CN105925792B - 激光冲击强化系统 - Google Patents

激光冲击强化系统 Download PDF

Info

Publication number
CN105925792B
CN105925792B CN201610537552.5A CN201610537552A CN105925792B CN 105925792 B CN105925792 B CN 105925792B CN 201610537552 A CN201610537552 A CN 201610537552A CN 105925792 B CN105925792 B CN 105925792B
Authority
CN
China
Prior art keywords
laser
optical fiber
rectangular optical
homogenising
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610537552.5A
Other languages
English (en)
Other versions
CN105925792A (zh
Inventor
付瀚毅
刘嘉楠
刘伟奇
冯睿
康玉思
魏忠伦
吕博
张大亮
王蕴琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201610537552.5A priority Critical patent/CN105925792B/zh
Publication of CN105925792A publication Critical patent/CN105925792A/zh
Application granted granted Critical
Publication of CN105925792B publication Critical patent/CN105925792B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供一种激光冲击强化系统,包括:激光耦合系统,用于将激光器发出的激光耦合至方形光纤匀化系统;方形光纤匀化系统,用于将所述激光进行多次全反射,输出强度均匀的方形激光光斑;光斑投影系统,用于调节所述方形激光光斑的大小,并投影至金属材料的表面。激光在方形光纤匀化系统内传输,进行多次全反射,匀化效果好,可以提高对金属材料强化的效果。

Description

激光冲击强化系统
技术领域
本申请涉及航空工业领域,更具体涉及一种激光冲击强化系统。
背景技术
激光冲击强化(Laser Shock Peening)技术是利用功率密度为5~10GW/cm2量级、脉冲宽度为纳秒量级的强激光束辐照金属材料表面产生的冲击波,在不增加零部件质量的前提下,大幅提高金属材料的强度、硬度、耐磨性和耐应力腐蚀性能,特别是能有效改善金属材料的抗疲劳断裂的性能,其制造或强化后的零件强度将是传统战机零件无法比拟的,能够大大增强战机的寿命,并降低维修成本。
影响激光冲击强化效果的主要因素为激光光斑的质量和形状。现有技术中激光光斑有圆形光斑。圆形光斑的几何形状影响冲击金属材料强化效果。
发明内容
有鉴于此,本发明提供了一种激光冲击强化系统,以克服现有技术中圆形光斑的几何形状影响冲击金属材料强化效果、周期及成本的问题。
为实现上述目的,本发明提供如下技术方案:
一种激光冲击强化系统,包括:
激光耦合系统,用于将激光器发出的激光耦合至方形光纤匀化系统;
方形光纤匀化系统,用于将所述激光进行多次全反射,输出强度均匀的方形激光光斑;
光斑投影系统,用于将所述方形激光光斑投影至金属材料的表面,并调节金属材料的表面激光光斑的大小。
其中,所述方形光纤匀化系统为方形光纤。
其中,所述方形光纤的光纤入射端口和/或光纤出射端口的直径为70μm至400μm。
其中,从接收所述激光的顺序方向,所述激光耦合系统依次包括:
双凸透镜以及弯月透镜。
其中,从接收所述方形激光光斑的顺序方向,所述光斑投影系统依次包括:
弯月透镜、双凸透镜、弯月透镜、平凸透镜、弯月透镜、平面镜。
优选的,还包括:激光器、电源以及制冷单元。
其中,所述激光耦合系统设置在所述激光器上。
其中,所述光斑投影系统设置在所述方形光纤匀化系统的光纤出射端口处。
经由上述的技术方案可知,与现有技术相比,本发明实施例提供了一种激光冲击强化系统,
通过方形光纤匀化系统将激光光斑整合成方形激光光斑,激光在方形光纤匀化系统内传输,进行多次全反射,匀化效果好,可以提高对金属材料强化的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种激光冲击强化系统的示意图;
图2为采用本申请实施例提供的方形光纤匀化系统对激光进行匀化后的激光强度分布图;
图3为本申请实施例提供的方形光纤的横截面图;
图4为本申请实施例提供的激光冲击强化系统结构图;
图5为本申请实施例提供的激光耦合系统的一种实现方式的结构图;
图6为本申请实施例提供的光斑投影系统的一种实现方式的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本申请实施例提供的一种激光冲击强化系统的示意图,该系统包括:激光耦合系统11、方形光纤匀化系统12以及光斑投影系统13,其中:
激光耦合系统11,用于将激光器发出的激光耦合至方形光纤匀化系统。
方形光纤匀化系统12,用于将所述激光进行多次全反射,输出强度均匀的方形激光光斑。
激光耦合进入方形光纤匀化系统12后,方形光纤匀化系统12使该束激光在其内部进行多次全反射,并在方形光纤匀化系统12的光纤出射端口得到强度均匀的具有方形激光光斑。
如图2所示,为采用本申请实施例提供的方形光纤匀化系统对激光进行匀化后的激光强度分布图。
图2中横坐标表示光斑横向位置,纵坐标表示光斑在该位置的光强,其中,均匀分布的方形激光光斑为方形光纤的光纤出射端口输出的激光。
光斑投影系统13,用于将所述方形激光光斑投影至金属材料的表面,并调节金属材料的表面激光光斑的大小。
如图1中17表示投影至金属材料表面的方形激光光斑的形状。
具有变焦结构的光斑投影系统13可以对该方形激光光斑的大小进行调节,以得到不同尺寸的方形激光光斑,从而满足不同的冲击强化加工需要。
本申请实施例提供的激光冲击强化系统还可以包括:激光器14、电源15以及制冷单元16。
电源15用于为激光器14供电,制冷单元16用于对激光器14进行制冷。
激光器14可以为发出的激光波长为1064nm的激光器。
优选的,光斑投影系统13可以为方形光纤,请参阅图3,为本申请实施例提供的方形光纤的横截面图。
如图3所示,方形光纤的外壳31可以为圆形,方形光纤输出激光的部分32的横截面形状为方形。
激光在方形光纤内传输,进行多次全反射,匀化效果好。本申请实施例中巧妙的采用方形光纤,可直接将激光整形成均匀分布的方形激光光斑,将现有技术中激光匀化以及激光整形为方形和激光传输相结合,淘汰了现有技术中的导光臂传输系统,同时为激光冲击强化系统节省了大量的空间。方形光纤可以在任意位置弯曲,这就极大的提高了整个激光冲击强化系统的自由度。
可选的,方形光纤的光纤入射端口和/或光纤出射端口的直径为70μm至400μm。
对金属材料进行冲击强化激光光斑的直径为2mm~4mm的光斑,因此应该将本申请实施例中方形光纤输出的方形激光光斑进行放大,相比现有技术中激光光斑直径较大,对激光光斑进行缩小系统,在工作距相同的条件下,本申请实施例中的方形光纤的光纤出射端口做得很小,且可以实现长工作距离。
本申请实施例中只需要将方形光纤的光纤出射端口投影到光斑投影系统中的透镜的像面处即可。即光斑投影系统13设置在所述方形光纤匀化系统12的光纤出射端口处。所以光斑投影系统可以采用常规加工的球面透镜就可实现,无需非球面、二元光学元件以及积分器等,降低加工难度及生产成本。
可选的,激光耦合系统设置在所述激光器上。
请参阅图4,为本申请实施例提供的激光冲击强化系统结构图。
图4中,激光耦合系统11设置在激光器14上,光斑投影系统13设置在所述方形光纤匀化系统12的光纤出射端口处。
制冷单元16与激光器14相连,对激光器14进行制冷;电源15与激光器14相连,为激光器供电。
图4中还示出了支撑光斑投影系统13的支架台41,金属材料放置在支架台41上,光斑投影系统13将方形激光光斑投影在金属材料上。
请参阅图5,为本申请实施例提供的激光耦合系统的一种实现方式的结构图。
从接收所述激光的顺序方向,所述激光耦合系统依次包括:
双凸透镜51以及弯月透镜52。
本申请实施例还提供了激光耦合系统中各透镜的透镜参数如表1所示。激光耦合系统中各透镜的各镜面的半径、厚度、所采用的材质和半高如表1所示。其中光纤出射端口1是指方形光纤的光纤出射端口。
表1激光耦合系统中各透镜的透镜参数
其中,半径是指透镜表面的曲率半径,厚度是指透镜厚度或空气间隔,玻璃是指透镜所采用的材料,半高是指透镜从光轴53到通光边缘的径向长度。
上述激光耦合系统中各透镜的透镜参数只是一种实现方式的举例说明,并不对本申请激光耦合系统中各透镜的限制。
Infinity表示无限大,即平面镜。
请参阅图6,为本申请实施例提供的光斑投影系统的一种实现方式的结构图。
从接收所述方形激光光斑的顺序方向,所述光斑投影系统依次包括:
弯月透镜61、双凸透镜62、弯月透镜63、平凸透镜64、弯月透镜65、平面镜66。
可以理解的是,需要的方形激光光斑的大小不同,光斑投影系统中各透镜的参数不同。
表2方形激光光斑的直径为2mm时光斑投影系统中各透镜的参数
表3方形激光光斑的直径为3mm时光斑投影系统中各透镜的参数
表面序列 半径(mm) 厚度 玻璃 半高
光纤出射端口(图6中未示出) Infinity 13.36 Air 0.07
弯月透镜61的镜面611 -26.85 1.5 ZF6 3.0440
弯月透镜61的镜面612 -12.363 0.1 Air 3.2637
双凸透镜62的镜面621 87.72 1.5 ZF6 3.3299
双凸透镜62的镜面622 -30.636 0.1 Air 3.3889
弯月透镜63的镜面631 15.649 3.55 ZF6 3.3895
弯月透镜63的镜面632 12.314 6.39 Air 3.0598
平凸透镜64的镜面641 35.62 3.6 ZF6 3.5460
平凸透镜64的镜面642 Infinity 16.5 Air 3.4709
弯月透镜65的镜面651 14.569 3.6 ZF6 2.8344
弯月透镜65的镜面652 10.6 2.0 Air 2.4553
平面镜66的镜面661 Infinity 2.0 SiO2 2.64
平面镜66的镜面662 Infinity 210.13 Air 2.64
表4方形激光光斑的直径为4mm时光斑投影系统中各透镜的参数
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种激光冲击强化系统,其特征在于,包括:
激光耦合系统,用于将激光器发出的激光耦合至方形光纤匀化系统;
方形光纤匀化系统,用于将所述激光进行多次全反射,输出强度均匀的方形激光光斑,其中,所述方形光纤匀化系统的光纤入射端口和/或光纤出射端口的直径为70μm至400μm;
光斑投影系统,用于将所述方形激光光斑投影至金属材料的表面,并调节金属材料的表面激光光斑的大小,使对所述金属材料进行冲击强化激光光斑的直径为2mm~4mm;
其中,所述光斑投影系统设置在所述方形光纤匀化系统的光纤出射端口处,从接收所述方形激光光斑的顺序方向,所述光斑投影系统依次包括:弯月透镜、双凸透镜、弯月透镜、平凸透镜、弯月透镜、平面镜。
2.根据权利要求1所述激光冲击强化系统,其特征在于,所述方形光纤匀化系统为方形光纤。
3.根据权利要求1所述激光冲击强化系统,其特征在于,从接收所述激光的顺序方向,所述激光耦合系统依次包括:
双凸透镜以及弯月透镜。
4.根据权利要求1至3任一所述激光冲击强化系统,其特征在于,还包括:激光器、电源以及制冷单元。
5.根据权利要求1所述激光冲击强化系统,其特征在于,所述激光耦合系统设置在所述激光器上。
CN201610537552.5A 2016-07-08 2016-07-08 激光冲击强化系统 Expired - Fee Related CN105925792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610537552.5A CN105925792B (zh) 2016-07-08 2016-07-08 激光冲击强化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610537552.5A CN105925792B (zh) 2016-07-08 2016-07-08 激光冲击强化系统

Publications (2)

Publication Number Publication Date
CN105925792A CN105925792A (zh) 2016-09-07
CN105925792B true CN105925792B (zh) 2018-10-19

Family

ID=56827333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610537552.5A Expired - Fee Related CN105925792B (zh) 2016-07-08 2016-07-08 激光冲击强化系统

Country Status (1)

Country Link
CN (1) CN105925792B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107678086B (zh) * 2017-08-31 2020-02-11 北京航天控制仪器研究所 一种实现高斯光束整形为一维平顶光束的光纤
CN109445019B (zh) * 2018-11-02 2020-10-09 北京大学 一种矩形纤芯结构光纤
CN110187511A (zh) * 2019-05-23 2019-08-30 浙江大学 一种基于快速扫描的激光光束匀光整形消散斑装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202142770U (zh) * 2010-11-05 2012-02-08 山西飞虹激光科技有限公司 一种可输出任意形状均匀光斑的大功率半导体激光器装置
CN102135668B (zh) * 2011-03-17 2013-07-31 广州中国科学院工业技术研究院 光纤激光器的准直器及光纤激光器
CN104713898B (zh) * 2015-03-06 2017-06-30 中国科学院力学研究所 一种表面离散强化材料热疲劳性能的激光测试方法及装置
CN104846156B (zh) * 2015-04-17 2017-06-27 江苏大学 一种方形光斑激光多层交错冲击均匀强化方法

Also Published As

Publication number Publication date
CN105925792A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105925792B (zh) 激光冲击强化系统
CN202142770U (zh) 一种可输出任意形状均匀光斑的大功率半导体激光器装置
CN104570363A (zh) 一种高斯激光束整形方法和装置及精密激光微孔加工装置
CN105891916B (zh) 一种基于轴锥透镜与聚焦镜特性的非球面镜
CN109416419B (zh) 用于借助激光束进行材料加工的设备
CN208224631U (zh) 一种产生低散斑环形光束的光学系统
CN108735197A (zh) 一种局域共振型声学超材料聚焦透镜及其设计方法
EP2643120B1 (en) Beam shaper and method for laser treating workpiece
KR20170019855A (ko) 베셀 빔 레이저 가공효율 증대를 위한 다중각도 액시콘 렌즈
CN201903697U (zh) 一种输出为均匀线光斑的激光光束变换整形器
CN109725373B (zh) 一种用于光通讯领域的to非球面透镜
CN105182545A (zh) 激光装置
CN101194857B (zh) 激光手术刀
CN107807451B (zh) 一种便携式可变焦点长度光学系统
CN210803879U (zh) 一种片状贝塞尔光束产生装置
CN101673918A (zh) 端面泵浦的固体激光器
CN208255520U (zh) 大幅面紫外3d打印扫描镜头以及紫外3d打印机
CN206400197U (zh) 一种匀化光斑的装置及系统
CN210243948U (zh) 一种新型激光切割镜头
US6661582B1 (en) Optical transmitter and anamorphic lens therefor
CN110376748A (zh) 高功率激光器Donut模式整形装置和整形镜
CN103185289B (zh) 一种光束调整透镜及包括该透镜的照明装置
CN101256276A (zh) 一种激光光束聚焦整型抛物面镜
Hracek et al. New Ways to Generate Flat‐Top Profiles: Laser beam shaping via optical fibers with an orthogonal core
CN112495941B (zh) 一种远程激光清洗系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181019

Termination date: 20210708