的任意一种,使成形制造过程获得三种不同的熔滴过渡模式,其中,脉冲电流模式一、二适用于频率为 200Hz 以下的脉冲设置,脉冲电流模式三适用于频率为大于200Hz的脉冲设置:
脉冲电流模式一:射滴过渡电流脉冲与短路过渡半长时电流脉冲的复合模式,一个脉冲 电流周期包括四个射滴过渡电流脉冲和一个短路过渡半长时电流脉冲;其中,短路过渡半长 时电流脉冲的持续时间为射滴过渡电流脉冲持续时间的二分之一,短路过渡半长时电流脉冲 的峰值与射滴过渡电流脉冲的基值相等,由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴 过渡,由短路过渡半长时电流脉冲强制熔滴实现一脉一滴的短路过渡;
脉冲电流模式二:射滴过渡电流脉冲与短路过渡长时电流脉冲的复合模式,一个脉冲电流周期包括三个射滴过渡电流脉冲和一个短路过渡长时电流脉冲;其中,短路过渡长时电流 脉冲的持续时间与射滴过渡电流脉冲持续时间相同,短路过渡长时电流脉冲的峰值与射滴过 渡电流脉冲的基值相等,由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴过渡,由短路过 渡长时电流脉冲强制实现 1~2 个熔滴的短路过渡;
脉冲电流模式三:射滴过渡电流脉冲与短路过渡短时电流脉冲的复合模式,一个脉冲电流周期包括三个射滴过渡电流脉冲和三个短路过渡短时电流脉冲;其中,短路过渡短时电流脉冲的持续时间与射滴过渡电流脉冲持续时间相同,短路过渡短时电流脉冲的峰值与射滴过 渡电流脉冲的基值相等,由射滴过渡电流脉冲强制熔滴实现一脉一滴的射滴过渡,由短路过渡短时电流脉冲强制熔滴实现一脉一滴的短路过渡;
产生所述脉冲 MIG 电弧的电源为直流电源,电极接法为金属丝材为阳极接电源正极,基板为阴极接电源负极。
CN201610368862.9A 2016-05-30 2016-05-30 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法 Active CN105935828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610368862.9A CN105935828B (zh) 2016-05-30 2016-05-30 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610368862.9A CN105935828B (zh) 2016-05-30 2016-05-30 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法

Publications (2)

Publication Number Publication Date
CN105935828A CN105935828A (zh) 2016-09-14
CN105935828B true CN105935828B (zh) 2017-11-07

Family

ID=57152189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610368862.9A Active CN105935828B (zh) 2016-05-30 2016-05-30 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法

Country Status (1)

Country Link
CN (1) CN105935828B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623939B (zh) * 2016-12-20 2019-05-17 北京工业大学 一种电阻电磁感应复合加热金属丝材成形方法
CN106944715A (zh) * 2017-04-17 2017-07-14 北京航星机器制造有限公司 一种高效多工位电弧增材制造铝合金结构件的方法
CN108188542A (zh) * 2017-12-28 2018-06-22 南方增材科技有限公司 金属构件丝极电熔增材制造方法及金属构件
CN109332860B (zh) * 2018-11-23 2021-01-05 大连理工大学 一种5083铝合金/tc4钛合金结构的电弧增材制造方法
CN110453216B (zh) * 2019-09-02 2023-04-07 铜陵学院 一种覆层裂纹自愈合的激光熔覆装置及其加工方法
CN112935482A (zh) * 2021-01-27 2021-06-11 华南理工大学 基于电流波形激励熔滴过渡的双丝脉冲mig焊电源系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101032778A (zh) * 2006-03-10 2007-09-12 株式会社神户制钢所 脉冲弧焊方法
CN101870032A (zh) * 2010-06-18 2010-10-27 杭州凯尔达电焊机有限公司 大电流co2焊接过程中的熔滴定时强制短路过渡控制方法
CN102248265A (zh) * 2011-06-21 2011-11-23 哈尔滨工业大学 一种采用mig焊进行表面熔覆的方法
CN103372713A (zh) * 2013-02-20 2013-10-30 天津工业大学 一种航空发动机叶片损伤的修复方法
CN104842042A (zh) * 2015-05-15 2015-08-19 西安交通大学 一种基于cmt的金属焊接快速成形系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327457B2 (ja) * 1997-09-26 2002-09-24 トヨタ自動車株式会社 パルスアーク溶接方法
US8704131B2 (en) * 2006-03-31 2014-04-22 Illinois Tool Works Inc. Method and apparatus for pulse welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101032778A (zh) * 2006-03-10 2007-09-12 株式会社神户制钢所 脉冲弧焊方法
CN101870032A (zh) * 2010-06-18 2010-10-27 杭州凯尔达电焊机有限公司 大电流co2焊接过程中的熔滴定时强制短路过渡控制方法
CN102248265A (zh) * 2011-06-21 2011-11-23 哈尔滨工业大学 一种采用mig焊进行表面熔覆的方法
CN103372713A (zh) * 2013-02-20 2013-10-30 天津工业大学 一种航空发动机叶片损伤的修复方法
CN104842042A (zh) * 2015-05-15 2015-08-19 西安交通大学 一种基于cmt的金属焊接快速成形系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
弧焊机器人金属快速成形研究;杜乃成;《中国博士学位论文全文数据库 工程科技I辑》;20101215;第22-33页,第63-83页 *

Also Published As

Publication number Publication date
CN105935828A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
CN105935828B (zh) 一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法
CN105772945B (zh) 一种基于协同脉冲激光能量诱导的脉冲电弧三维快速成形制造方法
CN110773837B (zh) 一种钛合金高精度电弧增材制造工艺
US8513562B2 (en) Method and system for hybrid direct manufacturing
CN109396434B (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN111112793B (zh) 一种镁合金结构件的电弧增材制造方法及其所用设备
CN105414981B (zh) 一种电弧增材和铣削加工装置
CN107511683A (zh) 一种大型复杂金属结构件增减材制造装置及方法
CN111590072B (zh) 一种电场-磁场耦合控制增材制造金属零件凝固组织的方法及装置
CN107262713A (zh) 一种光内同轴送粉激光冲击锻打复合加工成形装置及方法
CN108607992B (zh) 基于预置金属粉末的微束电弧选择性熔凝增材制造方法
CN100558490C (zh) 一种选择性阻焊熔化粉末快速成形方法
CN105834428B (zh) 一种基于微弧载粉的激光三维快速成形制造方法
CN106735730A (zh) 电弧填丝增材制造方法及装置
CN107755701B (zh) 一种电阻电磁感应摩擦复合加热金属丝材成形方法和装置
CN106623939B (zh) 一种电阻电磁感应复合加热金属丝材成形方法
CN108098113A (zh) 高频脉冲控制式电弧机器人增材制造方法
CN109926695A (zh) 一种机器人用单机同嘴双填丝非熔化极电弧增材制造方法与装置
CN110241414A (zh) 一种提高构件均匀性的激光增材制造装置及方法
CN107838532B (zh) 一种双金属熔覆增材制造方法
CN111151757A (zh) 复合式电子束增材制造设备及工艺
CN104475951B (zh) 一种电阻加热金属丝材熔积成形方法
CN104722921A (zh) 一种激光填丝焊接工艺
CN106862716A (zh) 一种基于电弧声波信号检测与评估电弧三维快速成形制造过程稳定性的方法
CN1476956A (zh) 一种快速制造方法及其装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant