CN105924193B - 一种低导热直镁砖及其制备方法 - Google Patents

一种低导热直镁砖及其制备方法 Download PDF

Info

Publication number
CN105924193B
CN105924193B CN201610277869.XA CN201610277869A CN105924193B CN 105924193 B CN105924193 B CN 105924193B CN 201610277869 A CN201610277869 A CN 201610277869A CN 105924193 B CN105924193 B CN 105924193B
Authority
CN
China
Prior art keywords
insulating layer
working lining
granularity
parts
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610277869.XA
Other languages
English (en)
Other versions
CN105924193A (zh
Inventor
袁林
李沅锦
李全有
郑建立
曹伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHENGZHOU RUITAI REFRACTORY MATERIALS TECHNOLOGY Co Ltd
Original Assignee
ZHENGZHOU RUITAI REFRACTORY MATERIALS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHENGZHOU RUITAI REFRACTORY MATERIALS TECHNOLOGY Co Ltd filed Critical ZHENGZHOU RUITAI REFRACTORY MATERIALS TECHNOLOGY Co Ltd
Priority to CN201610277869.XA priority Critical patent/CN105924193B/zh
Publication of CN105924193A publication Critical patent/CN105924193A/zh
Application granted granted Critical
Publication of CN105924193B publication Critical patent/CN105924193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/047Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种低导热直镁砖及其制备方法,包括工作层和保温层,工作层与保温层通过压制连接在一起,工作层采用微气孔高纯镁砂为主,加入部分铬矿;保温层使用以废旧碱性砖为主的保温材质。工作层和保温层分开湿碾,工作层和保温层共同压制成型得砖坯,砖坯经干燥、烘干后,再经1300℃~1560℃保温5~15h烧成,自然冷却后,即得产品。该产品采取复合结构,具有耐火、隔热双重功能,其导热系数低于同类产品,经测试,本发明的低导热直镁砖使用在水泥窑烧成带时能降低筒体表面温度,相对于市场上同类产品低20~40℃。本发明依靠微孔高纯镁砂的高温稳定性及铬矿的抗侵蚀性,可大幅延长产品在运动式热工设备上的使用寿命,同时复合结构带来的节能降耗效果明显。

Description

一种低导热直镁砖及其制备方法
技术领域
本发明涉及耐火环保材料技术领域,具体涉及一种低导热直镁砖及其制备方法。
背景技术
新型干法水泥回转窑的烧成带温度往往高达1400℃,此部位的耐火材料常使用碱性耐火制品,碱性耐火制品的导热系数较高,同时受水泥熟料化学侵蚀作用,砖的厚度降低较快,筒体表面温度经常超温,一方面使窑筒体散热增加,加大熟料热耗,引起熟料单位成本增加;另一方面极易使筒体受热膨胀。筒体温度超温,有时不得不使用喷淋水进行降温,同时也增加了机械设备的损坏几率,加速了筒体变形,对水泥窑的安全生产造成的较大影响。因此,若能在此部分使用耐火、隔热双重功能的复合砖不仅可以降低烧成带的温度,减少散热损失,而且有利用设备维护,提高设备运转率。
发明内容
本发明为了解决现有技术的不足之处,提供了一种低导热直镁砖及其制备方法,具有耐火、隔热、导热系数低等优点。
为解决上述技术问题,本发明采用如下技术方案:
一种低导热直镁砖,包括工作层和保温层,工作层与保温层通过压制连接在一起,所述工作层包括骨料、粉料和结合剂,以质量份配比计,工作层的制备原料如下:骨料:粒度0-1mm的微孔高纯镁砂10-15份,粒度1-3mm的铬矿10-20份,粒度1-3mm的微孔高纯镁砂10-20份,粒度3-5mm的微孔高纯镁砂15-20份;粉料:粒度<0.074mm的微孔高纯镁砂20-25份,粒度<0.074mm的铬矿细粉10-15份;结合剂:低钠硅溶胶3-5份;
所述保温层包括骨料、粉料、复合有机造孔剂和结合剂,以质量份配比计,保温层的制备原料如下:骨料:粒度0-5mm的废旧碱性砖颗粒50-60份,粒度0-3mm的微孔高纯镁砂5-15份;粉料:粒度<0.074mm的微孔高纯镁砂细粉5-10份,粒度<0.074mm的废旧直镁砖细粉20-30份;复合有机造孔剂5-10份;结合剂:低钠硅溶胶3-5份。
保温层中粒度0-5mm的废旧碱性砖颗粒为粒度0-5mm的废旧直镁砖颗粒与粒度为0-5mm的废旧镁铁铝砖颗粒按(0.5-1) :(0.5-1)质量比混合。
复合有机造孔剂为稻壳灰和无烟煤粉按(1-3):(1-2)质量比混合,稻壳灰和无烟煤粉混合后的混合物的平均粒度<0.05mm。
低导热直镁砖的制备方法,其特征在于:包括以下步骤:
(1)配料:
A、工作层:将工作层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入工作层所需的粉料,再混碾10min,形成工作层泥料,备用;
B、保温层:将保温层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入保温层所需的粉料和复合有机造孔剂,再混碾10min,形成保温层泥料,备用;
(2)用隔板将预设在630T摩擦压力机上的模具内的腔内分隔为工作层隔室和保温层隔室,工作层隔室和保温层隔室的长度尺寸比为(1-3):(1-2),接着将步骤(1)中的工作层泥料和保温层泥料分别加入工作层隔室内和保温层隔室内,然后抽出隔板,操作630T摩擦压力机对模具进行冲压成型作业,制成砖坯;
(3)将步骤(2)制成的砖坯自然干燥24h,然后在110℃温度下烘干,烘干时间≥12h;
(4)将烘干后的砖坯装入窑内,砖坯在窑内保温5~15h,保温的温度为1300℃~1560℃,自然冷却后,即得产品。
本发明与现有技术相比具有以下有益效果:本发明主要以高纯镁砂、铬矿和废旧碱性砖为主要原料,其中,铬矿具有强度高、耐磨、耐高温、耐氧化等优点;废旧碱性砖具有抗碱性侵蚀能力;本发明的结合剂为低钠硅溶胶,提高半成品的塑性。
本发明的产品有工作层和保温层复合结构,具有耐火、隔热双重功能;本发明产品加入复合有机造孔剂,降低保温层的体积密度,增大气孔率,导热系数降低,从而工作层和保温层的整体导热系数降低,经测试,本发明的低导热直镁砖使用在水泥窑烧成带时能降低筒体表面温度,相对于市场上同类产品低20~40℃。本发明保温层中的骨料采用了废旧碱性砖,降低了成本,实现了废旧资源的重复利用,减少了固体废弃物的排放。本发明的工作层和保温层均使用纸浆废液,提高了半成品的塑性。本发明保温层添加了复合有机造孔剂,提高了该结构层的保温效果。
附图说明
图1为本发明实施方式的结构示意图。
图2为图1的剖面图。
图中附图标记:1为工作层,2为保温层。
具体实施方式。
下面结合实验数据和具体实施例对本发明的技术方案作进一步说明。
实施例1:
如图1和图2所示,一种低导热直镁砖,包括工作层1和保温层2,工作层1与保温层2通过压制连接在一起,所述工作层1包括骨料、粉料和结合剂,以质量份配比计,工作层的制备原料如下:骨料:粒度0-1mm 的微孔高纯镁砂10份,粒度1-3mm的微孔高纯镁砂20份,粒度1-3mm的铬矿10份,粒度3-5mm的微孔高纯镁砂15份;粉料:粒度<0.074mm的微孔高纯镁砂25份,粒度<0.074mm的铬矿15份;结合剂:低钠硅溶胶4份;
保温层2包括骨料、粉料、复合有机造孔剂和结合剂,以质量份配比计,保温层的制备原料如下:粒度0-5mm的废旧碱性砖颗粒50份,粒度0-3mm的微孔高纯镁砂10份;粉料:粒度<0.074mm的微孔高纯镁砂细粉10份,粒度<0.074mm的废旧直镁砖细粉25份;复合有机造孔剂5份;结合剂:低钠硅溶胶4份;
其中,粒度0-5mm的废旧碱性砖颗粒为粒度0-5mm的废旧直镁砖颗粒与粒度为0-5mm的废旧镁铁铝砖颗粒按1:1质量比混合;复合有机造孔剂为稻壳灰和无烟煤粉按1:1质量比混合,稻壳灰和无烟煤粉混合后的混合物的平均粒度<0.05mm。
本实施例的制备方法,包括以下步骤:
(1)配料:
A、工作层:将工作层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入工作层所需的粉料,再混碾10min,形成工作层泥料,备用;
B、保温层:将保温层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入保温层所需的粉料和复合有机造孔剂,再混碾10min,形成保温层泥料,备用;
(2)用隔板将预设在630T摩擦压力机上的模具内的腔内分隔为工作层隔室和保温层隔室,工作层隔室和保温层隔室的长度尺寸比为7:3,接着将步骤(1)中的工作层泥料和保温层泥料分别加入工作层隔室内和保温层隔室内,然后抽出隔板,操作630T摩擦压力机对模具进行冲压成型作业,制成砖坯;
(3)将步骤(2)制成的砖坯自然干燥24h,然后在110℃温度下烘干24h;
(4)将烘干后的砖坯装入窑内,砖坯在窑内保温7h,保温的温度为1320℃,自然冷却后,即得产品。
实施例2:
如图1和图2所示,一种低导热直镁砖,包括工作层1和保温层2,工作层1与保温层2通过压制连接在一起,所述工作层1包括骨料、粉料和结合剂,以质量份配比计,工作层的制备原料如下:骨料:粒度0-1mm 的微孔高纯镁砂10份,粒度1-3mm的微孔高纯镁砂20份,粒度1-3mm的铬矿10份,粒度3-5mm的微孔高纯镁砂15份;粉料:粒度<0.074mm的微孔高纯镁砂25份,粒度<0.074mm的铬矿15份;结合剂:低钠硅溶胶4份;
保温层2包括骨料、粉料、复合有机造孔剂和结合剂,以质量份配比计,保温层的制备原料如下:粒度0-5mm的废旧碱性砖颗粒55份,粒度0-3mm的微孔高纯镁砂5份;粉料:粒度<0.074mm的微孔高纯镁砂细粉10份,粒度<0.074mm的废旧直镁砖细粉20份;复合有机造孔剂10份;结合剂:低钠硅溶胶4份;
其中,粒度0-5mm的废旧碱性砖颗粒为粒度0-5mm的废旧直镁砖颗粒与粒度为0-5mm的废旧镁铁铝砖颗粒按1:2质量比混合;复合有机造孔剂为稻壳灰和无烟煤粉按1:2质量比混合,稻壳灰和无烟煤粉混合后的混合物的平均粒度<0.05mm。
本实施例的制备方法,包括以下步骤:
(1)配料:
A、工作层:将工作层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入工作层所需的粉料,再混碾10min,形成工作层泥料,备用;
B、保温层:将保温层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入保温层所需的粉料和复合有机造孔剂,再混碾10min,形成保温层泥料,备用;
(2)用隔板将预设在630T摩擦压力机上的模具内的腔内分隔为工作层隔室和保温层隔室,工作层隔室和保温层隔室的长度尺寸比为7:3,接着将步骤(1)中的工作层泥料和保温层泥料分别加入工作层隔室内和保温层隔室内,然后抽出隔板,操作630T摩擦压力机对模具进行冲压成型作业,制成砖坯;
(3)将步骤(2)制成的砖坯自然干燥24h,然后在110℃温度下烘干24h;
(4)将烘干后的砖坯装入窑内,砖坯在窑内保温7h,保温的温度为1320℃,自然冷却后,即得产品。
将实施例1-2与常见直镁砖进行性能测试,实验结果见表1。
表1 实施例1-2、常见直镁砖的性能测试参数
从表1可以看出,实施例1和实施例2的体积密度均小于常见的直镁砖,可以降低热工设备的自重,从而降低了设备电机运转时的负荷、运行时的电流、吨产品的电耗,同时提高了电机运行的稳定性,减少了维护次数,为设备长期稳定运行提供了保障。实施例1和实施例2的导热系数较低,减少热量损失;实施例1和实施例2的抗热震次数均大于直镁砖,较高的荷重软化温度和热震稳定性保证了产品使用的安全性及较长的使用寿命。本发明的低导热直镁砖用来代替现有常见直镁砖,能够延长使用寿命,同时节能降耗效果显著。
以上所述仅为本发明的两种具体实施例,但本发明的实施例并不局限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的保护范围之内。

Claims (3)

1.一种低导热直镁砖,包括工作层和保温层,工作层与保温层通过压制连接在一起,其特征在于:所述工作层包括骨料、粉料和结合剂,以质量份配比计,工作层的制备原料如下:骨料:粒度0-1mm的微孔高纯镁砂10-15份,粒度1-3mm的铬矿10-20份,粒度1-3mm的微孔高纯镁砂10-20份,粒度3-5mm的微孔高纯镁砂15-20份;粉料:粒度<0.074mm的微孔高纯镁砂20-25份,粒度<0.074mm的铬矿细粉10-15份;结合剂:低钠硅溶胶3-5份;
所述保温层包括骨料、粉料、复合有机造孔剂和结合剂,以质量份配比计,保温层的制备原料如下:骨料:粒度0-5mm的废旧碱性砖颗粒50-60份,粒度0-3mm的微孔高纯镁砂5-15份;粉料:粒度<0.074mm的微孔高纯镁砂细粉5-10份,粒度<0.074mm的废旧直镁砖细粉20-30份;复合有机造孔剂5-10份;结合剂:低钠硅溶胶3-5份;
保温层中粒度0-5mm的废旧碱性砖颗粒为粒度0-5mm的废旧直镁砖颗粒与粒度为0-5mm的废旧镁铁铝砖颗粒按(0.5-1) :(0.5-1)质量比混合。
2.根据权利要求1所述的低导热直镁砖,其特征在于:复合有机造孔剂为稻壳灰和无烟煤粉按(1-3):(1-2)质量比混合,稻壳灰和无烟煤粉混合后的混合物的平均粒度<0.05mm。
3.一种制备如权利要求 2 所述的低导热直镁砖的方法,其特征在于:包括以下步骤:
(1)配料:
A、工作层:将工作层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入工作层所需的粉料,再混碾10min,形成工作层泥料,备用;
B、保温层:将保温层所需的骨料倒入混碾机内,接着加入结合剂,先混碾5min,然后加入保温层所需的粉料和复合有机造孔剂,再混碾10min,形成保温层泥料,备用;
(2)用隔板将预设在630T摩擦压力机上的模具内的腔内分隔为工作层隔室和保温层隔室,工作层隔室和保温层隔室的长度尺寸比为(1-3):(1-2),接着将步骤(1)中的工作层泥料和保温层泥料分别加入工作层隔室内和保温层隔室内,然后抽出隔板,操作630T摩擦压力机对模具进行冲压成型作业,制成砖坯;
(3)将步骤(2)制成的砖坯自然干燥24h,然后在110℃温度下烘干,烘干时间≥12h;
(4)将烘干后的砖坯装入窑内,砖坯在窑内保温5~15h,保温的温度为1300℃~1560℃,自然冷却后,即得产品。
CN201610277869.XA 2016-04-28 2016-04-28 一种低导热直镁砖及其制备方法 Active CN105924193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610277869.XA CN105924193B (zh) 2016-04-28 2016-04-28 一种低导热直镁砖及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610277869.XA CN105924193B (zh) 2016-04-28 2016-04-28 一种低导热直镁砖及其制备方法

Publications (2)

Publication Number Publication Date
CN105924193A CN105924193A (zh) 2016-09-07
CN105924193B true CN105924193B (zh) 2018-09-07

Family

ID=56837668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610277869.XA Active CN105924193B (zh) 2016-04-28 2016-04-28 一种低导热直镁砖及其制备方法

Country Status (1)

Country Link
CN (1) CN105924193B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573030A (zh) * 2017-10-30 2018-01-12 赵鸿恩 一种免烧复合耐火砖及其制备方法
CN113603460B (zh) * 2021-08-27 2023-06-06 郑州瑞泰耐火科技有限公司 一种水泥回转窑烧成带用微气孔镁铁铝尖晶石砖及其制备方法
CN113651621A (zh) * 2021-08-30 2021-11-16 郑州瑞泰耐火科技有限公司 一种水泥回转窑用特种新型硅莫砖及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734908A (zh) * 2009-10-28 2010-06-16 郑州真金耐火材料有限责任公司 高荷软、高抗热震稳定性直接结合镁铬砖的生产方法
CN103044052A (zh) * 2013-01-28 2013-04-17 浙江大学苏州工业技术研究院 回转窑用中密度镁铬砖及其制备方法
CN103234346A (zh) * 2013-05-10 2013-08-07 郑州瑞泰耐火科技有限公司 一种低导热多层复合莫来石砖及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734908A (zh) * 2009-10-28 2010-06-16 郑州真金耐火材料有限责任公司 高荷软、高抗热震稳定性直接结合镁铬砖的生产方法
CN103044052A (zh) * 2013-01-28 2013-04-17 浙江大学苏州工业技术研究院 回转窑用中密度镁铬砖及其制备方法
CN103234346A (zh) * 2013-05-10 2013-08-07 郑州瑞泰耐火科技有限公司 一种低导热多层复合莫来石砖及其制备方法

Also Published As

Publication number Publication date
CN105924193A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
EP2985270B1 (en) Preparation method of low-temperature fast-fired lightweight ceramic heat insulation plate.
CN103234346B (zh) 一种低导热多层复合莫来石砖及其制备方法
CN101863673B (zh) 一种镁铝尖晶石结构隔热一体化复合砖及制备方法
CN101857451B (zh) 一种碱性结构隔热一体化复合砖及制备方法
CN103130524B (zh) 节能型轻质堇青石-莫来石窑具材料、窑具及其制备方法
CN105924190B (zh) 一种低导热硅莫砖及其制备方法
CN105924193B (zh) 一种低导热直镁砖及其制备方法
CN106966708B (zh) 一种不烧铝镁碳砖及其制备方法
CN105294133A (zh) 一种低导热莫来石碳化硅复合砖及其制备方法
CN112374873B (zh) 一种复合铬刚玉砖及其制备工艺
CN102285813B (zh) 一种锆刚玉莫来石质结构隔热一体化复合砖及制备方法
CN105060905B (zh) 低铝耐碱莫来石砖及其制备方法
CN105924194B (zh) 一种低导热镁铁铝砖及其制备方法
CN109650854A (zh) 刚玉莫来石复合砖及其制备方法
CN109111215A (zh) 一种水泥回转窑用低铝硅莫砖及其制备方法
CN102249729B (zh) 一种利用红柱石尾矿制备蜂窝陶瓷蓄热体的方法
CN106631061B (zh) 一种火道墙用高导热富镁尖晶石复合砖及其制备方法
CN111964434A (zh) 一种水泥回转窑用低导热砖及其生成制造方法
CN101492302A (zh) 机立窑用复合砖及其制备方法
CN103553699B (zh) 一种瘠性煤矸石工业废料制备泡沫保温材料的方法
CN102285810B (zh) 一种镁橄榄石质结构隔热一体化复合砖及制备方法
CN101362648A (zh) 莫来石耐火保温制品及其制备方法
CN107200592B (zh) 一种轻量化超低导莫来石砖及其制备方法
CN103387400B (zh) 一种水煤浆加压气化炉用背衬砖及其制备方法
CN101497523A (zh) 生物质能源生产轻质绝热砖的方法及其轻质绝热砖

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant