CN105891178A - 一种集成化全内反射微流控芯片检测一体机使用方法 - Google Patents
一种集成化全内反射微流控芯片检测一体机使用方法 Download PDFInfo
- Publication number
- CN105891178A CN105891178A CN201610300226.2A CN201610300226A CN105891178A CN 105891178 A CN105891178 A CN 105891178A CN 201610300226 A CN201610300226 A CN 201610300226A CN 105891178 A CN105891178 A CN 105891178A
- Authority
- CN
- China
- Prior art keywords
- internal reflection
- detection
- total internal
- optical receiver
- mainframe box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims description 36
- 230000005284 excitation Effects 0.000 claims description 21
- 239000013307 optical fiber Substances 0.000 claims description 19
- 239000011229 interlayer Substances 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000012774 insulation material Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 abstract 1
- 238000005070 sampling Methods 0.000 abstract 1
- 230000000903 blocking effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000000492 total internal reflection fluorescence microscopy Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种集成化全内反射微流控芯片检测一体机使用方法,一体机由主机箱、控制箱和处理显示器三部分组成,处理显示器与主机箱内的倒置显微镜、全内反射光接收器线路相连,还与控制箱内的加样器、冷热压缩机线路相连;在主机箱内还安装有光导纤维激发光源和入射光角度校准标尺,发明公开了这些装置部件的使用方法。本发明相对于现有技术,具有操作简单,能够快速地调整全内反射入射角,对检测芯片的适应性强,能够对不同种类的和不同设计的微流控芯片进行使用的优点。
Description
技术领域
本发明涉及一种体外诊断一体机的使用方法,更为具体地讲是属于医疗设备体外诊断领域的一种集成化全内反射微流控芯片检测一体机使用方法。
背景技术
全内反射荧光显微术是近年来新兴的一种光学成像技术,它利用全内反射产生的渐逝场来照明样品,从而致使在百纳米级厚的光学薄层内的荧光团受到激发,荧光成像的信噪比很高。这种方法的成像装置简单,极易和其它成像技术、探测技术相结合。目前已成功的实现 100 nm甚至更低的空间分辨率。而目前微流控芯片得到了迅速发展,而今天阻碍微流控技术发展的瓶颈仍然是应用方面的问题。全内反射光学检测技术就是一项符合与微流控芯片集成的光学检测技术。但是,目前将两者集成的一体机还比较少见,缺乏两者技术的集成检测设备。
为了对癌症及心脑血管疾病,以及多种重大恶性疾病的多种蛋白因子的一次性检测诊断,需要一种集成化全内反射微流控芯片检测一体机和使用方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种集成化全内反射微流控芯片检测一体机使用方法。
本发明的目的是这样实现的:一种集成化全内反射微流控芯片检测一体机使用方法,集成化全内反射微流控芯片检测一体机,由主机箱、控制箱和处理显示器组成,其特征在于:主机箱体竖直朝前的一面有开口,开口处安装有门,背侧壁有一个夹层空腔;箱体内部被隔板分为上下两层,下层箱内安装有倒置显微镜,安置倒置显微镜是满足一机多用目的,既能够用全内反射检测,又能够用倒置显微镜检测。倒置显微镜镜头上方对着观察窗;观察窗上方的隔板的上面安装有样品台;在样品台左右两侧对应安装有2个光导纤维激发光源,在2个光导纤维激发光源背后的箱壁上,各安装有1个入射光角度校准标尺。这样设计能够快速调校入射光角度,快速进行全反射检测。样品台上固定放置检测芯片,检测芯片正上方有全内反射光接收器。在上层箱室的背侧箱体壁上安装有竖轨,在竖轨上还水平安装有横轨,横轨与竖轨十字交叉相互垂直;全内反射光接收器通过万向转头与横臂连接,横臂固定在竖轨或横轨上。这样设计能够满足全内反射光接收器在竖轨上垂直上下移动和固定;还能够满足全内反射光接收器在横轨上左右移动和固定;还能通过万向转头扭转一定角度,保证能够快速调整好位置,使全内反射检测的顺利进行。在上层箱室的背侧箱体壁上,还加工安装有连体的加湿器和湿度感应器和湿度感应器控制风扇,以保障了活细胞检测所需要的湿度的恒定。在主机箱顶部加工安装有空气净化装置通过空气净化通风过滤孔与内部箱室相通。在主机箱顶部加工安装有空气净化装置与箱室相通,保障了监测区域的清洁度要求。主机箱体右侧是控制箱,与主机箱体相连。处理显示器放在控制箱的台面上。控制箱内部安装有标准气瓶、加样器、冷热压缩机。处理显示器与主机箱体内的倒置显微镜、全内反射光接收器线路相连,还与控制箱内的加样器、冷热压缩机线路相连。处理显示器能够控制这些装置。冷热压缩机通过冷热风管与夹层空腔相连;夹层空腔通过过滤孔与空气净化装置相连。
所述使用方法如下。
第一步,开启主机箱体和处理显示器电源;保持箱体密闭关闭,开启加湿器和湿度感应器和湿度感应器控制风扇、空气净化装置运转。
第二步,打开透明门将检测芯片放在样品台上,连接检测芯片与各个导管的接口;依据检测芯片上的检测区域位置,调整移动样品台将检测区域位置调整到观察窗,固定。因为检测用的微流控芯片需要连接众多导管,而且接头都是毛细管,移动容易使接头脱落或堵塞,所以采取固定样品台和检测芯片的设计。开启控制箱电源,打开标准气瓶调整所需二氧化碳的压力流量,开启冷热压缩机,调整温度。
第三步,观察处理显示器的温度和湿度到稳定要求后,根据检测芯的通道形状,选择左右2个光导纤维激发光源的其中一个,开启光源,依据该光导纤维激发光源对面箱体壁上的入射光角度校准标尺,调整光导纤维激发光源的入射角;角度合适后,通过竖轨调整全内反射光接收器高度,通过横轨调整全内反射光接收器左右位置;通过横臂调整全内反射光接收器前后位置;通过万向转头调整全内反射光接收器角度;最后固定全内反射光接收器,进行全内反射试样检测。由于采取固定样品台和检测芯片的设计,所以调整光路,对准监测区域的工作均由激发光路和接收器来完成。处理显示器控制测试参数和采集数据。
第四步,检测芯片上有多个检测区域位置时,重复第三步操作。
第五步,关闭光导纤维激发光源,打开倒置显微镜电源,进行常规相差显微镜检测或荧光显微镜检测,处理显示器控制参数和采集数据;如不需要常规相差显微镜检测或荧光显微镜检测,直接从第四步到第六步。
第六步,先关闭全内反射光接收器电源和倒置显微镜电源,取走检测芯片,依次关闭加湿器和湿度感应器和湿度感应器控制风扇、冷热压缩机的电源,取走加湿器中的水。最后关闭空气净化装置,关闭主机箱和处理显示器电源。顺序要求是保障一体机箱体的清洁和不受污染,同时,取走水,保持内部干燥,维护装置部件,有利于保养设备。
进一步的,所述湿度感应器控制风扇与夹层空腔相通,保障了箱室的温度均匀与恒定,湿度的均匀与恒定。
进一步的,所述主机箱体是由透明的、保温材料加工的密闭箱体;所述开口处安装有门是透明和密闭的保温门。这样保证了箱内的温度、湿度的均匀与恒定。
进一步的,所述倒置显微镜是倒置荧光显微镜,或倒置相差显微镜,这样满足不同样本的检测需要。所述控制箱是独立箱体,能够与主机箱扣合联接或拆分,控制箱的高度是主机箱体高度的1/2以上。
本发明相对于现有技术具有如下优点。
1. 能够快速地调整全内反射入射角,对检测芯片的适应性强,能够使用不同种类,和不同设计的微流控芯片。
2. 能够用全内反射技术检测又能用常规显微镜检测,实现一机多用,一机联测多种不同的蛋白因子的要求。
3. 通过全内反射检测技术、微流控芯片技术两种技术结合与一体机的整合,实现了检测区域的温度均匀与恒定,湿度的均匀与恒定。
附图说明
图1为本发明的主视示意图。
图2为本发明的左视示意图。
其中:1.主机箱;2.倒置显微镜;3.观察窗;4.隔板;5.样品台;6.入射光角度校准标尺;7.光导纤维激发光源;8.加湿器和湿度感应器;9. 湿度感应器控制风扇; 10.全内反射光接收器;11.空气净化装置;12.竖轨;13.横轨; 14.检测芯片;15.处理显示器;16.导管;17.标准气瓶;18.加样器;19.控制箱;20.冷热压缩机;21.冷热风管;22.夹层空腔;23.过滤孔;24.空气净化通风过滤孔;25.横臂;26.万向转头。
