CN105915916B - Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation - Google Patents

Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation Download PDF

Info

Publication number
CN105915916B
CN105915916B CN201610313236.XA CN201610313236A CN105915916B CN 105915916 B CN105915916 B CN 105915916B CN 201610313236 A CN201610313236 A CN 201610313236A CN 105915916 B CN105915916 B CN 105915916B
Authority
CN
China
Prior art keywords
motion vector
video
steganalysis
rate
frame group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610313236.XA
Other languages
Chinese (zh)
Other versions
CN105915916A (en
Inventor
张弘
曹纭
赵险峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Information Engineering of CAS
Original Assignee
Institute of Information Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Information Engineering of CAS filed Critical Institute of Information Engineering of CAS
Priority to CN201610313236.XA priority Critical patent/CN105915916B/en
Publication of CN105915916A publication Critical patent/CN105915916A/en
Application granted granted Critical
Publication of CN105915916B publication Critical patent/CN105915916B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/467Embedding additional information in the video signal during the compression process characterised by the embedded information being invisible, e.g. watermarking

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The present invention relates to a kind of video steganalysis methods based on the estimation of motion vector distortion performance.Several frame groups will be divided into measured compressed video first, each frame group is made of continuous video frame, and any video frame belongs to and only belongs to some frame group.Then steganalysis feature extraction is carried out for the frame group that some includes several motion vectors, it include: for each motion vector in some frame group, obtain the set being made of the motion vector and its nearby motion vectors, the distortion performance of each motion vector in the set is calculated, preset steganalysis feature then is extracted to the frame group;Above-mentioned steps are repeated, steganalysis feature extraction successively is carried out to all frame groups of video to be measured.Then the classifier based on steganalysis feature is used, steganography classification judgement is carried out to each frame group in video to be measured.The present invention can effectively detect current existing motion vector field video steganography method.

Description

基于运动向量率失真性能估计的视频隐写分析方法Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation

技术领域technical field

本发明涉及一种视频隐写分析(Video Steganalysis)方法,具体涉及一种基于运动向量率失真(Rate-Distortion)性能估计的视频隐写分析方法及其在数字媒体安全防护方面的应用,该方法属于信息安全技术领域中的信息隐藏子领域。The invention relates to a video steganalysis method, in particular to a video steganalysis method based on motion vector rate-distortion (Rate-Distortion) performance estimation and its application in digital media security protection. It belongs to the information hiding sub-field in the field of information security technology.

背景技术Background technique

现代信息隐藏技术主要包括隐写(Steganography)、隐写分析(Steganalysis)以及数字水印(Digital Watermarking)。隐写主要研究如何将秘密信息嵌入数字图像、视频、音频等数字多媒体文件以达到隐蔽通信的目的;隐写分析主要采用机器学习、模式识别等方法对待测文件进行隐写分类判决。Modern information hiding technologies mainly include steganography, steganalysis and digital watermarking. Steganography mainly studies how to embed secret information into digital images, videos, audios and other digital multimedia files to achieve the purpose of covert communication; steganalysis mainly uses machine learning, pattern recognition and other methods to make steganographic classification judgments on the files to be tested.

随着视频点播、因特网流媒体和手持便携摄像设备的广泛流行,数字视频已经成为当今娱乐产业中最具有影响力的传播媒体。此外,随着视频压缩、计算机网络和高性能计算等技术的快速发展,使得原始视频材料能够在保证较高编码效率和视觉保真度的情况下被快速压缩,并于互联网上实时传输。因此,数字视频是隐写通信的理想载体。With the widespread popularity of video-on-demand, Internet streaming, and handheld portable camera devices, digital video has become the most influential medium in the entertainment industry today. In addition, with the rapid development of technologies such as video compression, computer networks and high-performance computing, original video materials can be quickly compressed while ensuring high coding efficiency and visual fidelity, and transmitted in real time on the Internet. Therefore, digital video is an ideal carrier for steganographic communication.

视频隐写总体上可分为空域(Spatial Domain)视频隐写和压缩域(CompressedDomain)视频隐写:前者通过直接修改视频帧的原始像素值以嵌入秘密信息;后者则在视频的压缩编码过程中引入隐写扰动,使得压缩编码和隐写嵌入能够同时进行。压缩域视频隐写根据嵌入域的不同,可以分为基于运动向量(Motion Vector)的视频隐写、基于变换系数(Transform Coefficient)的视频隐写、基于帧内预测模式(Intra Prediction Mode)的视频隐写、基于帧间预测模式(Inter Prediction Mode)的视频隐写、基于量化(Quantization)过程的视频隐写和基于熵编码(Entropy Coding)的视频隐写这几类。其中,以运动向量作为载体进行秘密信息的隐写嵌入具有如下三方面优点:首先,运动向量在视频的运动估计(Motion Estimation)模块中产生,代表原始块和相应预测参考块(Prediction Reference Block)之间的偏移,对运动向量的轻微修改所引入的扰动会被后续的诸如运动补偿、变换编码和熵编码等模块自动处理,对重建视频的视觉质量只会产生极其微小的影响;其次,视频中的运动向量通常拥有较大的值域范围,使得能够设计出保持运动向量统计特性的运动向量域视频隐写方法;此外,视频中通常包含数量较多的运动向量,这确保了基于运动向量的视频隐写能够拥有较大的隐写嵌入容量。Video steganography can be generally divided into Spatial Domain video steganography and Compressed Domain video steganography: the former embeds secret information by directly modifying the original pixel value of the video frame; the latter is used in the video compression coding process. Steganographic perturbation is introduced in , so that compression coding and steganographic embedding can be performed simultaneously. Compressed domain video steganography can be divided into Motion Vector-based video steganography, Transform Coefficient-based video steganography, and Intra Prediction Mode-based video according to different embedding domains. Steganography, video steganography based on Inter Prediction Mode, video steganography based on quantization process, and video steganography based on Entropy Coding. Among them, the steganographic embedding of secret information using the motion vector as a carrier has the following three advantages: First, the motion vector is generated in the motion estimation (Motion Estimation) module of the video, representing the original block and the corresponding prediction reference block (Prediction Reference Block) The disturbances introduced by the slight modification of the motion vector will be automatically processed by subsequent modules such as motion compensation, transform coding and entropy coding, which will only have an extremely small impact on the visual quality of the reconstructed video; secondly, Motion vectors in videos usually have a large range of values, which enables the design of motion vector domain video steganography methods that maintain the statistical properties of motion vectors; Vector video steganography can have a large steganographic embedding capacity.

