CN105891761A - 基于散射参量的局放特高频检测系统现场校核方法 - Google Patents

基于散射参量的局放特高频检测系统现场校核方法 Download PDF

Info

Publication number
CN105891761A
CN105891761A CN201610443326.0A CN201610443326A CN105891761A CN 105891761 A CN105891761 A CN 105891761A CN 201610443326 A CN201610443326 A CN 201610443326A CN 105891761 A CN105891761 A CN 105891761A
Authority
CN
China
Prior art keywords
superfrequency
sensor
microwave network
gis
scattering parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610443326.0A
Other languages
English (en)
Inventor
叶兆平
舒胜文
黄友聪
陈敏维
陈晔
李志华
傅智为
李超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Maintenance Branch of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Maintenance Branch of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd, Maintenance Branch of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201610443326.0A priority Critical patent/CN105891761A/zh
Publication of CN105891761A publication Critical patent/CN105891761A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明涉及一种基于散射参量的局放特高频检测系统现场校核方法。该方法:1)将GIS上两相邻特高频传感器及传感器间的GIS结构等效为二端口微波网络;2)通过研究二端口微波网络的散射参量,获得GIS上安装的两相邻传感器间的散射参量S21,确定特高频传感器有效检测频带内传输系数的平均值,进而实现特高频局部放电在线检测系统的现场校核;所述微波网络分析仪在进行校核之前还可通过预先测量两特高频传感器所在端口的散射参量S11,结合传感器的特点判断其工作状态。本发明校核方法测量误差小,检测灵敏度高,抗干扰能力强,为特高频局部放电在线监测装置的现场校核提供参考依据。

Description

基于散射参量的局放特高频检测系统现场校核方法
技术领域
本发明属于电气设备在线监测与故障诊断领域,涉及一种基于散射参量的局放特高频检测系统现场校核方法。
背景技术
局部放电特高频检测技术因其灵敏度高、抗干扰能力强的独特优势,现已在变压器、GIS等设备上广泛应用,然而,现场安装的局部放电特高频检测系统由于以下原因往往导致检测效果不佳:1)实际应用中发现,对于不同的设备制造厂家,其传感器及检测系统性能相差能够达到5倍以上,部分特高频传感器及检测系统灵敏度低;2)特高频传感器的有效检测范围不足,无法完全覆盖所要求的监测范围,导致部分特高频传感器布置不合理;3)由于恶劣的电磁环境、气候环境、振动等因素导致部分特高频传感器及检测装置损伤、性能劣化,从而使检测效果下降;4)当前,特高频检测系统的灵敏度和性能好坏缺乏统一的量化评价标准,导致部分检测设备的质量和可靠性缺乏保障,致使部分现场运行的特高频检测系统误报率、漏报率问题突出。
因此,要想保证GIS局部放电特高频检测工作的实效性,必须对待出厂或已投运的特高频检测系统进行灵敏度校核,建立相关产品规范、建立科学合理的评价体系与校核规范,这也是GIS局部放电特高频检测技术进一步发展的要求。当前,有关UHF检测系统的现场校核均是基于CIGRE TF15/33.03.05工作组推荐的方法,该方法的校核结果直接取决于注入脉冲信号的参数指标、注入方式及传感器性能,而实际校核中,应该采用什么样的脉冲信号源、注入方式及传感器,有待研究确定。
本专利提出一种应用微波网络分析设备,对GIS上安装的局部放电特高频检测系统进行现场校核的方法。
发明内容
本发明的目的在于提供一种基于散射参量的局放特高频检测系统现场校核方法,该方法测量误差小,检测灵敏度高,抗干扰能力强,为特高频局部放电在线监测装置的现场校核提供参考依据。
为实现上述目的,本发明的技术方案是:一种基于散射参量的局放特高频检测系统现场校核方法,采用微波网络分析仪,对GIS上安装的局部放电特高频检测系统进行现场校核,具体包括如下步骤,
S1:将GIS上两相邻特高频传感器C1、C2及C1、C2之间的GIS结构等效为二端口微波网络;
S2:设置微波网络分析仪工作于双端口工作模式,设置测量参数,并进行校核,以消除测量误差;
S3:将微波网络分析仪的两端口分别通过射频同轴线缆与特高频传感器C1、C2连接;
S4:控制微波网络分析仪执行二端口网络传输系数测量,获得特高频传感器C1、C2间的散射参量S21
其中, H1(f)、H2(f)、HG(f)分别为特高频传感器C1、特高频传感器C2及C1、C2之间的GIS结构的传递函数;
根据上式确定特高频传感器C1、C2在300MHz~1500MHz内散射参量的平均值Sav
其中,S21(i)为第i个采样点的散射参量,亦即插入损耗值;N为300MHz~1500MHz间总采样点数;
由Sav,即可表征特高频传感器C1、C2的布置能否检测到两传感器间任意位置的缺陷放电。
在本发明一实施例中,所述微波网络分析仪为安捷伦E5061B,其频率范围为:100kHz~3GHz,输出功率范围:-45~10dBm,测量动态范围大于120dB;3GHz以下频段射频线缆的传输特性:VSWR≤1.15。
在本发明一实施例中,所述微波网络分析仪在进行校核之前,还能够通过预先测量特高频传感器C1、C2所在端口的散射参量S11,结合特高频传感器C1、C2的特点判断其工作状态。
在本发明一实施例中,所述射频同轴线缆采用低损耗、屏蔽效能高的线缆。
在本发明一实施例中,所述微波网络分析仪的测量参数为输出功率:10dBm,扫描频段:100MHz~2100MHz,扫描方式:线性扫描,扫描点数:1001。
相较于现有技术,本发明具有以下有益效果:本发明方法解决了传统特高频检测系统现场校核方法中注入脉冲信号参数指标难确定的难题,基于GIS真型平台,在对比研究经GIS典型结构后检测到的不同缺陷放电信号频谱与对应结构传感器间的S21参量的基础上,确定了典型结构间传感器的传输系数能有效反映局放特高频信号经典型结构衰减后的频谱,得出了在满足5pC检测灵敏度要求时的S21参量的特征值,该特征值可用S21参量在有效检测频带的平均值来表征;该校核方法测量误差小,检测灵敏度高,抗干扰能力强,为特高频局部放电在线监测装置的现场校核提供参考依据。
附图说明
图1为本发明基于散射参量的局放特高频检测系统现场校核原理示意图。
图2为本发明散射参量测量原理图。
图3为基于等效注入脉冲的现场校核方法示意图。
图4为一实施例的校核设备连接图。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明的一种基于散射参量的局放特高频检测系统现场校核方法,采用微波网络分析仪,对GIS上安装的局部放电特高频检测系统进行现场校核,具体包括如下步骤,
S1:将GIS上两相邻特高频传感器C1、C2及C1、C2之间的GIS结构等效为二端口微波网络;
S2:设置微波网络分析仪工作于双端口工作模式,设置测量参数(为输出功率:10dBm,扫描频段:100MHz~2100MHz,扫描方式:线性扫描,扫描点数:1001),并进行校核,以消除测量误差;
S3:将微波网络分析仪的两端口分别通过射频同轴线缆(采用低损耗、屏蔽效能高的线缆)与特高频传感器C1、C2连接;
S4:控制微波网络分析仪执行二端口网络传输系数测量,获得特高频传感器C1、C2间的散射参量S21
其中, H1(f)、H2(f)、HG(f)分别为特高频传感器C1、特高频传感器C2及C1、C2之间的GIS结构的传递函数;
根据上式确定特高频传感器C1、C2在300MHz~1500MHz内散射参量的平均值Sav
其中,S21(i)为第i个采样点的散射参量,亦即插入损耗值;N为300MHz~1500MHz间总采样点数;
由Sav,即可表征特高频传感器C1、C2的布置能否检测到两传感器间任意位置的缺陷放电。
所述微波网络分析仪为安捷伦E5061B,其频率范围为:100kHz~3GHz,输出功率范围:-45~10dBm,测量动态范围大于120dB;3GHz以下频段射频线缆的传输特性:VSWR≤1.15。
所述微波网络分析仪在进行校核之前,还能够通过预先测量特高频传感器C1、C2所在端口的散射参量S11,结合特高频传感器C1、C2的特点判断其工作状态。
以下具体讲述本发明的实现过程。
本发明提出了一种应用微波网络分析设备,对GIS上安装的局部放电特高频检测系统进行现场校核的方法。具体内容如下:
(1)微波网络分析仪要可靠接地,将校核需要用到的射频线缆与微波网络分析仪可靠连接,设定合适的测量参数(输出功率:10dBm,扫描频段:100MHz~2100MHz,扫描方式:线性扫描,扫描点数:1001),连接校准器进行校准;