具体实施方式
参见图1-2,一种集成化全内反射微流控芯片检测一体机,由主机箱1、控制箱19和处理显示器15组成,其特征在于:主机箱1竖直朝前的一面有开口,开口处安装有门。背侧壁有一个夹层空腔22。箱体内部被隔板4分为上下两层,下层箱内安装有倒置显微镜2。安置倒置显微镜是满足一机多用目的,既能够用全内反射检测,又能够用倒置显微镜检测。倒置显微镜2镜头上方对着观察窗3,观察窗3上方的隔板4的上面安装有样品台5。在样品台5左右两侧对应安装有2个光导纤维激发光源7,在2个光导纤维激发光源7背后的箱壁上,各安装有1个入射光角度校准标尺6。样品台5上固定放置检测芯片14,检测芯片14正上方有全内反射光接收器10。在上层箱室的背侧箱体壁上安装有竖轨12,在竖轨12上还水平安装有横轨13,横轨13与竖轨12十字交叉相互垂直。全内反射光接收器10通过万向转头26与横臂25连接,横臂25固定在竖轨12或横轨13上。这样设计能够满足全内反射光接收器10在竖轨12上垂直上下移动和固定,还能够满足全内反射光接收器10在横轨13上左右移动和固定,还能通过万向转头26扭转一定角度,保证能够快速调整好位置,使全内反射检测的顺利进行。在上层箱室的背侧箱体壁上,还加工安装有连体的加湿器和湿度感应器8和湿度感应器控制风扇9,以保障了活细胞检测所需要的湿度的恒定。在主机箱1顶部加工安装有空气净化装置11通过空气净化通风过滤孔24与内部箱室相通。在主机箱1顶部加工安装有空气净化装置11与箱室相通,保障了监测区域的清洁度要求。主机箱1右侧是控制箱19,与主机箱1相连。处理显示器15放在控制箱19的台面上;控制箱19内部安装有标准气瓶17、加样器18、冷热压缩机20。处理显示器15与主机箱体内1的倒置显微镜2、全内反射光接收器10线路相连,还与控制箱19内的加样器18、冷热压缩机20线路相连。处理显示器能够控制这些相连的装置。冷热压缩机20通过冷热风管21与夹层空腔22相连;夹层空腔22通过过滤孔23与空气净化装置11相连。
所述使用方法如下。
第一步,开启主机箱体1和处理显示器15电源;保持箱体密闭关闭,开启加湿器和湿度感应器8和湿度感应器控制风扇9、空气净化装置11运转。
第二步,打开透明门将检测芯片14放在样品台5上,连接检测芯片14与各个导管16的接口;依据检测芯片14上的检测区域位置,调整移动样品台5将检测区域位置调整到观察窗3,固定。因为检测用的微流控芯片需要连接众多导管,而且接头都是毛细管,移动容易使接头脱落或堵塞,所以采取固定样品台5和检测芯片14的设计。开启控制箱电源,打开标准气瓶17调整所需二氧化碳的压力流量,开启冷热压缩机20,调整温度。
第三步,观察处理显示器19的温度和湿度到稳定要求后,根据检测芯的通道形状,选择左右2个光导纤维激发光源7的其中一个,开启光源。依据该光导纤维激发光源7对面箱体壁上的入射光角度校准标尺6,调整光导纤维激发光源7的入射角。角度合适后,通过竖轨12调整全内反射光接收器10高度,通过横轨13调整全内反射光接收器10左右位置;通过横臂25调整全内反射光接收器10前后位置;通过万向转头26调整全内反射光接收器10角度。最后,固定全内反射光接收器10,进行全内反射试样检测。由于采取固定样品台5和检测芯片14的设计,所以调整光路,对准监测区域的工作均由激发光路和接收器来完成。处理显示器15控制测试参数和采集数据。
第四步,检测芯片14上有多个检测区域位置时,重复第三步操作。
第五步,关闭光导纤维激发光源7,打开倒置显微镜2电源,进行常规相差显微镜检测或荧光显微镜检测,处理显示器15控制参数和采集数据;如不需要常规相差显微镜检测或荧光显微镜检测,直接从第四步到第六步。
第六步,先关闭全内反射光接收器10电源和倒置显微镜2电源,取走检测芯片14,依次关闭加湿器和湿度感应器8和湿度感应器控制风扇9、冷热压缩机20的电源,取走加湿器中的水。最后关闭空气净化装置11,关闭主机箱1和处理显示器15电源。关机顺序的要求,是保障一体机箱体的清洁和不受污染。同时,取走水,保持内部干燥,维护装置部件,有利于保养设备。
进一步的,所述湿度感应器控制风扇9与夹层空腔22相通,保障了箱室的温度均匀与恒定,湿度的均匀与恒定。
进一步的,所述主机箱1是由透明的、保温材料加工的密闭箱体;所述开口处安装有门是透明和密闭的保温门。这样保证了箱内的温度、湿度的均匀与恒定。
进一步的,所述倒置显微镜2是倒置荧光显微镜,或倒置相差显微镜。这样满足不同样本的检测需要。所述控制箱19是独立箱体,能够与主机箱1扣合联接或拆分,控制箱19的高度是主机箱1高度的1/2以上。
Claims (4)
1.一种集成化全内反射微流控芯片检测一体机使用方法,集成化全内反射微流控芯片检测一体机由主机箱(1)、控制箱(19)和处理显示器(15)组成,其特征在于:主机箱(1)竖直朝前的一面有开口,开口处安装有门,背侧壁有一个夹层空腔(22);箱体内部被隔板(4)分为上下两层,下层箱内安装有倒置显微镜(2),倒置显微镜(2)镜头上方对着观察窗(3);观察窗(3)上方的隔板(4)的上面安装有样品台(5);在样品台(5)左右两侧对应安装有2个光导纤维激发光源(7),在2个光导纤维激发光源(7)背后的箱壁上,各安装有1个入射光角度校准标尺(6);样品台(5)上固定放置检测芯片(14),检测芯片(14)正上方有全内反射光接收器(10);在上层箱室的背侧箱体壁上安装有竖轨(12),在竖轨(12)上还水平安装有横轨(13),横轨(13)与竖轨(12)十字交叉相互垂直;全内反射光接收器(10)通过万向转头(26)与横臂(25)连接;横臂(25)固定在竖轨(12)或横轨(13)上;在上层箱室的背侧箱体壁上,还加工安装有连体的加湿器和湿度感应器(8)和湿度感应器控制风扇(9);在主机箱体(1)顶部加工安装有空气净化装置(11)通过空气净化通风过滤孔(24)与内部箱室相通;主机箱(1)右侧是控制箱(19),与主机箱(1)相连;处理显示器(15)放在控制箱(19)的台面上;控制箱(19)内部安装有标准气瓶(17)、加样器(18)、冷热压缩机(20);处理显示器(15)与主机箱内(1)的倒置显微镜(2)、全内反射光接收器(10)线路相连,还与控制箱(19)内的加样器(18)、冷热压缩机(20)线路相连;冷热压缩机(20)通过冷热风管(21)与夹层空腔(22)相连;夹层空腔(22)通过过滤孔(23)与空气净化装置(11)相连;
所述使用方法如下:
第一步,开启主机箱体(1)和处理显示器(15)电源;保持箱体密闭关闭,开启加湿器和湿度感应器(8)和湿度感应器控制风扇(9)、空气净化装置(11)运转;
第二步,打开透明门将检测芯片(14)放在样品台(5)上,连接检测芯片(14)与各个导管(16)的接口;依据检测芯片(14)上的检测区域位置,调整移动样品台(5)将检测区域位置调整到观察窗(3),固定;开启控制箱电源,打开标准气瓶(17)调整所需二氧化碳的压力流量,开启冷热压缩机(20),调整温度;
第三步,观察处理显示器(19)的温度和湿度到稳定要求后,根据检测芯的通道形状,选择左右2个光导纤维激发光源(7)的其中一个,开启光源,依据该光导纤维激发光源(7)对面箱体壁上的入射光角度校准标尺(6),调整光导纤维激发光源(7)的入射角;角度合适后,通过竖轨(12)调整全内反射光接收器(10)高度,通过横轨(13)调整全内反射光接收器(10)左右位置;通过横臂(25)调整全内反射光接收器(10)前后位置;通过万向转头(26)调整全内反射光接收器(10)角度;最后固定全内反射光接收器(10),进行全内反射试样检测,处理显示器(15)控制测试参数和采集数据;
第四步,检测芯片(14)上有多个检测区域位置时,重复第三步操作;
第五步,关闭光导纤维激发光源(7),打开倒置显微镜(2)电源,进行常规相差显微镜检测或荧光显微镜检测,处理显示器(15)控制参数和采集数据;如不需要常规相差显微镜检测或荧光显微镜检测,直接从第四步到第六步;
第六步,先关闭全内反射光接收器(10)电源和倒置显微镜(2)电源,取走检测芯片(14),依次关闭加湿器和湿度感应器(8)和湿度感应器控制风扇(9)、冷热压缩机(20)的电源,取走加湿器和湿度感应器(8)中的水;最后关闭空气净化装置(11),关闭主机箱(1)和处理显示器(15)电源。
2.根据权利要求1所述的一种集成化全内反射微流控芯片检测一体机使用方法,其特征在于:所述湿度感应器控制风扇(9)与夹层空腔(22)相通。
3.根据权利要求1所述的一种集成化全内反射微流控芯片检测一体机使用方法,其特征在于:所述主机箱(1)是由透明的、保温材料加工的密闭箱体;所述开口处安装有门,门是透明和密闭的保温门。
4.根据权利要求1所述的一种集成化全内反射微流控芯片检测一体机使用方法,其特征在于:所述倒置显微镜(2)是倒置荧光显微镜,或倒置相差显微镜;所述控制箱(19)是独立箱体,能够与主机箱(1)扣合联接或拆分,控制箱(19)的高度是主机箱(1)高度的1/2以上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610300226.2A CN105891178B (zh) | 2016-05-08 | 2016-05-08 | 一种集成化全内反射微流控芯片检测一体机使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610300226.2A CN105891178B (zh) | 2016-05-08 | 2016-05-08 | 一种集成化全内反射微流控芯片检测一体机使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105891178A true CN105891178A (zh) | 2016-08-24 |
CN105891178B CN105891178B (zh) | 2018-06-12 |
Family
ID=56703454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610300226.2A Active CN105891178B (zh) | 2016-05-08 | 2016-05-08 | 一种集成化全内反射微流控芯片检测一体机使用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105891178B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106885793A (zh) * | 2017-02-09 | 2017-06-23 | 重庆科技学院 | 一种全内反射检测工作平台的使用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066236A1 (en) * | 2007-11-22 | 2009-05-28 | Koninklijke Philips Electronics N.V. | Methods and systems for coupling a bio-cartridge with an optical reader |
CN102954938A (zh) * | 2011-08-29 | 2013-03-06 | 中国科学院电子学研究所 | 基于微流控通道全反射集成光波导的吸收光度检测传感器 |
CN103267543A (zh) * | 2013-04-12 | 2013-08-28 | 中国计量学院 | 显微粒子图像微流量测量仪及方法 |
CN103675053A (zh) * | 2013-09-27 | 2014-03-26 | 中国科学院电子学研究所 | 一种基于表面等离子体谐振的局部电化学成像测试系统 |
KR20140090509A (ko) * | 2013-01-09 | 2014-07-17 | 성균관대학교산학협력단 | 내부 전반사기를 이용한 형광 검출 장치 |
US20150118738A1 (en) * | 2009-05-14 | 2015-04-30 | Canon U.S. Life Sciences, Inc. | Microfluidic chip features for optical and thermal isolation |
CN105548589A (zh) * | 2015-12-23 | 2016-05-04 | 辽东学院 | 微流控液液萃取-液液波导集成化检测系统及检测方法 |
-
2016
- 2016-05-08 CN CN201610300226.2A patent/CN105891178B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066236A1 (en) * | 2007-11-22 | 2009-05-28 | Koninklijke Philips Electronics N.V. | Methods and systems for coupling a bio-cartridge with an optical reader |
US20150118738A1 (en) * | 2009-05-14 | 2015-04-30 | Canon U.S. Life Sciences, Inc. | Microfluidic chip features for optical and thermal isolation |
CN102954938A (zh) * | 2011-08-29 | 2013-03-06 | 中国科学院电子学研究所 | 基于微流控通道全反射集成光波导的吸收光度检测传感器 |