基于上述原因,运动向量域视频隐写长期以来受到了该领域学者的广泛关注,并经历了以下三个发展阶段:第一代运动向量域视频隐写方法主要通过预设的简单筛选法则,选取一部分运动向量用于秘密信息的隐写嵌入(参考文献:F.Jordan,M.Kutter,andT.Ebrahimi,“Proposal of a watermarking technique for hiding/retrieving datain compressed and decompressed video,”ISO/IEC Document,JTC1/SC29/WG11,Stockholm,Sweden,Tech.Rep.M2281,Jul.1997.)。第二代运动向量域视频隐写方法应用了诸如STC(Syndrome Trellis Codes,校验网格码)和WPC(Wet Paper Codes,湿纸编码)等隐写码以提高嵌入效率和隐写安全性(参考文献:Y.Cao,X.Zhao,D.Feng,and R.Sheng,“Video steganography with perturbed motion estimation,”in Proc.13thInt.Conf.Inf.Hiding,LNCS,vol.6958,Prague,Czech Republic,May2011,pp.193–207.;Y.Yao,W.Zhang,N.Yu,and X.Zhao,“Defining embedding distortion for motionvector-based video steganography,”Multimedia Tools and Applications,vol.74,no.24,pp.11 163–11 186,Dec.2015.)。但是,由于这些方法在隐写嵌入过程中都不可避免地破坏了运动向量的局部最优,因此它们无法抵抗当前运动向量域最有效的隐写分析方法AoSO的攻击(参考文献:K.Wang,H.Zhao,and H.Wang,“Video steganalysis againstmotion vector-based steganography by adding or subtracting one motion vectorvalue,”IEEE Trans.Inf.Forensics Security,vol.9,no.5,pp.741–751,May 2014.)。处于最新发展阶段的第三代运动向量域视频隐写方法,能够在秘密信息的嵌入过程中尽量保持被修改运动向量的局部最优,因此和前两代方法相比极大地提高了抗隐写分析性能(参考文献:Y.Cao,H.Zhang,X.Zhao,and H.Yu,“Video steganography based on optimizedmotion estimation perturbation,”in Proc.3rd ACM Workshop Inf.HidingMultimedia Security,Portland,OR,USA,Jun.2015,pp.25–31.;H.Zhang,Y.Cao,andX.Zhao,“Motion vector-based video steganography with preserved localoptimality,”Multimedia Tools and Applications,2015,Article in Press.)。Based on the above reasons, motion vector domain video steganography has been widely concerned by scholars in this field for a long time, and has experienced the following three development stages: the first generation of motion vector domain video steganography A portion of the motion vectors are used for steganographic embedding of secret information (Reference: F. Jordan, M. Kutter, and T. Ebrahimi, "Proposal of a watermarking technique for hiding/retrieving data in compressed and decompressed video," ISO/IEC Document, JTC1 /SC29/WG11, Stockholm, Sweden, Tech. Rep. M2281, Jul. 1997.). The second-generation motion vector domain video steganography method applies steganographic codes such as STC (Syndrome Trellis Codes, check grid code) and WPC (Wet Paper Codes, wet paper coding) to improve the embedding efficiency and steganographic security ( References: Y. Cao, X. Zhao, D. Feng, and R. Sheng, "Video steganography with perturbed motion estimation," in Proc.13thInt.Conf.Inf.Hiding,LNCS,vol.6958,Prague,Czech Republic , May 2011, pp.193–207.; Y. Yao, W. Zhang, N. Yu, and X. Zhao, “Defining embedding distortion for motionvector-based video steganography,” Multimedia Tools and Applications, vol.74, no. 24, pp.11 163–11 186, Dec. 2015.). However, since these methods inevitably destroy the local optimum of motion vectors in the process of steganographic embedding, they cannot resist the attack of AoSO, the most effective steganalysis method in the current motion vector domain (Reference: K. Wang, H. Zhao, and H. Wang, "Video steganalysis against motion vector-based steganography by adding or subtracting one motion vectorvalue," IEEE Trans.Inf.Forensics Security,vol.9,no.5,pp.741–751,May 2014 .).) The third-generation motion vector domain video steganography method, which is in the latest development stage, can try to maintain the local optimum of the modified motion vector during the embedding process of secret information. Therefore, compared with the previous two generations of methods, the anti-steganography method is greatly improved. Analysis performance (reference: Y.Cao, H.Zhang, X.Zhao, and H.Yu, "Video steganography based on optimizedmotion estimation perturbation," in Proc.3rd ACM Workshop Inf.HidingMultimedia Security,Portland,OR,USA, Jun. 2015, pp. 25–31.; H. Zhang, Y. Cao, and X. Zhao, “Motion vector-based video steganography with preserved localoptimality,” Multimedia Tools and Applications, 2015, Article in Press.).

经过专利查询,在本发明领域内已有的相关专利申请情况如下:After patent inquiry, the existing relevant patent applications in the field of the present invention are as follows:

(1)专利申请号为2015103093163的中国专利“一种改进的基于运动向量回复的视频隐写分析方法”公开了一种运动向量域视频隐写分析方法。该方法基于隐写视频重压缩后其中的运动向量将出现回复现象这一事实设计了隐写分析特征,并通过重建首次压缩过程以获取视频压缩编码的关键参数,从而有效提高了实用性和隐写分析正确率。由于本发明并不涉及对视频的重压缩操作,故该方法与本发明的设计思路和具体实现方式明显不同。(1) The Chinese patent with the patent application number of 2015103093163 "An Improved Video Steganalysis Method Based on Motion Vector Response" discloses a motion vector domain video steganalysis method. This method designs a steganalysis feature based on the fact that the motion vector in the steganographic video will recover after recompression, and obtains the key parameters of video compression and coding by reconstructing the first compression process, thereby effectively improving the practicability and stealth. Write analysis accuracy. Since the present invention does not involve recompressing the video, the design idea and specific implementation manner of this method are obviously different from those of the present invention.

(2)专利申请号为2015102222805的中国专利“一种内容自适应的视频隐写分析方法”公开了一种运动向量域视频隐写分析方法。该方法通过计算帧动态度将待测视频划分成可变长度的检测区间以进行内容自适应的特征提取和隐写分析。由于该方法提出的是一种基于内容自适应的隐写分析特征提取策略,并不涉及具体的隐写分析特征的设计,故该方法和本发明的基本目的、设计思路与具体实现方式明显不同。(2) The Chinese patent "A Content-Adaptive Video Steganalysis Method" with the patent application number of 2015102222805 discloses a motion vector domain video steganalysis method. The method divides the video to be tested into variable-length detection intervals by calculating frame dynamics, so as to perform content-adaptive feature extraction and steganalysis. Since this method proposes a content-adaptive steganalysis feature extraction strategy and does not involve the design of specific steganalysis features, the basic purpose, design idea and specific implementation method of this method and the present invention are obviously different .

(3)专利申请号为2013100660098的中国专利“基于局部代价非最优统计的视频隐写分析方法”公开了一种运动向量域视频隐写分析方法。该方法通过计算待测视频重压缩前后运动向量局部最优概率的变化量以判断该视频是否经过隐写。由于本发明并不涉及对视频的重压缩操作,故该方法与本发明的设计思路和具体实现方式明显不同。(3) The Chinese patent with the patent application number of 2013100660098 "Video steganalysis method based on local cost non-optimal statistics" discloses a motion vector domain video steganalysis method. The method determines whether the video has undergone steganography by calculating the variation of the local optimal probability of the motion vector before and after recompression of the video to be tested. Since the present invention does not involve recompressing the video, the design idea and specific implementation manner of this method are obviously different from those of the present invention.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于,通过对压缩视频中运动向量的率失真性能进行准确估计,进而精确判定压缩视频中的运动向量在率失真意义下是否为局部最优,在此基础上最终设计出具有高隐写分析性能的运动向量域视频隐写分析方法。The purpose of the present invention is to accurately determine whether the motion vector in the compressed video is locally optimal in the sense of rate distortion by accurately estimating the rate-distortion performance of the motion vector in the compressed video. Steganalysis performance of motion vector domain video steganalysis methods.

本发明相比其他运动向量域视频隐写分析方法,采用了拉格朗日代价函数估计运动向量的率失真性能,并在率失真意义下定义了两种不同类型的局部最优运动向量,最终设计得到36维的运动向量域隐写分析特征。可见,本发明提出的方法有别于以往任意视频隐写分析方法,特别适用于对安全等级要求较高的数字多媒体安全防护场景。Compared with other motion vector domain video steganalysis methods, the present invention adopts the Lagrangian cost function to estimate the rate-distortion performance of motion vectors, and defines two different types of local optimal motion vectors in the sense of rate-distortion. A 36-dimensional motion vector domain steganalysis feature is designed. It can be seen that the method proposed by the present invention is different from any previous video steganalysis methods, and is especially suitable for digital multimedia security protection scenarios that require higher security levels.

根据调研,目前现有的运动向量域视频隐写分析方法具有以下两点局限性:首先,绝大多数分析方法的设计原理都没有充分利用运动向量域视频隐写的本质弱点,即对运动向量的嵌入修改会不可避免地破坏其局部最优,从而将原始的局部最优运动向量修改成非局部最优。因此,当隐写负载率较低时,这些方法难以保证理想的分析检测效果。其次,虽然有的分析方法本质正确,即从检测运动向量的局部最优出发进行隐写分析特征的设计,但它们仅根据失真(Distortion)判定压缩视频中的运动向量是否为局部最优,而忽略了码率估计在判定过程中所起的关键作用。由于这些方法未能正确检测运动向量在率失真意义下的局部最优,从而导致它们无法对抗目前处于最新发展阶段的运动向量域视频隐写方法。According to the research, the existing motion vector domain video steganography analysis methods have the following two limitations: First, the design principles of most analysis methods do not make full use of the essential weakness of motion vector domain video steganography, that is, the The embedding modification of , will inevitably destroy its local optimum, thereby modifying the original locally optimum motion vector into a non-local optimum. Therefore, when the steganographic load rate is low, it is difficult for these methods to guarantee the ideal analysis and detection effect. Secondly, although some analysis methods are essentially correct, that is, the design of steganalysis features starts from detecting the local optimum of the motion vector, but they only judge whether the motion vector in the compressed video is the local optimum according to the distortion (Distortion), and The key role played by code rate estimation in the decision process is ignored. Since these methods fail to correctly detect the local optima of motion vectors in the rate-distortion sense, they cannot compete with the current state-of-the-art video steganography methods in the motion vector domain.

具体来说,本发明采用的技术方案如下:Specifically, the technical scheme adopted in the present invention is as follows:

一种基于运动向量率失真性能估计的视频隐写分析方法,包括以下步骤:A video steganalysis method based on motion vector rate-distortion performance estimation, comprising the following steps:

1)帧组划分:将待测压缩视频划分成若干个帧组,每个帧组由连续的视频帧组成,任意视频帧属于且仅属于某个帧组;1) Frame group division: the compressed video to be tested is divided into several frame groups, each frame group is composed of continuous video frames, and any video frame belongs to and only belongs to a certain frame group;

2)对于某个包含N个运动向量的帧组Fg,执行步骤3)至5)进行隐写分析特征提取;2) for a certain frame group F g that contains N motion vectors, perform steps 3) to 5) to perform steganalysis feature extraction;

3)预处理:对于帧组Fg中的每个运动向量Vi=(xi,yi),其中i=1,2,...,N,获得由Vi及其相邻运动向量组成的集合Ω(Vi);3) Preprocessing: for each motion vector V i =(x i , y i ) in the frame group F g , where i=1, 2, . The set composed of Ω(V i );

4)运动向量率失真性能估计:按照预设的运动向量率失真性能估计方法,计算集合Ω(Vi)中每个运动向量的率失真性能,其中i=1,2,...,N;4) Motion vector rate-distortion performance estimation: According to the preset motion vector rate-distortion performance estimation method, calculate the rate-distortion performance of each motion vector in the set Ω(V i ), where i=1,2,...,N ;

5)特征计算及提取:根据步骤4)的计算结果,对帧组Fg提取预设的隐写分析特征;5) feature calculation and extraction: according to the calculation result of step 4), the preset steganalysis feature is extracted to the frame group F g ;

6)重复执行步骤2)至5),依次对该待测视频的所有帧组进行隐写分析特征提取;6) Repeat steps 2) to 5), successively carry out steganalysis feature extraction for all frame groups of the video to be tested;

7)隐写分析:采用基于预设隐写分析特征的分类器,分别对该待测视频中的每个帧组进行隐写分类判决。7) Steganalysis: Using a classifier based on preset steganalysis features, steganographic classification judgment is performed on each frame group in the video to be tested.

在上述方案的基础上,本发明进一步做了改进,即在采用本发明进行隐写分析(图1)时,对于待测压缩视频中的每个运动向量Vi=(xi,yi),按照如下方式获得由Vi及其相邻运动向量组成的集合Ω(Vi):On the basis of the above scheme, the present invention has further improved, that is, when the present invention is used for steganalysis (FIG. 1), for each motion vector in the compressed video to be tested V i =(x i ,y i ) , the set Ω(V i ) consisting of V i and its adjacent motion vectors is obtained as follows:

由于拉格朗日优化技术(Lagrangian optimization techniques)的简单和有效,其已被广泛应用于包括H.264/AVC和H.265/HEVC在内的绝大多数视频压缩编码标准中,用以对视频编码的率失真性能进行高效优化。Due to its simplicity and effectiveness, Lagrangian optimization techniques have been widely used in most video compression coding standards, including H.264/AVC and H.265/HEVC. The rate-distortion performance of video coding is efficiently optimized.

在视频压缩编码过程中,对某个分块(Block)进行运动估计(Motion Estimation)是指(图2):在已编码的参考帧(Reference Frame)内划定一个搜索范围,将原始待编码分块和该搜索范围内的所有或部分候选分块进行对比,从中选择最佳匹配块作为原始待编码分块的最佳预测参考块。特别地,若给定拉格朗日乘子λ用于控制失真(Distortion)和码率(Rate)之间的平衡,则可通过最小化拉格朗日代价函数(Lagrangian Cost Function)从而对分块S进行基于率失真优化的运动估计,即:In the process of video compression and encoding, performing motion estimation (Motion Estimation) on a certain block (Block) refers to (Fig. 2): delineating a search range in the encoded reference frame (Reference Frame), The block is compared with all or part of the candidate blocks in the search range, and the best matching block is selected as the best prediction reference block of the original block to be coded. In particular, if a given Lagrangian multiplier λ is used to control the balance between distortion (Distortion) and code rate (Rate), it can be divided into two parts by minimizing the Lagrangian Cost Function (Lagrangian Cost Function) Block S performs motion estimation based on rate-distortion optimization, namely:

其中,S'm表示运动向量m所指向的对应于分块S的预测参考块,D(S,S'm)表示S和S'm之间的失真,一般以分块像素的绝对误差和(Sum of Absolute Differences,SAD)度量,即其中k代表像素的位置索引,A代表块中所有像素的位置索引集合;R(m,ref_ind)代表编码运动向量m和相应参考帧索引ref_ind所需的比特数;Ω表示位于参考帧中的运动估计搜索区域。除了SAD外,SATD(Sum of AbsoluteTransformed Differences)也是一种运动估计中常用的块匹配度量标准,即其中T代表哈达玛变换(Hadamard Transform),α表示归一化因子。Among them, S' m represents the prediction reference block corresponding to the sub-block S pointed to by the motion vector m, and D(S, S' m ) represents the distortion between S and S' m , which is generally calculated as the absolute error sum of the sub-block pixels. (Sum of Absolute Differences, SAD) measure, namely where k represents the position index of the pixel, A represents the set of position indices of all pixels in the block; R(m, ref_ind) represents the number of bits required to encode the motion vector m and the corresponding reference frame index ref_ind; Ω represents the motion in the reference frame Estimated search area. In addition to SAD, SATD (Sum of AbsoluteTransformed Differences) is also a commonly used block matching metric in motion estimation, namely Where T represents the Hadamard Transform, and α represents the normalization factor.

基于以上对拉格朗日代价函数和视频压缩编码中运动估计的简介,现对本发明提出的运动向量率失真性能估计方法,率失真意义下局部最优运动向量的定义和36维高性能隐写分析特征做如下详细说明。Based on the above introduction to the Lagrangian cost function and motion estimation in video compression coding, the motion vector rate-distortion performance estimation method proposed by the present invention, the definition of the local optimal motion vector in the sense of rate-distortion, and the 36-dimensional high-performance steganography The analysis features are described in detail below.

[1]运动向量率失真性能估计方法:[1] Motion vector rate-distortion performance estimation method:

根据视频编码中基于率失真优化的运动估计,本发明采用拉格朗日代价函数估算压缩视频中运动向量的率失真性能。According to the motion estimation based on rate-distortion optimization in video coding, the present invention uses the Lagrangian cost function to estimate the rate-distortion performance of the motion vector in the compressed video.

给定运动向量V,其率失真性能可按照如下公式估算:Given a motion vector V, its rate-distortion performance can be estimated as follows:

JD(V)=D(Srec,SV)+λR(V).J D (V)=D(S rec ,S V )+λR(V).

其中,Srec代表拥有运动向量V的重建块(Reconstructed Block),SV代表运动向量V所指向的对应于Srec的预测参考块,D(Srec,SV)表示Srec和SV之间的失真,λ为拉格朗日乘子,R(V)表示编码运动向量V所需的比特数。Among them, S rec represents the reconstructed block with the motion vector V (Reconstructed Block), S V represents the prediction reference block corresponding to S rec pointed to by the motion vector V, and D (S rec , S V ) represents the difference between S rec and S V Distortion between, λ is the Lagrangian multiplier, R(V) represents the number of bits required to encode the motion vector V.

[2]率失真意义下局部最优运动向量的定义:[2] Definition of local optimal motion vector in the sense of rate distortion:

基于运动向量率失真性能估计,本发明定义了两种压缩视频中率失真意义下的局部最优运动向量。Based on the motion vector rate-distortion performance estimation, the present invention defines two locally optimal motion vectors in the sense of rate-distortion in compressed videos.

定义1:I类型局部最优运动向量。给定压缩视频中的运动向量V,若其满足Definition 1: Type I local optimal motion vector. Given a motion vector V in the compressed video, if it satisfies

则称V为I类型局部最优运动向量。Then V is called the I-type local optimal motion vector.

定义2:II类型局部最优运动向量。给定压缩视频中的运动向量V,若其满足Definition 2: Type II locally optimal motion vector. Given a motion vector V in the compressed video, if it satisfies

则称V为II类型局部最优运动向量。Then V is called a type II locally optimal motion vector.

在定义1和定义2中,Ω(V)表示由V及其相邻运动向量组成的集合,代表拥有V的重建块,Sm表示运动向量m指向的对应于的预测参考块,λ为拉格朗日乘子,R(m)表示编码运动向量m所需的比特数。In Definition 1 and Definition 2, Ω(V) represents the set consisting of V and its adjacent motion vectors, represents the reconstructed block with V, and S m represents the motion vector m points to corresponding to The prediction reference block of λ is the Lagrange multiplier, and R(m) represents the number of bits required to encode the motion vector m.

[3]36维高性能运动向量域隐写分析特征:[3] 36-dimensional high-performance motion vector domain steganalysis features:

给定压缩视频中某个包含N个运动向量的帧组Fg,按照如下步骤对Fg提取4种类型的子特征并最终组合得到36维的隐写分析特征。Given a frame group F g containing N motion vectors in the compressed video, four types of sub-features are extracted from F g according to the following steps, and finally combined to obtain a 36-dimensional steganalysis feature.

a)预处理:对于Fg中的每个运动向量Vi=(xi,yi)(i∈[1,N]),首先获得Vi及其相邻运动向量组成的集合,即Ω(Vi)={xi-1,xi,xi+1}×{yi-1,yi,yi+1};进而对集合Ω(Vi)中的每个运动向量其中j∈[1,9](图3),计算其率失真性能最后确定集合{JSAD(m)|m∈Ω(Vi)}中元素的最小值,记作类似地,得到 a) Preprocessing: For each motion vector V i =(x i ,y i )(i∈[1,N]) in F g , first obtain the set of V i and its adjacent motion vectors, namely Ω (V i )={x i -1,x i ,x i +1}×{y i -1,y i ,y i +1}; and then for each motion vector in the set Ω(V i ) where j∈[1,9] (Fig. 3), calculate its rate-distortion performance and Finally, determine the minimum value of the elements in the set {J SAD (m)|m∈Ω(V i )}, denoted as Similarly, get

b)类型1子特征提取:类型1子特征的每个维度对应于给定k的情况下相等的概率,被定义为b) Type 1 sub-feature extraction: each dimension of the type 1 sub-feature corresponds to the given k and equal probability, defined as

其中,函数下同。Among them, the function The same below.

c)类型2子特征提取:类型2子特征与JSAD(Vi)和之间的相对误差有关,被定义为c) Type 2 sub-feature extraction: Type 2 sub-features and J SAD (V i ) and The relative error between , is defined as

d)类型3子特征提取:类型3子特征的每个维度对应于给定k的情况下相等的概率,被定义为d) Type 3 sub-feature extraction: each dimension of the type 3 sub-feature corresponds to the given k and equal probability, defined as

e)类型4子特征提取:类型4子特征与JSATD(Vi)和之间的相对误差有关,被定义为e) Type 4 sub-feature extraction: Type 4 sub-feature with J SATD (V i ) and The relative error between , is defined as

f)最终特征合并:最终的36维隐写分析特征通过合并以上4种类型的子特征得到,被定义为f) Final feature merging: The final 36-dimensional steganalysis feature is obtained by merging the above 4 types of sub-features, and is defined as

基于以上说明内容,本发明提出的采用拉格朗日代价函数进行基于运动向量率失真性能估计的视频隐写分析方法,包括以下步骤(如无特殊说明,以下步骤均由计算机执行):Based on the above description, the video steganalysis method using the Lagrangian cost function to estimate the motion vector rate-distortion performance proposed by the present invention includes the following steps (if there is no special description, the following steps are all performed by a computer):

1)帧组划分:将待测压缩视频划分成若干个帧组,每个帧组由连续的视频帧组成,任意视频帧属于且仅属于某个帧组。1) Frame group division: The compressed video to be tested is divided into several frame groups, each frame group is composed of consecutive video frames, and any video frame belongs to and only belongs to a certain frame group.

2)对于某个包含N个运动向量的帧组Fg,执行步骤3)至5)进行隐写分析特征提取。2) For a certain frame group F g containing N motion vectors, perform steps 3) to 5) to perform steganalysis feature extraction.

3)预处理:对于帧组Fg中的每个运动向量Vi=(xi,yi),其中i=1,2,...,N,获得由Vi及其相邻运动向量组成的集合Ω(Vi)={xi-1,xi,xi+1}×{yi-1,yi,yi+1};3) Preprocessing: for each motion vector V i =(x i , y i ) in the frame group F g , where i=1, 2, . The set composed of Ω(V i )={x i -1,x i ,x i +1}×{y i -1,y i ,y i +1};

4)运动向量率失真性能估计:对于集合Ω(Vi)中的每个运动向量其中j∈[1,9](图3),分别以SAD和SATD为块匹配度量标准,通过拉格朗日代价函数计算得到其率失真性能 4) Motion vector rate-distortion performance estimation: for each motion vector in the set Ω(V i ) where j∈[1,9] (Fig. 3), using SAD and SATD as the block matching metrics, respectively, the rate-distortion performance is calculated by the Lagrangian cost function and

5)特征计算及提取:根据步骤4)的计算结果,对帧组Fg提取预设的4种类型子特征,并最终合并得到36维的隐写分析特征。5) Feature calculation and extraction: According to the calculation result of step 4), the preset 4 types of sub-features are extracted from the frame group F g , and finally combined to obtain 36-dimensional steganalysis features.

6)重复执行步骤2)至5),依次对该待测视频的所有帧组进行隐写分析特征提取。6) Repeat steps 2) to 5) to sequentially perform steganalysis feature extraction for all frame groups of the video to be tested.

7)隐写分析:采用基于预设隐写分析特征的分类器,分别对该待测视频中的每个帧组进行隐写分类判决。7) Steganalysis: Using a classifier based on preset steganalysis features, steganographic classification judgment is performed on each frame group in the video to be tested.

本发明的视频隐写分析方法对相关技术领域的有益效果如下:The beneficial effects of the video steganalysis method of the present invention to the relevant technical field are as follows:

1)能够有效检测目前现有的运动向量域视频隐写方法。根据视频压缩编码中的率失真优化,任何运动向量在率失真意义下都是局部最优的,因此对运动向量的任何修改都将不可避免地破坏其在率失真性能上的局部最优。由于本发明采用了拉格朗日代价函数对压缩视频中运动向量的率失真性能进行了精确估算,并在此基础上设计了隐写分析特征,从而充分利用了运动向量域视频隐写的本质弱点并抓住了实施运动向量域视频隐写分析的关键核心,因此本发明对目前现有的运动向量域视频隐写方法均具有理想的检测效果。1) It can effectively detect the existing motion vector domain video steganography methods. According to the rate-distortion optimization in video compression coding, any motion vector is locally optimal in the sense of rate-distortion, so any modification to the motion vector will inevitably destroy its local optimum in rate-distortion performance. Because the invention adopts the Lagrangian cost function to accurately estimate the rate-distortion performance of the motion vector in the compressed video, and designs the steganalysis feature on this basis, so as to make full use of the essence of the motion vector domain video steganography Weaknesses and grasp the key core of implementing motion vector domain video steganography analysis, so the present invention has ideal detection effect for all existing motion vector domain video steganography methods.

2)能够在一定程度上有效缓解隐写分析中的载体源失配现象。隐写分析中的载体源失配(Cover Source Mismatch)现象是指:当在某个载体源上训练得到的隐写分析检测器针对来自不同载体源的样本进行分析时,这两个载体源的差异将会对隐写分析正确率产生较大的负面影响。载体源失配现象在真实网络环境中普遍存在,其是阻碍隐写分析实用化的最大障碍。由于本发明充分利用了运动向量域视频隐写的本质弱点,通过精确估算压缩视频中运动向量的率失真性能,从而准确识别局部最优运动向量并有效提升了隐写分析性能及其稳定性,因此本发明能够在一定程度上有效缓解载体源失配现象,例如:采用本发明方法对相同尺寸、相同码率以及相同嵌入率的样本提取隐写分析特征,在此基础上训练得到的隐写分析检测器,对不同尺寸、不同码率以及不同嵌入率的隐写视频均有较好的分析检测效果。2) The carrier source mismatch phenomenon in steganalysis can be effectively alleviated to a certain extent. The phenomenon of Cover Source Mismatch in steganalysis refers to: when a steganalysis detector trained on a certain carrier source analyzes samples from different carrier sources, the difference between the two carrier sources is different. The difference will have a large negative impact on the accuracy of steganalysis. The carrier-source mismatch phenomenon is ubiquitous in the real network environment, which is the biggest obstacle to the practical application of steganalysis. Because the present invention makes full use of the essential weakness of video steganography in the motion vector domain, by accurately estimating the rate-distortion performance of the motion vector in the compressed video, the local optimal motion vector is accurately identified and the steganalysis performance and its stability are effectively improved, Therefore, the present invention can effectively alleviate the carrier source mismatch phenomenon to a certain extent. For example, the method of the present invention is used to extract steganalysis features for samples of the same size, the same code rate and the same embedding rate, and on this basis, the steganography obtained by training The analysis detector has good analysis and detection effect on steganographic videos of different sizes, different bit rates and different embedding rates.

3)广泛适用于不同的视频编码标准。部分运动向量域视频隐写分析方法是在特定的视频编码标准框架下、依赖该标准独有的特性进行设计的,因此极大影响了这些分析方法的适用范围。本发明主要通过对运动向量率失真性能进行精确估算以识别局部最优运动向量从而有效提升隐写分析性能,其实现并不依赖于特定的视频编码标准,因此本发明具有较大的适用范围,能对基于不同视频编码标准的运动向量域视频隐写进行有效分析。3) Widely applicable to different video coding standards. Some motion vector domain video steganalysis methods are designed under the framework of a specific video coding standard and rely on the unique characteristics of the standard, which greatly affects the scope of application of these analysis methods. The present invention mainly recognizes the local optimal motion vector by accurately estimating the rate-distortion performance of the motion vector, thereby effectively improving the steganalysis performance, and its realization does not depend on a specific video coding standard, so the present invention has a larger scope of application, It can effectively analyze the motion vector domain video steganography based on different video coding standards.

4)具备可扩展性。本发明在对帧组提取隐写分析特征时,对其中的每个运动向量V=(x,y),都需获得由V及其相邻运动向量组成的集合Ω(V)={x-1,x,x+1}×{y-1,y,y+1}。因此,可以通过修改Ω(V)的计算方式,从而扩展定制出不同的基于运动向量率失真性能估计的视频隐写分析方法,以应用于不同的隐写分析场景。4) It is scalable. When the present invention extracts steganalysis features from a frame group, for each motion vector V=(x, y), a set Ω(V)={x- 1,x,x+1}×{y-1,y,y+1}. Therefore, by modifying the calculation method of Ω(V), different video steganalysis methods based on motion vector rate-distortion performance estimation can be extended and customized to be applied to different steganalysis scenarios.

附图说明Description of drawings

图1是采用本发明的视频隐写分析示意图;Fig. 1 is the video steganalysis schematic diagram that adopts the present invention;

图2是视频压缩编码中基于分块的运动估计示意图;2 is a schematic diagram of block-based motion estimation in video compression coding;

图3是某运动向量Vi对应的集合Ω(Vi)中所有元素的空间相对位置示意图;3 is a schematic diagram of the relative spatial positions of all elements in the set Ω(V i ) corresponding to a certain motion vector V i ;

图4是采用本发明的视频隐写分析流程图。FIG. 4 is a flow chart of video steganalysis using the present invention.

具体实施方式Detailed ways

下面通过具体实施例并结合附图4对本发明作进一步描述。The present invention will be further described below through specific embodiments and in conjunction with FIG. 4 .

本发明提出的采用拉格朗日代价函数进行基于运动向量率失真性能估计的视频隐写分析方法,具体操作细节如下:The video steganalysis method based on the motion vector rate-distortion performance estimation using the Lagrangian cost function proposed by the present invention, the specific operation details are as follows:

1)帧组划分:将待测压缩视频划分成若干个帧组,每个帧组由连续的视频帧组成,任意视频帧属于且仅属于某个帧组。1) Frame group division: The compressed video to be tested is divided into several frame groups, each frame group is composed of consecutive video frames, and any video frame belongs to and only belongs to a certain frame group.

2)对于某个包含N个运动向量的帧组Fg,执行步骤3)至5)进行隐写分析特征提取。2) For a certain frame group F g containing N motion vectors, perform steps 3) to 5) to perform steganalysis feature extraction.

3)预处理:对于帧组Fg中的每个运动向量Vi=(xi,yi),其中i=1,2,...,N,获得由Vi及其相邻运动向量组成的集合Ω(Vi)={xi-1,xi,xi+1}×{yi-1,yi,yi+1},即3) Preprocessing: for each motion vector V i =(x i , y i ) in the frame group F g , where i=1, 2, . The set composed of Ω(V i )={x i -1,x i ,x i +1}×{y i -1,y i ,y i +1}, that is

4)运动向量率失真性能估计:对于集合Ω(Vi)中的每个运动向量其中j∈[1,9](图3),分别以SAD和SATD为块匹配度量标准,通过拉格朗日代价函数计算得到其率失真性能4) Motion vector rate-distortion performance estimation: for each motion vector in the set Ω(V i ) where j∈[1,9] (Fig. 3), using SAD and SATD as the block matching metrics, respectively, the rate-distortion performance is calculated by the Lagrangian cost function and which is

其中,代表拥有Vi的重建块,表示运动向量指向的对应于的预测参考块,λ为拉格朗日乘子,表示编码运动向量所需的比特数。随后,确定集合{JSAD(m)|m∈Ω(Vi)}中元素的最小值,记作类似地,得到 in, represents the reconstructed block with Vi , represents the motion vector points to correspond to The prediction reference block of , λ is the Lagrange multiplier, represents the encoded motion vector required number of bits. Then, determine the minimum value of the elements in the set {J SAD (m)|m∈Ω(V i )}, denoted as Similarly, get

5)特征计算及提取:根据步骤4)的计算结果,采用所说明的特征提取流程,对帧组Fg提取预设的4种类型子特征从而合并得到36维的隐写分析特征。5) Feature calculation and extraction: According to the calculation result of step 4), using the feature extraction process described, extract the preset 4 types of sub-features for the frame group F g so as to merge to obtain 36-dimensional steganalysis features.

6)重复执行步骤2)至5),依次对该待测视频的所有帧组进行隐写分析特征提取。6) Repeat steps 2) to 5) to sequentially perform steganalysis feature extraction for all frame groups of the video to be tested.

7)隐写分析:采用基于此36维隐写分析特征的分类器,分别对该待测视频中的每个帧组进行隐写分类判决。7) Steganalysis: Using a classifier based on the 36-dimensional steganalysis feature, steganographic classification judgment is performed on each frame group in the video to be tested.

从以上具体实施方式可以看出:首先,本发明主要通过精确估算运动向量的率失真性能以识别压缩视频中的局部最优运动向量并进行隐写分析,其实现并不依赖于特定的视频编码标准;其次,根据不同的实际应用场景,可以通过改变Ω(·)的计算方式从而生成不同的基于运动向量率失真性能估计的视频隐写分析特征。因此,本发明具有较广泛的适用范围和较强的灵活性。It can be seen from the above specific embodiments: First, the present invention mainly identifies the local optimal motion vector in the compressed video by accurately estimating the rate-distortion performance of the motion vector and performs steganalysis, and its realization does not depend on specific video coding. Second, according to different practical application scenarios, different video steganalysis features based on motion vector rate-distortion performance estimation can be generated by changing the calculation method of Ω(·). Therefore, the present invention has a wider scope of application and greater flexibility.

为了突出说明本发明提出的是一种高性能运动向量域视频隐写分析方法,采用以下实验配置进行隐写分析实验:In order to highlight that what the present invention proposes is a high-performance motion vector domain video steganalysis method, the following experimental configuration is used to conduct a steganalysis experiment:

1)YUV序列:通过互联网搜集得到250个分辨率均为CIF(352×288)、长度在90-376帧之间的YUV420序列。1) YUV sequence: 250 YUV420 sequences with a resolution of CIF (352×288) and a length of 90-376 frames were collected through the Internet.

2)视频编码器及其配置:采用x264开源视频编码器制备压缩视频样本,为了降低时间开销,设置编码档次为基本档次Baseline Profile。2) Video encoder and its configuration: The x264 open source video encoder is used to prepare compressed video samples. In order to reduce the time overhead, the encoding profile is set as the Baseline Profile.

3)压缩视频参数:设置比特率(bitrate)为0.5mb/s,3mb/s或10mb/s,帧率均为50fps,运动估计快速搜索算法为DIA、HEX或UMH。3) Compressed video parameters: set the bitrate to 0.5mb/s, 3mb/s or 10mb/s, the frame rate is 50fps, and the motion estimation fast search algorithm is DIA, HEX or UMH.

4)隐写嵌入率:采用每帧运动向量修改率(Corrupted Motion Vector Ratio,CMVR)表示隐写嵌入率,并设置载体视频的CMVR为0,隐写视频的CMVR为0.1或0.2。4) Steganographic embedding rate: The Corrupted Motion Vector Ratio (CMVR) per frame is used to represent the steganographic embedding rate, and the CMVR of the carrier video is set to 0, and the CMVR of the steganographic video is set to 0.1 or 0.2.

5)隐写方法:选择由Cao等提出的高隐蔽性运动向量域视频隐写方法进行分析(参考文献:Y.Cao,H.Zhang,X.Zhao,and H.Yu,“Video steganography based on optimizedmotion estimation perturbation,”in Proc.3rd ACM Workshop Inf.HidingMultimedia Security,Portland,OR,USA,Jun.2015,pp.25–31.)。5) Steganography method: The video steganography method proposed by Cao et al. in the motion vector domain with high concealment is selected for analysis (Reference: Y. "optimizedmotion estimation perturbation," in Proc. 3rd ACM Workshop Inf. Hiding Multimedia Security, Portland, OR, USA, Jun. 2015, pp. 25–31.).

6)隐写分析方法:由于AoSO是目前运动向量域最有效的隐写分析方法,故将其与本发明进行对比(参考文献:K.Wang,H.Zhao,and H.Wang,“Video steganalysis againstmotion vector-based steganography by adding or subtracting one motion vectorvalue,”IEEE Trans.Inf.Forensics Security,vol.9,no.5,pp.741–751,May 2014.)。6) Steganalysis method: Since AoSO is the most effective steganalysis method in the motion vector domain at present, it is compared with the present invention (reference: K. Wang, H. Zhao, and H. Wang, "Video steganalysis"). against motion vector-based steganography by adding or subtracting one motion vector value,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 5, pp. 741–751, May 2014.).

7)训练和检测:每组隐写分析实验中,随机选取60%的“载体-隐写”样本对用于训练支持向量机(Support Vector Machine,SVM),剩余的40%样本对用于隐写分类判决,每组隐写分析实验重复50次,对所得数据取平均值。7) Training and detection: In each group of steganalysis experiments, 60% of the "carrier-steganography" sample pairs were randomly selected for training the Support Vector Machine (SVM), and the remaining 40% of the sample pairs were used for steganography. To write classification decisions, each group of steganalysis experiments was repeated 50 times, and the obtained data were averaged.

按照以上实验配置,所得隐写分析结果如表1所示,可以看出,本发明能够有效检测目前处于最新发展阶段、拥有最高隐写安全性的运动向量域视频隐写,此外,当隐写嵌入率和码率都较低时,本发明的隐写分析效果显著优于AoSO,故本发明十分适用于对安全等级要求较高的隐写分析场景。According to the above experimental configuration, the obtained steganalysis results are shown in Table 1. It can be seen that the present invention can effectively detect the motion vector domain video steganography which is currently in the latest development stage and has the highest steganographic security. When the embedding rate and the code rate are both low, the steganalysis effect of the present invention is significantly better than that of AoSO, so the present invention is very suitable for the steganalysis scene with higher security level requirements.

表1.采用AoSO和本发明对Cao等提出的方法进行隐写分析的平均检测正确率(%)Table 1. The average detection accuracy (%) of the method proposed by Cao et al. for steganalysis using AoSO and the present invention

以上实施例仅用以说明本发明的技术方案而非对其进行限制,本领域的普通技术人员可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的精神和范围,本发明的保护范围应以权利要求所述为准。The above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Those of ordinary skill in the art can modify or equivalently replace the technical solutions of the present invention without departing from the spirit and scope of the present invention. The scope of protection shall be subject to what is stated in the claims.

Claims (4)

