CN105913382B - 阈值寻优的高保真各向异性滤波方法 - Google Patents
阈值寻优的高保真各向异性滤波方法 Download PDFInfo
- Publication number
- CN105913382B CN105913382B CN201610115932.XA CN201610115932A CN105913382B CN 105913382 B CN105913382 B CN 105913382B CN 201610115932 A CN201610115932 A CN 201610115932A CN 105913382 B CN105913382 B CN 105913382B
- Authority
- CN
- China
- Prior art keywords
- formula
- image
- fidelity
- wavelet
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000009792 diffusion process Methods 0.000 claims abstract description 25
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 18
- 230000009466 transformation Effects 0.000 claims abstract description 11
- 239000013598 vector Substances 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 8
- 238000011478 gradient descent method Methods 0.000 claims description 6
- 239000011541 reaction mixture Substances 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000003708 edge detection Methods 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003706 image smoothing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610115932.XA CN105913382B (zh) | 2016-03-01 | 2016-03-01 | 阈值寻优的高保真各向异性滤波方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610115932.XA CN105913382B (zh) | 2016-03-01 | 2016-03-01 | 阈值寻优的高保真各向异性滤波方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105913382A CN105913382A (zh) | 2016-08-31 |
CN105913382B true CN105913382B (zh) | 2018-11-23 |
Family
ID=56744474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610115932.XA Active CN105913382B (zh) | 2016-03-01 | 2016-03-01 | 阈值寻优的高保真各向异性滤波方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105913382B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107247819B (zh) * | 2017-05-02 | 2020-07-24 | 歌尔科技有限公司 | 传感器的滤波方法和滤波器 |
CN108120698B (zh) * | 2017-11-22 | 2020-05-19 | 南京航空航天大学 | 面向柔性薄板结构载荷分布监测的光纤层析成像方法 |
CN109345465B (zh) * | 2018-08-08 | 2023-04-07 | 西安电子科技大学 | 基于gpu的高分辨率图像实时增强方法 |
CN109697704A (zh) * | 2018-11-28 | 2019-04-30 | 山东师范大学 | 基于bm3d算法的自适应全变分espi图像降噪方法及系统 |
CN110009582A (zh) * | 2019-03-28 | 2019-07-12 | 华南理工大学 | 一种基于曲率特征的各向异性图像去噪方法 |
CN113567603B (zh) * | 2021-07-22 | 2022-09-30 | 华谱科仪(大连)科技有限公司 | 色谱谱图的检测分析方法及电子设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104463810A (zh) * | 2014-12-25 | 2015-03-25 | 南京信息工程大学 | 基于tv流的自适应扩散滤波图像去噪算法 |
CN104463811A (zh) * | 2014-12-29 | 2015-03-25 | 南京信息工程大学 | 基于能量泛函的图像平滑与锐化算法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077746B (zh) * | 2013-03-29 | 2017-03-01 | 富士通株式会社 | 灰度图像处理方法及其装置 |
-
2016
- 2016-03-01 CN CN201610115932.XA patent/CN105913382B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104463810A (zh) * | 2014-12-25 | 2015-03-25 | 南京信息工程大学 | 基于tv流的自适应扩散滤波图像去噪算法 |
CN104463811A (zh) * | 2014-12-29 | 2015-03-25 | 南京信息工程大学 | 基于能量泛函的图像平滑与锐化算法 |
Non-Patent Citations (4)
Title |
---|
Robust adaptive directional lifting wavelet transform for image denoising;X.T Wang等;《IET Image Processing》;20111231;第5卷(第3期);第249-260页 * |
Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression;Kaibing Zhan等;《IEEE Transactions on Image Processing》;20121130;第21卷(第11期);第4544-4556页 * |
基于脉冲藕合神经网络和图像嫡的各向异性扩散模型研究;郭业才等;《物理学报》;20151231;第64卷(第19期);第194204-1-194204-11页 * |
非线性扩散图像去噪中的藕合自适应保真项研究;朱立新等;《计算机辅助设计与图形学学报》;20061031;第18卷(第10期);第1519-1524页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105913382A (zh) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105913382B (zh) | 阈值寻优的高保真各向异性滤波方法 | |