KR20140090509A (ko) * | 2013-01-09 | 2014-07-17 | 성균관대학교산학협력단 | 내부 전반사기를 이용한 형광 검출 장치 |
CN103267543A (zh) * | 2013-04-12 | 2013-08-28 | 中国计量学院 | 显微粒子图像微流量测量仪及方法 |
CN103675053A (zh) * | 2013-09-27 | 2014-03-26 | 中国科学院电子学研究所 | 一种基于表面等离子体谐振的局部电化学成像测试系统 |
CN105548589A (zh) * | 2015-12-23 | 2016-05-04 | 辽东学院 | 微流控液液萃取-液液波导集成化检测系统及检测方法 |
Non-Patent Citations (1)
Title |
---|
蔡克家等: "全内反射式基因芯片荧光检测系统的研制", 《南开大学学报(自然科学版)》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106885793A (zh) * | 2017-02-09 | 2017-06-23 | 重庆科技学院 | 一种全内反射检测工作平台的使用方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105891178B (zh) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105717090A (zh) | 一种集成化全内反射微流控芯片检测一体机 | |
WO2017133045A1 (zh) | 气溶胶实时监测仪 | |
KR101566646B1 (ko) | 검사 또는 관찰 장치 및 시료의 검사 또는 관찰 방법 | |
CN101251483B (zh) | 采用表面等离子体谐振检测技术的测试分析仪器 | |
US8066962B2 (en) | Environment holding apparatus and environment control type analyzer | |
CN200941092Y (zh) | 空气悬浮颗粒物颗粒数及质量浓度检测仪 | |
CN108089029A (zh) | 以基本水平的侧视图对扫描探针显微镜的试样和探针之间的间隙成像 | |
CN105891178A (zh) | 一种集成化全内反射微流控芯片检测一体机使用方法 | |
CN108814555A (zh) | 用于光声乳腺成像仪的有限元快速图像重建系统及方法 | |
CN205593924U (zh) | 集成化全内反射微流控芯片检测一体机 | |
CN110196245A (zh) | 一种激光诱导击穿光谱检测系统 | |
CN203909049U (zh) | 一种生物芯片检测系统 | |
CN103364077B (zh) | 用于光学测量仪器的温度控制方法和设备及光学测量仪器 | |
KR101701334B1 (ko) | 포터블 혈액점도측정장치 | |
CN205562341U (zh) | 气溶胶实时监测仪 | |
CN105493224B (zh) | 隔膜安装部件及带电粒子线装置 | |
US20070248140A1 (en) | Optical Dilatometer | |
CN205593923U (zh) | 恒温全内反射微流控芯片检测一体机 | |
CN115615997A (zh) | 一种微流控芯片的全自动检测设备 | |
JP2021174008A (ja) | インキュベートされた試料の検査のための顕微鏡およびかかる顕微鏡を含むシステムならびに対応する方法 | |
CN108027316A (zh) | 气体浓度检测器的校准方法以及气体浓度检测器用校准辅助用具 | |
KR102150117B1 (ko) | 온실 부재 내후성 시험 장치 | |
US20170323762A1 (en) | Charged particle beam apparatus, electron microscope and sample observation method | |
KR101347689B1 (ko) | 사파이어 웨이퍼의 검사를 위한 장치 구조 | |
US7601959B2 (en) | Thin type vacuum chamber device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |