CN105929027A - 一种应变场声发射事件时空强的测量方法 - Google Patents

一种应变场声发射事件时空强的测量方法 Download PDF

Info

Publication number
CN105929027A
CN105929027A CN201610206423.8A CN201610206423A CN105929027A CN 105929027 A CN105929027 A CN 105929027A CN 201610206423 A CN201610206423 A CN 201610206423A CN 105929027 A CN105929027 A CN 105929027A
Authority
CN
China
Prior art keywords
pixels
block
energy
emission event
acoustie emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610206423.8A
Other languages
English (en)
Other versions
CN105929027B (zh
Inventor
王学滨
郭翔
冯威武
白雪元
马冰
齐大雷
李阳
武其奡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201610206423.8A priority Critical patent/CN105929027B/zh
Publication of CN105929027A publication Critical patent/CN105929027A/zh
Application granted granted Critical
Publication of CN105929027B publication Critical patent/CN105929027B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/002Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means for representing acoustic field distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach

Abstract

一种应变场声发射事件时空强的测量方法,步骤为:利用数字图像相关方法,获取材料或结构变形过程中一个表面的最大剪切应变场;将选定的图像分成若干个正方形像素块,根据最大剪切应变场,利用插值方法获得各像素块的最大剪切应变和各像素块中心坐标;确定各破坏像素块及各破坏像素块在测量间隔内释放的弹性应变能、释放弹性应变能的次数;查找相互连通的破坏像素块构成声发射事件;测量各声发射事件在测量间隔内释放的弹性应变能、空间位置、持续时间;确定各声发射事件在各测量间隔内释放的弹性应变能、空间尺度、持续时间的统计规律。优点是:本发明实现了对声发射事件的时空强的全方位测量,扩展了声发射技术的既有功能,应用前景广阔。

Description

一种应变场声发射事件时空强的测量方法
技术领域
本发明属于应变场测量技术领域,特别涉及一种应变场声发射事件时空强的测量方法。
背景技术
声发射技术是靠材料在受载条件下发射的弹性波来获取其内部状态和力学特性的一种实验方法。声发射技术可应用于实验室岩石类材料的微破裂测量、天然地震和矿井岩爆的监测和预报等多个领域。
基于声发射技术的实验结果强烈依赖于实验设备。虽然自70年代以来,国内外已经普遍采用了数字化全波形声发射测量系统,但由于存在动态范围不足与“死时间”等问题,使得声发射波形失真,声发射事件大量缺失,从而影响声发射的时空分布、一些统计量的可靠性以及对材料变形破坏过程的认识。声发射技术对于低频事件一般并不敏感。由于声发射系统多方面的差异,不同实验室的结果难于直接对比。随着时代的发展和技术的进步,上述问题已在一定程度上得到了克服,但仍无法根除。和过去相比,人们对材料变形破坏过程的研究在深度和广度上都有所超越,技术上的局限性严重阻碍了一些研究向前推进。
数字图像相关方法是材料或结构变形破坏过程中位移场和应变场观测的一种重要手段,其原理是通过比较变形前后两块像素子区的相关程度来实现子区中心点位移和子区应变的测量,具有实时观测、光路简单、精度高的特点。
声发射技术和数字图像相关方法有各自的适用领域,各具优势。前者适用于探测声发射事件的时空分布规律,后者适于探测位移场和应变场。目前,根据测量获得的应变场信息挖掘声发射事件的时空强分布规律还未见报道,此规律的获得有助于深刻认识材料的变形破坏过程。
发明内容
针对现有技术的不足,本发明提出一种应变场声发射事件时空强的测量方法。该方法的具体步骤如下:
步骤1、利用数字图像相关方法,获取材料或结构变形破坏过程中一个表面的最大剪切应变场;
步骤1.1、利用拍摄设备采集材料或结构变形破坏过程中一个表面的图像,如果材料或结构表面没有天然纹理或天然纹理质量较差,需要利用涂料在材料或结构表面制作散斑场,任意相邻两张图像的拍摄时间间隔相同;
步骤1.2、选定若干张图像,设置子区尺寸、测点数目、测点位置和测点间距,利用数字图像相关方法测量材料或结构变形破坏过程中一个表面的应变场,所述测点应布置在选定的第一张图像上;
步骤1.3、利用应变场获得最大剪切应变场;
步骤2、将选定的第一张图像分成若干个无间隔、无重叠、成行成列的正方形像素块,根据最大剪切应变场,利用插值方法获得各像素块的最大剪切应变和各像素块中心坐标;
步骤3、根据图像中各像素块的最大剪切应变和设置的强度参数,确定各破坏像素块,并分别确定各破坏像素块在测量间隔内释放的弹性应变能和各测量间隔释放弹性应变能的次数,所述测量间隔包括若干个能量释放计算间隔,所述能量释放计算间隔为任意相邻两张图像的拍摄时间间隔,所述破坏像素块为发生塑性变形的像素块;
步骤3.1、将声发射事件的能量释放计算间隔设置为任意相邻两张图像的拍摄时间间隔,同时设置测量间隔和测量间隔布置方式,所述测量间隔包括若干个能量释放计算间隔,所述测量间隔布置方式包括重叠布置、无缝不重叠布置和有缝布置,重叠布置是指两次相邻的测量间隔包含部分相同的能量释放计算间隔,无缝不重叠布置是指两次相邻的测量间隔紧邻且包含的能量释放计算间隔均不相同,有缝布置是指两次相邻的测量间隔有间隙,间隙部分的能量释放计算间隔不属于任何一次测量间隔,且两次相邻的测量间隔包含的能量释放计算间隔均不相同;
步骤3.2、根据图像中各像素块的最大剪切应变和设置的强度参数,确定破坏像素块,分别测量各破坏像素块在各能量释放计算间隔释放的弹性应变能;
步骤3.3、分别对各破坏像素块在各能量释放计算间隔释放的弹性应变能进行求和,获得各测量间隔内各破坏像素块释放的弹性应变能;
步骤3.4、分别测量各破坏像素块在各测量间隔内释放弹性应变能的次数;
步骤4、将任一个破坏像素块标记为i,i为声发射事件的标号,取为自然数,遍历与该像素块具有相同的点或相同的线的所有像素块,若这些像素块中存在破坏像素块,则这些破坏像素块同样标记为i,同样标记为i的破坏像素块组成一组相互连通的破坏像素块,构成一个声发射事件,同样标记为i的破坏像素块的数目为声发射事件的空间尺度,以此类推,找到应变场中所有的声发射事件,进而确定应变场中声发射事件的数目和各声发射事件的空间尺度,所述一组相互连通的破坏像素块由若干个具有相同的点或者相同的线的破坏像素块组成,所述各声发射事件的空间尺度为各声发射事件包含的破坏像素块的数目;
步骤5、将每组相互连通的破坏像素块在测量间隔内释放的弹性应变能求和,作为每个声发射事件在测量间隔内释放的弹性应变能;
步骤6、根据形心坐标公式,确定各声发射事件所在的空间位置;
步骤7、利用各破坏像素块在各测量间隔内释放弹性应变能的次数乘以能量释放计算间隔,测量各破坏像素块释放能量的持续时间,通过对每组相互连通的破坏像素块释放能量的持续时间求均值或者求并集,确定各声发射事件在测量间隔内的持续时间;
步骤8、在各测量间隔内,确定各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间的统计规律;
步骤8.1、在各测量间隔内,将各声发射事件释放的弹性应变能按最大值和最小值为首末端均分为能量释放若干等级、将各声发射事件的空间尺度按最大值和最小值为首末端均分为空间尺度若干等级、将各声发射事件的持续时间按最大值和最小值为首末端均分为持续时间若干等级;
步骤8.2、将各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间分别划归入相应的等级中,并统计能量释放各等级的频次、空间尺度各等级的频次、持续时间各等级的频次,所述能量释放各等级的频次指能量释放各等级包含的相应的声发射事件的个数,所述空间尺度各等级的频次指空间尺度各等级包含的相应的声发射事件的个数,所述持续时间各等级的频次指持续时间各等级包含的相应的声发射事件的个数;
步骤8.3、利用能量释放各等级的数据,通过线性回归确定频次-能量释放关系,利用空间尺度各等级的数据,通过线性回归确定频次-空间尺度关系,利用持续时间各等级的数据,通过线性回归确定频次-持续时间关系。
有益效果:
本发明提出了一种应变场声发射事件时空强的测量方法,该方法采用拍摄设备采集材料或结构变形破坏过程中一个表面的图像,利用数字图像相关方法,获取材料或结构变形破坏过程中一个表面的应变场,根据图像中各像素块的最大剪切应变和设置的强度参数确定破坏像素块,通过在各测量间隔内确定图像中相互连通的破坏像素块并计算各相互连通的破坏像素块释放的弹性应变能,进而确定各声发射事件的空间尺度和各声发射事件释放的弹性应变能;通过统计各测量间隔内各破坏像素块释放弹性应变能次数,计算各破坏像素块释放能量的持续时间,进而确定各声发射事件的持续时间;最后利用统计方法确定频次-能量释放关系、频次-空间尺度关系、频次-持续时间关系,获得弹性应变能、空间尺度、持续时间三种统计量的演变规律。本发明实现了对声发射事件的时(持续时间)空(空间尺度)强(能量释放)的全方位测量,拓展了声发射技术的既有功能,应用前景广阔。
附图说明
图1为本发明的应变场声发射事件时空强的测量方法的流程图;
图2为本发明实施例的应变场中声发射事件的分布图;
图3为本发明实施例的8个破坏像素块在测量间隔内释放弹性应变能的示意图;
图4为本发明实施例的声发射事件空间尺度的分布图;
图5为本发明实施例的声发射事件能量释放的分布图;
图6为本发明实施例的声发射事件持续时间的分布图;
图7为本发明实施例的声发射事件空间尺度的排序图;
图8为本发明实施例的声发射事件能量释放的排序图;
图9为本发明实施例的声发射事件持续时间的排序图;
图10为本发明实施例的声发射事件频次-空间尺度的统计图;
图11为本发明实施例的声发射事件频次-能量释放的统计图;
图12为本发明实施例的声发射事件频次-持续时间的统计图。
具体实施方式
下面结合附图对本发明具体实施方式做详细说明。一种应变场声发射事件时空强的测量方法,如图1所示:
步骤1、利用数字图像相关方法,获取材料或结构变形破坏过程中一个表面的最大剪切应变场;
步骤1.1、利用拍摄设备采集材料变形破坏过程中一个表面的图像,任意相邻两张图像的拍摄时间间隔均为0.2s;
步骤1.2、选定11张图像,设置子区尺寸为21×21像素,测点数目为10×15,测点成行成列等间距布置,测点间距为50像素,利用数字图像相关方法测量材料或结构变形破坏过程中一个表面的应变场,所述测点应布置在选定的第一张图像上;
步骤1.3、利用应变场获得最大剪切应变场,其中γmax为最大剪切应变,εx、εy、γxy分别为x方向正应变,y方向正应变以及剪切应变。
步骤2、将选定的第一张图像分成无间隔、无重叠、成行成列的20×30个正方形像素块,根据获得的最大剪切应变场,利用插值方法获得各像素块的最大剪切应变和各像素块中心坐标。
步骤3、根据图像中各像素块的最大剪切应变和设置的强度参数,确定各破坏像素块,并分别确定各破坏像素块在测量间隔内释放的弹性应变能和各测量间隔释放弹性应变能的次数;
步骤3.1、设置声发射事件的能量释放计算间隔为任意相邻两张图像的拍摄时间间隔,设置测量间隔为10个能量释放计算间隔,设置测量间隔布置方式为无缝不重叠布置;
步骤3.2、根据图像中各像素块的最大剪切应变和设置的强度参数,确定破坏像素块,所述破坏像素块是发生塑性变形的像素块,若像素块的最大剪切应变大于设置的强度参数,则认为该像素块发生了塑性变形,即γmax≥γf,其中γf是设置的强度参数,取为0.2,分别计算各破坏像素块在各能量释放计算间隔释放的弹性应变能;
一个破坏像素块存储的弹性应变能的计算公式为:
U = V 2 E ( σ 1 2 + σ 3 2 - 2 μσ 1 σ 3 )
其中,E为弹性模量,取为20GPa,μ为泊松比,取为0.15,V为破坏像素块的面积乘以破坏像素块的厚度,破坏像素块的面积为25×25像素,破坏像素块的厚度取为25像素,σ1和σ3分别为第1和第3主应力,当σ1和σ3取为一个能量释放计算间隔开始时的值时,U=U1,当σ1和σ3取为一个能量释放计算间隔结束时的值时,U=U2,ΔU=U1-U2即为一个能量释放计算间隔该破坏像素块释放的弹性应变能;
主应力σ1和σ3可由主应变求得:
σ 1 = E 1 - μ 2 ( ϵ 1 + μϵ 3 ) , σ 3 = E 1 - μ 2 ( ϵ 3 + μϵ 1 )
其中,ε1和ε3分别为第1和第3主应变;
主应变ε1和ε3可由应变分量求得:
ϵ 3 ϵ 1 = ϵ x + ϵ y 2 ± ( ϵ x - ϵ y 2 ) 2 + ( γ x y 2 ) 2
步骤3.3、分别对各破坏像素块在各能量释放计算间隔释放的弹性应变能进行求和,获得各测量间隔内各破坏像素块释放的弹性应变能;
步骤3.4、分别统计各破坏像素块在各测量间隔内释放弹性应变能的次数。
步骤4、将任一个破坏像素块标记为i,i为声发射事件的标号,取为自然数,遍历与该像素块具有相同的点或相同的线的所有像素块,若这些像素块中存在破坏像素块,则这些破坏像素块同样标记为i,同样标记为i的破坏像素块组成一组相互连通的破坏像素块,构成一个声发射事件,同样标记为i的破坏像素块的数目为声发射事件的空间尺度,以此类推,找到应变场中所有的声发射事件,如图2所示,灰色像素块为破坏像素块,共84个,其中8个破坏像素块在测量间隔内的各能量释放计算间隔释放的弹性应变能如图3所示,84个破坏像素块共构成50个声发射事件,确定应变场中声发射事件的数目和各声发射事件的空间尺度,如图4和图7所示,图4展示了各声发射事件空间尺度的分布图,声发射事件空间尺度越小,其对应的圆形面积越小,图7中各声发射事件已按照声发射事件空间尺度的大小重新标号,空间尺度越小,标号越小,空间尺度为1的声发射事件最多,达到30个,空间尺度为3的声发射事件最少,为2个。
步骤5、将每组相互连通的破坏像素块在测量间隔内释放的弹性应变能求和,作为每个声发射事件在测量间隔内释放的弹性应变能,如图5和图8所示,图5展示了各声发射事件能量释放的分布图,声发射事件能量释放越小,其对应的圆形面积越小,图8中各声发射事件已按照声发射事件释放弹性应变能的大小重新编号,释放弹性应变能越小,编号越小。
步骤6、根据形心坐标公式,确定各声发射事件所在的空间位置, 其中xc、yc、zc为一个声发射事件所在的空间位置坐标,xi、yi、zi为一个声发射事件中m个破坏像素块的中心坐标,Si为一个声发射事件中各破坏像素块的面积,m为一个声发射事件包含的破坏像素块的数目,为一个声发射事件各破坏像素块的面积之和。
步骤7、利用各破坏像素块在各测量间隔内释放弹性应变能的次数乘以能量释放计算间隔,测量各破坏像素块释放能量的持续时间,通过对每组相互连通的破坏像素块释放能量的持续时间求均值或者求并集,确定各声发射事件在测量间隔内的持续时间,如图6和图9所示,图6展示了各声发射事件持续时间的分布图,声发射事件持续时间越短,其对应的圆形面积越小,图9中各声发射事件以按照声发射事件持续时间的长短重新编号,持续时间越短,编号越小。
步骤8、在各测量间隔内,确定各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间的统计规律;
步骤8.1、在各测量间隔内,将各声发射事件的空间尺度按最大值和最小值为首末端均分为4个空间尺度等级、将各声发射事件释放的弹性应变能按最大值和最小值为首末端均分为5个能量释放等级、将各声发射事件的持续时间按最大值和最小值为首末端均分为5个持续时间等级;
步骤8.2、将各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间分别划归入相应的等级中,统计空间尺度各等级的频次,如图10所示,统计能量释放各等级的频次,如图11所示,统计持续时间各等级的频次,如图12所示;
步骤8.3、利用能量释放各等级的数据,通过线性回归确定频次-能量释放关系,利用空间尺度各等级的数据,通过线性回归确定频次-空间尺度关系,利用持续时间各等级的数据,通过线性回归确定频次-持续时间关系。

Claims (3)

1.一种应变场声发射事件时空强的测量方法,其特征在于:包括如下步骤:
步骤1、利用数字图像相关方法,获取材料或结构变形破坏过程中一个表面的最大剪切应变场;
步骤1.1、利用拍摄设备采集材料或结构变形破坏过程中一个表面的图像,任意相邻两张图像的拍摄时间间隔相同;
步骤1.2、选定若干张图像,设置子区尺寸、测点数目、测点位置和测点间距,利用数字图像相关方法测量材料或结构变形破坏过程中一个表面的应变场;
步骤1.3、利用应变场获得最大剪切应变场;
步骤2、将选定的图像分成若干个无间隔、无重叠、成行成列的正方形像素块,根据最大剪切应变场,利用插值方法获得各像素块的最大剪切应变和各像素块中心坐标;
步骤3、根据图像中各像素块的最大剪切应变和设置的强度参数,确定各破坏像素块,并分别确定各破坏像素块在测量间隔内释放的弹性应变能和各测量间隔释放弹性应变能的次数,所述测量间隔包括若干个能量释放计算间隔,所述能量释放计算间隔为任意相邻两张图像的拍摄时间间隔,所述破坏像素块为发生塑性变形的像素块;
步骤4、将任一个破坏像素块标记为i,i为声发射事件的标号,取为自然数,遍历与该像素块具有相同的点或相同的线的所有像素块,若这些像素块中存在破坏像素块,则这些破坏像素块同样标记为i,同样标记为i的破坏像素块组成一组相互连通的破坏像素块,构成一个声发射事件,同样标记为i的破坏像素块的数目为声发射事件的空间尺度,以此类推,找到应变场中所有的声发射事件,进而确定应变场中声发射事件的数目和各声发射事件的空间尺度,所述一组相互连通的破坏像素块由若干个具有相同的点或者相同的线的破坏像素块组成,所述各声发射事件的空间尺度为各声发射事件包含的破坏像素块的数目;
步骤5、将每组相互连通的破坏像素块在测量间隔内释放的弹性应变能求和,作为每个声发射事件在测量间隔内释放的弹性应变能;
步骤6、根据形心坐标公式,确定各声发射事件所在的空间位置;
步骤7、利用各破坏像素块在各测量间隔内释放弹性应变能的次数乘以能量释放计算间隔,测量各破坏像素块释放能量的持续时间,通过对每组相互连通的破坏像素块释放能量的持续时间求均值或者求并集,确定各声发射事件在测量间隔内的持续时间;
步骤8、在各测量间隔内,确定各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间的统计规律。
2.根据权利要求1所述的一种应变场声发射事件时空强的测量方法,其特征在于:所述步骤3具体步骤如下:
步骤3.1、将声发射事件的能量释放计算间隔设置为任意相邻两张图像的拍摄时间间隔,同时设置测量间隔和测量间隔布置方式,所述测量间隔包括若干个能量释放计算间隔,所述测量间隔布置方式包括重叠布置、无缝不重叠布置和有缝布置,重叠布置是指两次相邻的测量间隔包含部分相同的能量释放计算间隔,无缝不重叠布置是指两次相邻的测量间隔紧邻且包含的能量释放计算间隔均不相同,有缝布置是指两次相邻的测量间隔有间隙,间隙部分的能量释放计算间隔不属于任何一次测量间隔,且两次相邻的测量间隔包含的能量释放计算间隔均不相同;
步骤3.2、根据图像中各像素块的最大剪切应变和设置的强度参数,确定破坏像素块,分别测量各破坏像素块在各能量释放计算间隔释放的弹性应变能;
步骤3.3、分别对各破坏像素块在各能量释放计算间隔释放的弹性应变能进行求和,获得各测量间隔内各破坏像素块释放的弹性应变能;
步骤3.4、分别测量各破坏像素块在各测量间隔内释放弹性应变能的次数。
3.根据权利要求1所述的一种应变场声发射事件时空强的测量方法,其特征在于:所述步骤8具体步骤如下:
步骤8.1、在测量计间隔内,将各声发射事件释放的弹性应变能按最大值和最小值为首末端均分为能量释放若干等级、将各声发射事件的空间尺度按最大值和最小值为首末端均分为空间尺度若干等级、将各声发射事件的持续时间按最大值和最小值为首末端均分为持续时间若干等级;
步骤8.2、将各声发射事件释放的弹性应变能、各声发射事件的空间尺度、各声发射事件的持续时间分别划归入相应的等级中,并确定能量释放各等级的频次、空间尺度各等级的频次、持续时间各等级的频次,所述能量释放各等级的频次指能量释放各等级包含的相应的声发射事件的个数,所述空间尺度各等级的频次指空间尺度各等级包含的相应的声发射事件的个数,所述持续时间各等级的频次指持续时间各等级包含的相应的声发射事件的个数;
步骤8.3、利用能量释放各等级的数据,通过线性回归确定频次-能量释放关系,利用空间尺度各等级的数据,通过线性回归确定频次-空间尺度关系,利用持续时间各等级的数据,通过线性回归确定频次-持续时间关系。
CN201610206423.8A 2016-03-31 2016-03-31 一种应变场声发射事件时空强的测量方法 Expired - Fee Related CN105929027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610206423.8A CN105929027B (zh) 2016-03-31 2016-03-31 一种应变场声发射事件时空强的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610206423.8A CN105929027B (zh) 2016-03-31 2016-03-31 一种应变场声发射事件时空强的测量方法

Publications (2)

Publication Number Publication Date
CN105929027A true CN105929027A (zh) 2016-09-07
CN105929027B CN105929027B (zh) 2018-07-13

Family

ID=56840526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610206423.8A Expired - Fee Related CN105929027B (zh) 2016-03-31 2016-03-31 一种应变场声发射事件时空强的测量方法

Country Status (1)

Country Link
CN (1) CN105929027B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632487A (zh) * 2019-01-14 2019-04-16 东北大学 一种室内岩石在载荷作用下内部应变场的定性测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279172A1 (en) * 2004-06-18 2005-12-22 Schreier Hubert W Visualization, measurement and analysis of vibrating objects
CN101608905A (zh) * 2009-07-21 2009-12-23 清华大学 一种微裂纹微小张开位移的测量方法
CN102564856A (zh) * 2012-01-09 2012-07-11 西安交通大学 基于数字图像相关的塑性多缺陷材料m积分测量方法
US20150035950A1 (en) * 2012-04-18 2015-02-05 Drexel University Integration of Digital Image Correlation with Acoustic Emission
CN105277428A (zh) * 2015-12-01 2016-01-27 中国矿业大学 脆性材料高低温加载下力学特性损伤变化测量系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279172A1 (en) * 2004-06-18 2005-12-22 Schreier Hubert W Visualization, measurement and analysis of vibrating objects
CN101608905A (zh) * 2009-07-21 2009-12-23 清华大学 一种微裂纹微小张开位移的测量方法
CN102564856A (zh) * 2012-01-09 2012-07-11 西安交通大学 基于数字图像相关的塑性多缺陷材料m积分测量方法
US20150035950A1 (en) * 2012-04-18 2015-02-05 Drexel University Integration of Digital Image Correlation with Acoustic Emission
CN105277428A (zh) * 2015-12-01 2016-01-27 中国矿业大学 脆性材料高低温加载下力学特性损伤变化测量系统及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.G. AGGELIS等: "Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation", 《CONSTRUCTION AND BUILDING MATERIALS》 *
XIAN WANG等: "Observation of damage evolution in polymer bonded explosives using acoustic emission and digital image correlation", 《POLYMER TESTING》 *
王显: "考虑时/空连续性的数字图像相关方法及其应用", 《中国博士学位论文全文数据库 信息科技辑》 *
马少鹏等: "光测方法在岩石力学实验观测中的应用述评", 《岩石力学与工程学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632487A (zh) * 2019-01-14 2019-04-16 东北大学 一种室内岩石在载荷作用下内部应变场的定性测试方法

Also Published As

Publication number Publication date
CN105929027B (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
Zaurin et al. Structural health monitoring using video stream, influence lines, and statistical analysis
Shrestha et al. Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers
CN106525968B (zh) 基于子区域的损伤概率成像定位方法
Tang et al. Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast
CN102998369B (zh) 一种二维损伤定量化监测方法
CN103018338A (zh) 一种基于声发射和神经网络的混凝土无损检测方法
US6934013B2 (en) Compressed symbology strain gage
CN106709142A (zh) 一种获取螺栓连接结合面应力分布的方法
CN1952627A (zh) 一种声场分离方法
Aron et al. Seismicity rate changes along the central California coast due to stress changes from the 2003 M 6.5 San Simeon and 2004 M 6.0 Parkfield earthquakes
CN110706211A (zh) 基于卷积神经网络的铁路路基病害雷达图实时检测方法
WO2023236897A1 (zh) 一种落石灾害柔性防护结构非接触视觉监测系统及方法
CN106706760A (zh) 全向性双圆形阵列的复合材料板声发射源定位方法
Aiken et al. Testing for the ‘predictability’of dynamically triggered earthquakes in The Geysers geothermal field
CN105929027A (zh) 一种应变场声发射事件时空强的测量方法
CN109060285A (zh) 一种螺旋弹簧动态振动特性的检测装置及方法
CN114299011A (zh) 一种基于深度学习的遥感目标四边形框快速检测方法
Kirikera et al. Monitoring multi-site damage growth during quasi-static testing of a wind turbine blade using a structural neural system
CN110849724A (zh) 一种用于装配式混凝土剪力墙损伤识别的概率成像方法
CN103837358A (zh) 大跨桥梁结构整体抗侧力性能异常的预警方法
Wang et al. Research on layer-counting experimental simulation system for projectile penetrating multi-layered targets
CN105223611A (zh) 基于微地震监测三维点集的压裂储层前缘、面积和体积计算方法
CN105806243B (zh) 一种前后表面平行物体内部应变率场的光学测量方法
Lu et al. Identification of damage in dome-like structures using hybrid sensor measurements and artificial neural networks
Kim et al. Reappraisal of pressure distribution induced by ice-structure interaction using high-precision pressure measurement film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180713

Termination date: 20210331

CF01 Termination of patent right due to non-payment of annual fee