1.一种基于运动向量率失真性能估计的视频隐写分析方法,其特征在于,包括以下步骤:1. a video steganalysis method based on motion vector rate-distortion performance estimation, is characterized in that, comprises the following steps: 1)将待测压缩视频划分成若干个帧组,每个帧组由连续的视频帧组成,任意视频帧属于且仅属于某个帧组;1) the compressed video to be tested is divided into several frame groups, each frame group is made up of continuous video frames, and any video frame belongs to and only belongs to a certain frame group; 2)对于某个包含若干运动向量的帧组,执行步骤3)至5)进行隐写分析特征提取;2) for a certain frame group that contains several motion vectors, perform steps 3) to 5) to carry out steganalysis feature extraction; 3)对于某个帧组Fg中的每个运动向量Vi=(xi,yi),其中i=1,2,...,N,获得由该运动向量Vi及其相邻运动向量组成的集合Ω(Vi)={xi-1,xi,xi+1}×{yi-1,yi,yi+1};3) For each motion vector V i =(x i ,y i ) in a certain frame group F g , where i=1,2,...,N, obtain the motion vector V i and its adjacent A set of motion vectors Ω(V i )={x i -1,x i ,x i +1}×{y i -1,y i ,y i +1}; 4)按照预设的运动向量率失真性能估计方法,计算该集合中每个运动向量的率失真性能,即对于集合Ω(Vi)中的每个运动向量其中j∈[1,9],分别以SAD和SATD为块匹配度量标准,通过拉格朗日代价函数计算得到其率失真性能 4) According to the preset motion vector rate-distortion performance estimation method, calculate the rate-distortion performance of each motion vector in the set, that is, for each motion vector in the set Ω(V i ) where j∈[1,9], take SAD and SATD as block matching metrics, respectively, and calculate its rate-distortion performance through Lagrangian cost function and 5)根据步骤4)的计算结果,对该帧组提取预设的隐写分析特征;5) according to the calculation result of step 4), extract the preset steganalysis feature to this frame group; 6)重复执行步骤2)至5),依次对该待测视频的所有帧组进行隐写分析特征提取;6) Repeat steps 2) to 5), successively carry out steganalysis feature extraction for all frame groups of the video to be tested; 7)采用基于隐写分析特征的分类器,对该待测视频中的每个帧组进行隐写分类判决。7) Using a classifier based on steganalysis features, steganographic classification judgment is performed on each frame group in the video to be tested. 2.如权利要求1所述的方法,其特征在于,步骤4)中率失真性能的计算公式为:2. The method of claim 1, wherein step 4) rate-distortion performance and The calculation formula is: 其中,代表拥有Vi的重建块,表示运动向量指向的对应于的预测参考块,λ为拉格朗日乘子,表示编码运动向量所需的比特数。in, represents the reconstructed block with Vi , represents the motion vector points to correspond to The prediction reference block of , λ is the Lagrange multiplier, represents the encoded motion vector required number of bits. 3.如权利要求2所述的方法,其特征在于,步骤5)对帧组Fg提取预设的4种类型子特征,并最终合并得到36维的隐写分析特征。3. The method of claim 2, wherein step 5) extracts preset 4 types of sub-features to the frame group F g , and finally merges to obtain 36-dimensional steganalysis features. 4.如权利要求3所述的方法,其特征在于,步骤5)包括:4. The method of claim 3, wherein step 5) comprises: a)预处理:根据步骤4)得到的率失真性能确定集合{JSAD(m)|m∈Ω(Vi)}中元素的最小值,记作类似地,得到 a) Preprocessing: rate-distortion performance according to step 4) and Determine the minimum value of the elements in the set {J SAD (m)|m∈Ω(V i )}, denoted as Similarly, get b)类型1子特征提取:类型1子特征的每个维度对应于给定k的情况下相等的概率,被定义为:b) Type 1 sub-feature extraction: each dimension of the type 1 sub-feature corresponds to the given k and Equal probability, defined as: 其中,函数下同;Among them, the function The same below; c)类型2子特征提取:类型2子特征与JSAD(Vi)和之间的相对误差有关,被定义为:c) Type 2 sub-feature extraction: Type 2 sub-features and J SAD (V i ) and The relative error between is related and is defined as: d)类型3子特征提取:类型3子特征的每个维度对应于给定k的情况下相等的概率,被定义为:d) Type 3 sub-feature extraction: each dimension of the type 3 sub-feature corresponds to the given k and Equal probability, defined as: e)类型4子特征提取:类型4子特征与JSATD(Vi)和之间的相对误差有关,被定义为:e) Type 4 sub-feature extraction: Type 4 sub-feature with J SATD (V i ) and The relative error between is related and is defined as: f)最终特征合并:最终的36维隐写分析特征通过合并以上4种类型的子特征得到,被定义为:f) Final feature merging: The final 36-dimensional steganalysis feature is obtained by merging the above 4 types of sub-features and is defined as:
CN201610313236.XA 2016-05-12 2016-05-12 Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation Expired - Fee Related CN105915916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610313236.XA CN105915916B (en) 2016-05-12 2016-05-12 Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610313236.XA CN105915916B (en) 2016-05-12 2016-05-12 Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation

Publications (2)

Publication Number Publication Date
CN105915916A CN105915916A (en) 2016-08-31
CN105915916B true CN105915916B (en) 2019-02-22

Family

ID=56748123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610313236.XA Expired - Fee Related CN105915916B (en) 2016-05-12 2016-05-12 Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation

Country Status (1)

Country Link
CN (1) CN105915916B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107613303B (en) * 2017-09-08 2019-10-22 中国科学院信息工程研究所 Video Steganalysis Method, Device, Equipment, and Computer-Readable Storage Medium
CN107682703B (en) * 2017-10-27 2019-11-26 中国科学院信息工程研究所 Video steganalysis method, device, equipment and computer readable storage medium based on the detection of inter-frame forecast mode recovery characteristic
CN110324634B (en) * 2019-07-05 2021-10-01 中国科学技术大学 A Video Steganography Method Based on Motion Vector Embedding Distortion Decomposition
CN112312141B (en) * 2020-08-17 2021-08-13 中国科学技术大学 A HEVC video steganography method based on pixel adaptive compensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108188A (en) * 2013-03-01 2013-05-15 武汉大学 Video steganalysis method based on partial cost non-optimal statistics
CN104837011A (en) * 2015-05-04 2015-08-12 中国科学院信息工程研究所 Content self-adaptive video steganalysis method
CN104853186A (en) * 2015-06-08 2015-08-19 中国科学院信息工程研究所 Improved video steganalysis method based on motion vector reply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108188A (en) * 2013-03-01 2013-05-15 武汉大学 Video steganalysis method based on partial cost non-optimal statistics
CN104837011A (en) * 2015-05-04 2015-08-12 中国科学院信息工程研究所 Content self-adaptive video steganalysis method
CN104853186A (en) * 2015-06-08 2015-08-19 中国科学院信息工程研究所 Improved video steganalysis method based on motion vector reply

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于运动向量局部最优保持的视频隐写方法;张弘等;《第十二届全国信息隐藏暨多媒体信息安全学术大会论文集》;20150331;第1-4章,图1-5 *

Also Published As

Publication number Publication date
CN105915916A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
Zhai et al. Universal detection of video steganography in multiple domains based on the consistency of motion vectors
Zhang et al. Motion vector-based video steganography with preserved local optimality
CN107197297B (en) A Video Steganalysis Method for Detecting Steganography Based on DCT Coefficients
CN103338376B (en) A kind of video steganography method based on motion vector
CN105915916B (en) Video Steganalysis Method Based on Motion Vector Rate-distortion Performance Estimation
CN111479110B (en) Fast Affine Motion Estimation Method for H.266/VVC
CN104837011B (en) Content self-adaptive video steganalysis method
CN105933711B (en) Segmentation-based neighborhood optimal probabilistic video steganalysis method and system
CN104853186B (en) An Improved Video Steganalysis Method Based on Motion Vector Recovery
CN104853215A (en) Video steganography method based on motion vector local optimality preservation
CN102075757B (en) Video foreground object coding method by taking boundary detection as motion estimation reference
CN109819260B (en) Video steganography method and device based on multi-embedded domain fusion
He et al. Exposing fake bitrate videos using hybrid deep-learning network from recompression error
CN105979269B (en) Video Steganography in Motion Vector Domain Based on Novel Embedding Cost
CN108965887A (en) A kind of video information hiding method and device based on uncoupling between block
CN108769696A (en) A kind of DVC-HEVC video transcoding methods based on Fisher discriminates
CN107343202B (en) Feedback-free distributed video encoding and decoding method based on additional code rate
CN106791828A (en) High performance video code-transferring method and its transcoder based on machine learning
CN107040786A (en) A kind of H.265/HEVC video steganalysis method adaptively selected based on space-time characteristic of field
CN102547371B (en) A secondary compression detection method based on H.264/AVC video
Wang et al. Segmentation based video Steganalysis to detect motion vector modification
CN106101713B (en) A kind of video steganalysis method based on the optimal calibration of window
CN112954318A (en) Data coding method and device
CN107135391B (en) A kind of video-aware hash method for H.264 compression domain
CN110062242B (en) A UED-based H.264 Video Steganography Algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190222

Termination date: 20190512

CF01 Termination of patent right due to non-payment of annual fee