Zhao et al. | Detail-preserving image denoising via adaptive clustering and progressive PCA thresholding | |
CN105005975B (zh) | 基于pcnn和图像熵的各向异性扩散的图像去噪方法 | |
CN103473755B (zh) | 基于变化检测的sar图像稀疏去噪方法 | |
CN111242854B (zh) | 一种图像去噪方法 | |
CN111223063A (zh) | 基于纹理特征和双核函数的手指静脉图像nlm去噪方法 | |
CN108805845A (zh) | 小波包与偏微分方程相结合的图像去噪方法 | |
CN117726537A (zh) | 自适应多尺度特征融合AMFFD-Net的SAR图像去噪网络方法及系统 | |
Wu et al. | Pyramid edge detection based on stack filter | |
CN102314675B (zh) | 基于小波高频的贝叶斯去噪方法 | |
CN111091107A (zh) | 一种人脸区域边缘检测方法、装置及存储介质 | |
CN104616266B (zh) | 一种基于广义自回归异方差模型的噪声方差估计方法 | |
Yu et al. | EPLL image denoising with multi-feature dictionaries | |
Li et al. | Improved non-local means algorithm for image denosing | |
Potocnik et al. | Image enhancement by using directional wavelet transform | |
CN112927169B (zh) | 一种基于小波变换和改进的加权核范数最小化的遥感影像去噪方法 | |
Gantenapalli et al. | Selective mean filtering for reducing impulse noise in digital color images | |
CN109840896B (zh) | 一种基于梯度和自适应曲率特征的图像去噪方法 | |
CN110009591B (zh) | 一种基于四阶偏微分方程的自适应阈值图像去噪方法 | |
CN113484913A (zh) | 一种多粒度特征融合卷积神经网络的地震资料去噪方法 | |
CN106651804B (zh) | 基于自适应扩散滤波的车载图像去噪方法及系统 | |
CN113191961B (zh) | 一种基于双边滤波和特征识别的超声去噪方法及系统 | |
Han et al. | ICA-domain filtering of Poisson noise images | |
Li et al. | Understanding neural-network denoisers through an activation function perspective | |
Shimodaira | Patch-based bilateral filter: Algorithms and performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: Room 420, block C, Kechuang headquarters building, No. 320, pubin Road, Jiangpu street, Pukou District, Nanjing, Jiangsu Patentee after: Nanjing University of Information Science and Technology Address before: The Olympic Avenue in Jianye District of Nanjing city of Jiangsu Province, No. 69 210019 Patentee before: Nanjing University of Information Science and Technology |
|
CP02 | Change in the address of a patent holder | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160831 Assignee: Wuxi Yunqi Technology Information Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2023320000234 Denomination of invention: High fidelity anisotropic filtering method for threshold optimization Granted publication date: 20181123 License type: Common License Record date: 20231121 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160831 Assignee: Nanjing Xinqihang Software Technology Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2023980051736 Denomination of invention: High fidelity anisotropic filtering method for threshold optimization Granted publication date: 20181123 License type: Common License Record date: 20231213 Application publication date: 20160831 Assignee: Fujian Kailan Information Technology Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2023980051725 Denomination of invention: High fidelity anisotropic filtering method for threshold optimization Granted publication date: 20181123 License type: Common License Record date: 20231213 |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Nanjing Xinqihang Software Technology Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2023980051736 Date of cancellation: 20240507 Assignee: Fujian Kailan Information Technology Co.,Ltd. Assignor: Nanjing University of Information Science and Technology Contract record no.: X2023980051725 Date of cancellation: 20240507 |