(2)测量传感器所在端口的反射系数,记录保存各测试数据,结合传感器特点判断传感器的工作状态;
(3)在各传感器正常工作的前提下,测量两两传感器之间的散射参数S21,记录保存各测试数据;
(4)计算各散射参数S21在300MHz~1500MHz频段内的平均衰减量Sav,与-75dB的阈值相比较,进而对传感器的布置方式进行校核。
在进行校准工作前,需要对各传感器的工作状态进行判定。传感器的反射系数能反映其性能,微波网络分析仪可以直接获得传感器馈电端口的反射系数,再结合传感器的特点即可判定传感器的工作状态。在各传感器正常工作的前提下,就可对传感器的布置状况进行校核。
另外,由于现场噪声水平及静电干扰不可忽略,各校核设备除设置可靠接地外还应主要从以下两方面排除测量误差:
A、由于GIS不同结构对UHF信号的衰减程度不一样,不同类型的传感器及安装结构也会造成信号传感差异,因此应用此方法做现场校核时应将微波网络分析仪的输出功率调大,推荐设置10dBm;
B、现场传感器相隔较远,射频线缆长度一般在10m以上,所以需要使用低损耗,屏蔽效能较好的线缆,同时还要将线缆作为微波网络分析仪的一部分,校准时考虑在内。
1 、基于散射参量的局放特高频检测系统现场校核原理
基于散射参量的局放特高频检测系统现场校核原理如图1所示。校核系统由微波网络分析设备、安装在GIS人手孔处的内置式特高频传感器(C1、C2)、GIS典型结构及射频同轴线缆构成。测量过程中,首先在微波网络分析仪双端口工作模式下,结合测试要求设置合适的测量参数,并对其包括测试线缆在内的部件进行测量前的校准,已达到消除测量误差的目的;然后,把微波网络分析仪的两个端口分别通过射频同轴线路与C1、C2传感器可靠相连,控制微波网络分析设备执行二端口网络传输系数测量,并对测量后的S21参量数据进行分析,确定S21参量在有效检测频带的平均值,进而给出局放特高频检测系统现场校核结果。微波网路测量设备已采取电磁屏蔽措施,以减少外界电磁干扰对系统校核的影响;信号传输线缆均采用屏蔽性能好、衰减小的同轴线缆,以降低测量现场环境中电磁干扰的影响;根据实际运行需求,采取相应人身及设备安全防护措施。
2、 局放特高频检测系统现场校核方法
2.1 散射参量测量原理
散射参量测量基本原理如图2所示,
其端口信号分别为(a1,b1)和(a 2,b2);an为第n个端口的归一化入射波电压,bn为第n个端口的归一化反射波电压。只要微波网络满足线性网络的要求,散射矩阵[S]的各参量就满足图2中所示的关系式,S21即为需要测量的散射参量,亦即正向传输系数。
2.2 校核系统参数
基于散射参量的局放特高频检测系统现场校核一般推荐采用微波网络分析仪实现,其频率范围、输出功率范围、动态范围以及射频线缆的传输特性要符合局放特高频检测及现场运行条件的要求。实际现场校核中采用的微波网络分析仪为安捷伦E5061B,其频率范围为:100kHz~3GHz,输出功率范围:-45~10dBm,测量动态范围大于120dB;射频线缆的传输特性:VSWR≤1.15(3GHz以下频段)。
3 基于S21参量的5pC检测灵敏度表征
3.1 基于S21参量校核特高频传感器性能的可行性
对于GIGRE工作组推荐的基于等效注入脉冲的现场校核方法,其物理过程如图3所示。首先,在安装C1的气室内设置局部放电缺陷,使其在外施电压的作用下产生5pC(GIS设备合格标准)的局部放电,此时采用C2和UHF检测设备测量此时的UHF信号,并记录信号幅值A。然后,去除缺陷模型,采用注入源输出一定幅值的脉冲信号Vi(t)经传感器C1向GIS腔内激发出模拟局放信号,另一侧传感器C2耦合经两传感器间GIS结构传播衰减后的模拟局放信号,采集输出电压信号Vo(t),调整信号源输出电压幅值,直到Vo(t)幅值也为A,记录此时的Vi(t)幅值B。这一物理过程可表示为式(1)。
(1)
式中:Ui(f)为注入脉冲信号时域波形Vi(t)的快速傅里叶变换,Uo(f)经传感器C2检测到信号Vo(t)的快速傅里叶变换,H1(f)、H2(f)、HG(f)分别为注入传感器、检测传感器及注入传感器与检测传感器间GIS结构的传递函数。
变换式(1)可得到两传感器间的传递函数HS(f),见式(2)。
(2)
由式(2)可知:HS(f)反映了两传感器及GIS结构的传递特性,且与传感器的安装布置方式有关,能更好的反映两传感器间的频域响应,通过微波网络分析仪可以测得。
3.2等效5pC放电量的灵敏度表征
散射参量S21表征的是信号在两端口微波网络中的插入损耗,即该两端口微波网络对不同频率信号的传播特性。由式(2)可知两传感器间插入损耗可表示为式(3)所示的散射参量S21(单位为dB)。而两传感器间在300MHz~1500MHz内的平均衰减量Sav(单位为dB)可表示为式(4),式中:S21(i)为第i个采样点的插入损耗值,N为300MHz~1500MHz间总采样点数。
(3)
(4)
采用式(3)计算出的衰减量不仅包含了传感器间GIS结构对UHF电磁信号的衰减,还包含两传感器对UHF电磁信号的衰减,传感器的传递特性可在GTEM小室上通过微波网络分析仪测得。注入脉冲校核方法中实际与5pC放电等效的是经一侧传感器注入的电磁信号经GIS结构到另一侧传感器衰减后的结果,正是式(3)表示的三个衰减量的累加效果,故可以用微波网络分析仪测量两传感器间在300MHz~1500MHz频段内的散射参量S21,进而由式(4)求取平均衰减量Sav来表征两传感器的布置能否检测到两传感器间任意位置的缺陷放电。
对于图4所示本发明一实施例的校核设备测量回路,传感器C3安装气室设置尖刺缺陷模型,加压控制其视在放电量为5pC,经传感器C1由示波器检测到的UHF信号幅值为-67dBm,微波网络分析仪测得的传感器C3C1间在300MHz~1500MHz频段内的平均衰减量Sav为-82dB。而对于一个灵敏度为-70dBm的检测系统,当两传感器间在300MHz~1500MHz频段内的平均衰减量Sav不小于-85dB时,任一传感器仍能检测到两传感器间任意位置尖刺5pC放电。在相同视在放电量下,气隙缺陷辐射的UHF信号幅值最低,自由金属颗粒辐射的UHF信号最强,而气隙UHF信号幅值比尖刺放电低约10dBm。所以,要使两传感器间能有效检测到的5pC的各类缺陷放电,两传感器间在有效检测频带(如300MHz~1500MHz)内的平均衰减量Sav应不小于-75dB。基于GIS真型试验平台的校核试验验证了该阈值的合理性。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (5)

1.一种基于散射参量的局放特高频检测系统现场校核方法,其特征在于:采用微波网络分析仪,对GIS上安装的局部放电特高频检测系统进行现场校核,具体包括如下步骤,
S1:将GIS上两相邻特高频传感器C1、C2及C1、C2之间的GIS结构等效为二端口微波网络;
S2:设置微波网络分析仪工作于双端口工作模式,设置测量参数,并进行校核,以消除测量误差;
S3:将微波网络分析仪的两端口分别通过射频同轴线缆与特高频传感器C1、C2连接;
S4:控制微波网络分析仪执行二端口网络传输系数测量,获得特高频传感器C1、C2间的散射参量S21
其中, H1(f)、H2(f)、HG(f)分别为特高频传感器C1、特高频传感器C2及C1、C2之间的GIS结构的传递函数;
根据上式确定特高频传感器C1、C2在300MHz~1500MHz内散射参量的平均值Sav
其中,S21(i)为第i个采样点的散射参量,亦即插入损耗值;N为300MHz~1500MHz间总采样点数;
由Sav,即可表征特高频传感器C1、C2的布置能否检测到两传感器间任意位置的缺陷放电。
2.根据权利要求1所述的基于散射参量的局放特高频检测系统现场校核方法,其特征在于:所述微波网络分析仪为安捷伦E5061B,其频率范围为:100kHz~3GHz,输出功率范围:-45~10dBm,测量动态范围大于120dB;3GHz以下频段射频线缆的传输特性:VSWR≤1.15。
3.根据权利要求1所述的基于散射参量的局放特高频检测系统现场校核方法,其特征在于:所述微波网络分析仪在进行校核之前,还能够通过预先测量特高频传感器C1、C2所在端口的散射参量S11,结合特高频传感器C1、C2的特点判断其工作状态。
4.根据权利要求1所述的基于散射参量的局放特高频检测系统现场校核方法,其特征在于:所述射频同轴线缆采用低损耗、屏蔽效能高的线缆。
5.根据权利要求1所述的基于散射参量的局放特高频检测系统现场校核方法,其特征在于:所述微波网络分析仪的测量参数为输出功率:10dBm,扫描频段:100MHz~2100MHz,扫描方式:线性扫描,扫描点数:1001。
CN201610443326.0A 2016-06-21 2016-06-21 基于散射参量的局放特高频检测系统现场校核方法 Pending CN105891761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610443326.0A CN105891761A (zh) 2016-06-21 2016-06-21 基于散射参量的局放特高频检测系统现场校核方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610443326.0A CN105891761A (zh) 2016-06-21 2016-06-21 基于散射参量的局放特高频检测系统现场校核方法

Publications (1)

Publication Number Publication Date
CN105891761A true CN105891761A (zh) 2016-08-24

Family

ID=56729919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610443326.0A Pending CN105891761A (zh) 2016-06-21 2016-06-21 基于散射参量的局放特高频检测系统现场校核方法

Country Status (1)

Country Link
CN (1) CN105891761A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771897A (zh) * 2016-11-25 2017-05-31 中国西电电气股份有限公司 一种gis特高频局部放电信号衰减测试系统及方法
CN109061423A (zh) * 2018-09-17 2018-12-21 重庆大唐国际武隆水电开发有限公司 一种锥形局部放电特高频传感器及其设计方法
CN109444781A (zh) * 2018-09-11 2019-03-08 国网浙江省电力有限公司电力科学研究院 一种基于信号传播特性的gis局放特高频灵敏度校验方法
CN110531172A (zh) * 2019-08-30 2019-12-03 重庆大学 一种电动车高压电缆屏蔽效能测量方法
CN111562531A (zh) * 2020-04-08 2020-08-21 中国电力科学研究院有限公司 一种用于检测gis内置特高频传感器灵敏性的方法及系统
CN112019281A (zh) * 2019-05-31 2020-12-01 北京小米移动软件有限公司 音频突破性能测试方法、装置、设备及存储介质
CN112731250A (zh) * 2020-12-30 2021-04-30 国网河北能源技术服务有限公司 基于回波损耗的特高频传感器特性校验方法及终端设备
CN112834975A (zh) * 2020-12-30 2021-05-25 国网河北省电力有限公司电力科学研究院 一种特高频局部放电传感器的综合校验方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396285B1 (en) * 2000-08-14 2002-05-28 Agilent Technologies, Inc. Method and apparatus for efficient measurement of reciprocal multiport devices in vector network analysis
CN202256654U (zh) * 2011-10-21 2012-05-30 北京领翼中翔科技有限公司 Gis局部放电特高频在线监测装置检定仪
CN102866329A (zh) * 2012-09-05 2013-01-09 西安博源电气有限公司 利用均压弹簧为探测器的gis局部放电监测装置及方法
CN102866375A (zh) * 2012-09-07 2013-01-09 广东电网公司电力科学研究院 一种局部放电特高频检测设备接收性能的标定系统及方法
CN104977555A (zh) * 2015-06-25 2015-10-14 云南电网有限责任公司电力科学研究院 一种直接注入可控脉冲源局放仪的测试系统及其测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396285B1 (en) * 2000-08-14 2002-05-28 Agilent Technologies, Inc. Method and apparatus for efficient measurement of reciprocal multiport devices in vector network analysis
CN202256654U (zh) * 2011-10-21 2012-05-30 北京领翼中翔科技有限公司 Gis局部放电特高频在线监测装置检定仪
CN102866329A (zh) * 2012-09-05 2013-01-09 西安博源电气有限公司 利用均压弹簧为探测器的gis局部放电监测装置及方法
CN102866375A (zh) * 2012-09-07 2013-01-09 广东电网公司电力科学研究院 一种局部放电特高频检测设备接收性能的标定系统及方法
CN104977555A (zh) * 2015-06-25 2015-10-14 云南电网有限责任公司电力科学研究院 一种直接注入可控脉冲源局放仪的测试系统及其测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOEL DUNSMORE: "《微波器件测量手册矢量网络分析仪高级测量技术指南》", 31 March 2014 *
黎量: "GIS局部放电UHF检测系统性能现场校核方法", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771897A (zh) * 2016-11-25 2017-05-31 中国西电电气股份有限公司 一种gis特高频局部放电信号衰减测试系统及方法
CN109444781A (zh) * 2018-09-11 2019-03-08 国网浙江省电力有限公司电力科学研究院 一种基于信号传播特性的gis局放特高频灵敏度校验方法
CN109061423A (zh) * 2018-09-17 2018-12-21 重庆大唐国际武隆水电开发有限公司 一种锥形局部放电特高频传感器及其设计方法
CN112019281A (zh) * 2019-05-31 2020-12-01 北京小米移动软件有限公司 音频突破性能测试方法、装置、设备及存储介质
CN112019281B (zh) * 2019-05-31 2022-07-08 北京小米移动软件有限公司 音频突破性能测试方法、装置、设备及存储介质
CN110531172A (zh) * 2019-08-30 2019-12-03 重庆大学 一种电动车高压电缆屏蔽效能测量方法
CN111562531A (zh) * 2020-04-08 2020-08-21 中国电力科学研究院有限公司 一种用于检测gis内置特高频传感器灵敏性的方法及系统
CN111562531B (zh) * 2020-04-08 2022-11-18 中国电力科学研究院有限公司 一种用于检测gis内置特高频传感器灵敏性的方法及系统
CN112731250A (zh) * 2020-12-30 2021-04-30 国网河北能源技术服务有限公司 基于回波损耗的特高频传感器特性校验方法及终端设备
CN112834975A (zh) * 2020-12-30 2021-05-25 国网河北省电力有限公司电力科学研究院 一种特高频局部放电传感器的综合校验方法及系统
CN112731250B (zh) * 2020-12-30 2022-07-22 国网河北能源技术服务有限公司 基于回波损耗的特高频传感器特性校验方法及终端设备
CN112834975B (zh) * 2020-12-30 2022-08-30 国网河北省电力有限公司电力科学研究院 一种特高频局部放电传感器的综合校验方法及系统

Similar Documents

Publication Publication Date Title
CN105891761A (zh) 基于散射参量的局放特高频检测系统现场校核方法
CN102866375B (zh) 一种局部放电特高频检测设备接收性能的标定系统及方法
CN105137199B (zh) 基于网络分析仪的介质介电常数测量方法
CN103197212B (zh) Gis局部放电在线监测校验仪及其配置验证方法
CN107942198A (zh) 一种基于阻抗频谱分析的电缆局部缺陷评估的装置和方法
CN104937427A (zh) 监控电缆状态的方法和系统
CN106771897A (zh) 一种gis特高频局部放电信号衰减测试系统及方法
CN113702754A (zh) 采用加窗傅里叶变换的配电电缆缺陷的定位算法
CN109444781A (zh) 一种基于信号传播特性的gis局放特高频灵敏度校验方法
CN107064846A (zh) 局部放电带电检测装置的灵敏度检测方法和装置
CN107462853A (zh) 一种特高频局部放电检测系统的标定方法
CN112394255A (zh) 一种pcb板电磁辐射敏感度的测试方法
Cataldo et al. Assessment of a TD-based method for characterization of antennas
CN105187135B (zh) 测试无线设备的方法及系统
Taki et al. Soft fault diagnosis in wiring networks using reflectometry and Principal Component Analysis
CN113625133A (zh) 一种配电设备局部放电的在线监测反馈系统及方法
CN108020801A (zh) Gil设备内置式特高频传感器灵敏度校核系统及方法
CN112834975B (zh) 一种特高频局部放电传感器的综合校验方法及系统
Zhang et al. Physical defect localizing methodology for coaxial cable based on quadratic propagation coefficient model
Kumar et al. Development and validation of rogowski coil with commercial high frequency current transformer for partial discharge detection
Zhang et al. Propagation coefficient spectrum based locating method for cable insulation degradation
Meijer et al. Application of UHF diagnostics to detect PD during power transformer acceptance tests
US5490090A (en) Two tone test method for determining frequency domain transfer
Stiemer et al. Power spectroscopy with electrical reverberation chambers for EMC
JPH0815348A (ja) 電磁気障害対策部品のsパラメータ測定方法及びsパラメータ測定装置並びに電磁気障害対策部品のsパラメータ測定に使用される測定治具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824

RJ01 Rejection of invention patent application after publication