CN105887196B - 一种Pt3Co纳米晶体及其催化剂、制备方法和应用 - Google Patents

一种Pt3Co纳米晶体及其催化剂、制备方法和应用 Download PDF

Info

Publication number
CN105887196B
CN105887196B CN201610241005.2A CN201610241005A CN105887196B CN 105887196 B CN105887196 B CN 105887196B CN 201610241005 A CN201610241005 A CN 201610241005A CN 105887196 B CN105887196 B CN 105887196B
Authority
CN
China
Prior art keywords
preparation
nanocrystals
centrifugation
metal nano
nano catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610241005.2A
Other languages
English (en)
Other versions
CN105887196A (zh
Inventor
王梁炳
王梦琳
李洪良
张文博
曾杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Advanced Technology University of Science and Technology of China
Original Assignee
Institute of Advanced Technology University of Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Advanced Technology University of Science and Technology of China filed Critical Institute of Advanced Technology University of Science and Technology of China
Priority to CN201610241005.2A priority Critical patent/CN105887196B/zh
Publication of CN105887196A publication Critical patent/CN105887196A/zh
Application granted granted Critical
Publication of CN105887196B publication Critical patent/CN105887196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种Pt3Co纳米晶体,具有八足体结构。本发明还公开了上述Pt3Co纳米晶体的制备方法,通过将乙酰丙酮铂和乙酰丙酮钴溶解于十八烯和十八烯胺的混合溶液中,再注入辛硫醇后加热搅拌得到。本发明还公开了由上述Pt3Co纳米晶体得到的Pt3Co金属纳米催化剂。本发明还公开了上述Pt3Co金属纳米催化剂的制备方法,将Pt3Co纳米晶体加入到炭黑正己烷悬浊液中,混合,清洗,干燥得到。本发明还公开了上述Pt3Co金属纳米催化剂在催化CO2加氢反应中的应用。本发明所得催化剂基于针尖效应和双金属的协同效应,导致Pt3Co纳米晶体顶点处Pt原子上电荷富集,从而大幅提升CO2加氢催化活性。

Description

一种Pt3Co纳米晶体及其催化剂、制备方法和应用
技术领域
本发明涉及催化剂技术领域,尤其涉及一种Pt3Co纳米晶体及其制备方法,还涉及一种Pt3Co金属纳米催化剂及其制备、应用。
背景技术
CO2还原固定生成化工产品在能源可持续发展和环境友好型能源需求上有着重要意义。随着工业的发展,化石燃料的需求量日益增长,随之燃烧产生大量的CO2排放,成为近年来全球气候变暖的主要原因之一。同时考虑到化石燃料储量的有限性,太阳能、风能、氢能源等在运输和储存上的限制性,CO2的捕获和固定则有着重要意义。CO2还原固定后的产物甲醇,作为一种重要的有机原料,可以用于制备甲醛、二甲醚、乙酸、甲基叔丁醚等重要化工产品,同时甲醇也可以直接作为燃料使用。另外由甲醇脱水生成的二甲醚,是一种很容易液化的燃料,类似于液化石油气,由于其高十六烷值和几乎无烟排放,可以作为柴油的替代品。甲醇还可以转化为烯烃,合成高分子产业中重要的原料如乙烯、丙烯。
CO2分子作为一种极其稳定的分子,有着116.3pm的键长和1072kJ/mol的键离解能,其活化是CO2还原反应中一个非常重要的步骤。通过使用异相催化剂可以大幅地促进该过程的进行,目前用于CO2还原的异相催化剂主要包括Pt、 Au、Ru、Cu以及其合金。已有的研究如Cu和ZnO/CdSe的异质结,通过提升 Cu的负电荷密度,促进了CO2活化,从而加速反应的进行,又如在Cu/CeO2界面上,可以催化活化CO2到CO2 δ-,同样对反应有着促进作用。
发明内容
本发明的目的是提供一种具有八足体结构的Pt3Co纳米晶体,以及由其制备的Pt3Co金属纳米催化剂,能结合针尖效应和双金属的协同效应,使得Pt3Co纳米晶体顶点处Pt原子上电荷富集,并最终提高其催化活性;通过合成八足体结构的Pt3Co纳米晶体,将更好的发挥其在CO2加氢反应中的催化优势并发掘出更广阔的应用潜能。
本发明提出的一种Pt3Co纳米晶体,具有八足体结构,所述八足体结构为具有八根枝杈的星型结构。
优选地,所述八足体结构的平均粒径为10~15nm,优选为13nm。
优选地,每根所述枝杈的长度为5~10nm,厚度为2~4nm。
优选地,每根所述枝杈的长度为8nm,厚度为3nm。
通过扫描透射电子显微镜可发明,本发明的Pt3Co纳米晶体中Pt原子和Co 原子均匀分布在八足体结构中,再通过电感耦合等离子体原子发射光谱法测定 Pt和Co的摩尔比为19:6。
本发明还提出的上述Pt3Co纳米晶体的制备方法,包括如下步骤:按重量份将27份乙酰丙酮钴、30份乙酰丙酮铂、十八烯和十八烯胺混合得到混合液A,其中乙酰丙酮钴和十八烯的重量体积比(g/L)为27:4,十八烯和十八烯胺的体积比为4:5;向混合液A中加入10份辛硫醇混合均匀得到混合液B;将混合液B置入油浴锅中加热30~35min,油浴锅的温度为170~175℃,然后进行清洗得到Pt3Co纳米晶体。
优选地,清洗的具体操作如下:将油浴加热后的混合物料进行离心,将离心所得产物用非极性溶剂进行超声洗涤,然后重复上述离心、超声洗涤步骤,最后离心收集。
优选地,离心转速均为13000~14000转/min,离心的时间均为5~7min。
优选地,超声洗涤时间为1~2min。
优选地,非极性溶剂为正己烷。
本发明还提出的一种Pt3Co金属纳米催化剂,为炭黑表面负载有上述Pt3Co 纳米晶体。
优选地,炭黑与上述Pt3Co纳米晶体的重量比为47~48:2~3。
本发明还提出的上述Pt3Co金属纳米催化剂的制备方法,包括如下步骤:将上述Pt3Co纳米晶体重新分散在非极性溶剂中,再加入到炭黑正己烷悬浊液中,混合,清洗,干燥后得到Pt3Co金属纳米催化剂。
优选地,炭黑正己烷悬浊液的浓度为0.32~0.36mg/mL。
优选地,混合的具体操作为:进行超声处理3~4h,接着进行搅拌12~14h。
优选地,清洗的具体操作如下:将混合后的物料进行离心,然后将离心所得产物进行超声洗涤,然后重复离心、超声洗涤步骤。
优选地,将混合后的物料进行离心,然后将离心所得产物用正己烷进行超声洗涤,接着离心收集,再用乙醇进行超声洗涤,然后离心收集,继续用乙醇进行超声洗涤,接着离心收集,再用水进行超声洗涤,然后离心收集,继续用水进行超声洗涤,最后离心收集。
优选地,离心转速均为45000~50000转/min,离心的时间均为4~6min。
优选地,干燥温度为70~72℃,干燥时间为2~3h。
本发明还提出的上述Pt3Co金属纳米催化剂在催化CO2加氢反应中的应用。
异相催化剂表面的电子结构是影响催化剂性能的主要因素,一方面可以通过调节异相催化剂表面结构来改变其电子分布,理论计算表明电子更倾向于富集在形状尖锐的区域,例如顶点和边缘;另一方面,由于合金中电负性的差异导致的两种金属间的电荷转移,从而电荷会富集在电负性较高的原子上并作为活性中心,促进反应的进行。
本发明的Pt3Co纳米晶体具有八足体结构,结合上述的针尖效应和双金属的协同效应,使得Pt3Co纳米晶体顶点处Pt原子上电荷富集,由其制备的得到的 Pt3Co金属纳米催化剂在CO2加氢催化反应中展示出了很高的催化活性,相比于已有的Pt3Co立方体、Pt八足体、Pt立方体纳米晶体催化剂,其转化效率分别是它们的2.2倍、6.1倍和6.6倍,同时可以通过红外反射吸收光谱观测到在Pt3Co 金属纳米催化剂作用下CO2到CO2 δ-的转变。
附图说明
图1为本发明实施1所得Pt3Co纳米晶体的透射电子显微镜图。
图2为本发明实施1所得Pt3Co纳米晶体的扫描透射电子显微镜高角环形暗场像。
图3为本发明实施1所得单个Pt3Co纳米晶体颗粒的扫描透射电子显微镜高角环形暗场像。
图4为本发明实施1所得单个Pt3Co纳米晶体颗粒的扫描透射电子显微镜元素分布分析图。
图5为本发明实施1所得单个Pt3Co纳米晶体颗粒的元素线扫描图。
图6为本发明实施1所得单个Pt3Co纳米晶体颗粒在不同取向的扫描透射电子显微镜-傅里叶变换图;其中A1为单个Pt3Co纳米晶体颗粒在[111]取向上的扫描透射电子显微镜高角环形暗场像,A2为A1的傅里叶变换图,B1为单个 Pt3Co纳米晶体颗粒在[100]取向上的扫描透射电子显微镜高角环形暗场像,B2 为B1的傅里叶变换图,C1为单个Pt3Co纳米晶体颗粒在[110]取向上的扫描透射电子显微镜高角环形暗场像,C2为C1的傅里叶变换图。
图7为本发明实施例2所得Pt3Co金属纳米催化剂在CO2加氢催化反应中甲醇产量-时间折线图。
图8为本发明实施例2所得Pt3Co金属纳米催化剂对CO2加氢反应进行数次催化后甲醇总产量的变化图。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
本发明提供的一种具有八足体Pt3Co纳米晶体的制备方法,包括如下步骤:
在常温下,依次向20mL的玻璃反应瓶中加入:27mg乙酰丙酮钴、30mg 乙酰丙酮铂、4ml十八烯和5ml十八烯胺,随后注入10mg辛硫醇,将该混合液摇晃均匀,置入170℃的油浴锅中加热30min,将油浴加热后的混合物料进行离心,离心的转速为13000转/分钟,离心的时间为5min,将离心所得产物用正己烷进行超声洗涤1min,然后重复上述离心、超声洗涤步骤两次,最后离心收集得到Pt3Co纳米晶体。
对所得Pt3Co纳米晶体进行电镜透射和扫描,如图1-4和图6所示。参照图图1-4和图6,实施例1所得Pt3Co纳米晶体具有八足体结构,即为具有八根枝杈的星型结构,其晶体的平均粒径为13nm,其中枝杈的平均长度为8nm,平均厚度为3nm。
实施例2
本发明提供的一种Pt3Co金属纳米催化剂的制备方法,包括如下步骤:将实施例1所得Pt3Co纳米晶体重新分散在正己烷中得到浓度为1mg/mL的Pt3Co纳米晶体溶液;将340μL浓度为1mg/mL的Pt3Co纳米晶体溶液中注入到20mL浓度为0.34mg/mL的炭黑正己烷溶液混合后,超声处理3h,接着进行搅拌12h,再进行离心后,然后将离心所得产物用正己烷进行超声洗涤1min,接着离心收集,再用乙醇进行超声洗涤1min,然后离心收集,继续用乙醇进行超声洗涤1min,接着离心收集,再用水进行超声洗涤1min,然后离心收集,继续用水进行超声洗涤1min,然后离心收集,接着在70℃烘干2h得到Pt3Co金属纳米催化剂。
上述离心转速为45000转/分钟,离心的时间为5min。
经检测,所得Pt3Co金属纳米催化剂中铂钴质量分数为5%。
实施例3
将20mg实施例2所得Pt3Co金属纳米催化剂加入到100ml高压反应釜中,再加入30ml H2O,接着充入800KPa CO2气体和2400KPa H2气体,升温至150℃后,保温反应5h,保温反应过程中维持300转/分钟的转速。
Pt3Co金属纳米催化剂催化CO2加氢反应中,甲醇产量-时间折线图如图7 所示。同时该催化剂对CO2加氢反应进行数次催化后甲醇总产量的变化图如图8 所示。参照图7和图8,本发明所得Pt3Co金属纳米催化剂在加氢反应中催化效果好,转化效率高,而且其催化活性在多次反应后仍保持有很高的反应活性,其催化转化率并未有大幅度的降低,为催化剂的回收重复利用提供了可能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (15)

1.一种Pt3Co纳米晶体的制备方法,其特征在于,所述Pt3Co纳米晶体具有八足体结构,所述八足体结构为具有八根枝杈的星型结构;
所述Pt3Co纳米晶体的制备方法包括如下步骤:按重量份将27份乙酰丙酮钴、30份乙酰丙酮铂、十八烯和十八烯胺混合得到混合液A,其中乙酰丙酮钴和十八烯的重量体积比(g/L)为27:4,十八烯和十八烯胺的体积比为4:5;向混合液A中加入10份辛硫醇混合均匀得到混合液B;将混合液B置入油浴锅中加热30~35min,油浴锅的温度为170~175℃,然后进行清洗得到Pt3Co纳米晶体。
2.根据权利要求1所述Pt3Co纳米晶体的制备方法,其特征在于,所述八足体结构的平均粒径为10~15nm。
3.根据权利要求1或2所述Pt3Co纳米晶体的制备方法,其特征在于,每根所述枝杈的长度为5~10nm,厚度为2~4nm。
4.根据权利要求1所述Pt3Co纳米晶体的制备方法,其特征在于,清洗的具体操作如下:将油浴加热后的混合物料进行离心,将离心所得产物用非极性溶剂进行超声洗涤,然后重复上述离心、超声洗涤步骤,最后离心收集。
5.根据权利要求4所述Pt3Co纳米晶体的制备方法,其特征在于,离心转速均为13000~14000转/min,离心的时间均为5~7min。
6.根据权利要求4所述Pt3Co纳米晶体的制备方法,其特征在于,超声洗涤时间为1~2min。
7.根据权利要求4所述Pt3Co纳米晶体的制备方法,其特征在于,非极性溶剂为正己烷。
8.一种Pt3Co金属纳米催化剂的制备方法,其特征在于,包括如下步骤:将如权利要求1-7任一项所述Pt3Co纳米晶体的制备方法制得的Pt3Co纳米晶体重新分散在非极性溶剂中,再加入到炭黑正己烷悬浊液中,混合,清洗,干燥后得到Pt3Co金属纳米催化剂。
9.根据权利要求8所述Pt3Co金属纳米催化剂的制备方法,其特征在于,炭黑与Pt3Co纳米晶体的重量比为47~48:2~3。
10.根据权利要求8所述Pt3Co金属纳米催化剂的制备方法,其特征在于,炭黑正己烷悬浊液的浓度为0.32~0.36mg/mL。
11.根据权利要求8所述Pt3Co金属纳米催化剂的制备方法,其特征在于,混合的具体操作为:进行超声处理3~4h,接着进行搅拌12~14h。
12.根据权利要求8所述Pt3Co金属纳米催化剂的制备方法,其特征在于,清洗的具体操作如下:将混合后的物料进行离心,然后将离心所得产物进行超声洗涤,然后重复离心、超声洗涤步骤。
13.根据权利要求12所述Pt3Co金属纳米催化剂的制备方法,其特征在于,将混合后的物料进行离心,然后将离心所得产物用正己烷进行超声洗涤,接着离心收集,再用乙醇进行超声洗涤,然后离心收集,继续用乙醇进行超声洗涤,接着离心收集,再用水进行超声洗涤,然后离心收集,继续用水进行超声洗涤,最后离心收集。
14.根据权利要求13所述Pt3Co金属纳米催化剂的制备方法,其特征在于,离心转速均为45000~50000转/min,离心的时间均为4~6min。
15.根据权利要求8所述Pt3Co金属纳米催化剂的制备方法,其特征在于,干燥温度为70~72℃,干燥时间为2~3h。
CN201610241005.2A 2016-04-15 2016-04-15 一种Pt3Co纳米晶体及其催化剂、制备方法和应用 Active CN105887196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610241005.2A CN105887196B (zh) 2016-04-15 2016-04-15 一种Pt3Co纳米晶体及其催化剂、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610241005.2A CN105887196B (zh) 2016-04-15 2016-04-15 一种Pt3Co纳米晶体及其催化剂、制备方法和应用

Publications (2)

Publication Number Publication Date
CN105887196A CN105887196A (zh) 2016-08-24
CN105887196B true CN105887196B (zh) 2018-10-12

Family

ID=56705068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610241005.2A Active CN105887196B (zh) 2016-04-15 2016-04-15 一种Pt3Co纳米晶体及其催化剂、制备方法和应用

Country Status (1)

Country Link
CN (1) CN105887196B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820888B (zh) * 2021-03-19 2022-04-19 中国科学技术大学 单原子与纳米晶复合结构的燃料电池催化剂的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125050B1 (ko) * 2009-11-18 2012-03-21 한국과학기술원 입방 모양 PtCo 나노합금 촉매의 제조방법
US8741801B2 (en) * 2009-11-23 2014-06-03 The Research Foundation For The State University Of New York Catalytic platinum and its 3d-transition-metal alloy nanoparticles
US8592339B2 (en) * 2009-11-23 2013-11-26 The Research Foundation For The State University Of New York Catalytic platinum-copper alloy nanoparticles
US20120264598A1 (en) * 2011-04-12 2012-10-18 GM Global Technology Operations LLC Synthesis of platinum-alloy nanoparticles and supported catalysts including the same
CN103111308A (zh) * 2013-03-05 2013-05-22 北京大学 水相直接合成Pt-Co双金属纳米粒子的方法及应用
CN103352254B (zh) * 2013-07-05 2016-01-20 浙江大学 一种八面体铂铜合金纳米晶的制备方法及其制备的八面体铂铜合金纳米晶
CN105251509B (zh) * 2015-11-26 2017-09-12 河北工业大学 一种Pt‑Co花状纳米催化剂的制备方法
CN105413709B (zh) * 2015-12-11 2018-01-30 中国科学院上海高等研究院 一种多立方枝状结构的铂钴纳米双金属催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN105887196A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
Zhang et al. Metal-free ceria catalysis for selective hydrogenation of crotonaldehyde
Liu et al. Metal–support interactions in CeO2-and SiO2-supported cobalt catalysts: effect of support morphology, reducibility, and interfacial configuration
Kaya Production of metal-free catalyst from defatted spent coffee ground for hydrogen generation by sodium borohyride methanolysis
Zahmakıran et al. Aminopropyltriethoxysilane stabilized ruthenium (0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine–borane
Yadav et al. Green synthesis of AgZnO nanoparticles: Structural analysis, hydrogen generation, formylation and biodiesel applications
Manríquez-Ramírez et al. Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts
Fang et al. Ce–Ni mixed oxide as efficient catalyst for H 2 production and nanofibrous carbon material from ethanol in the presence of water
Du et al. Bimetallic Ni and Mo nitride as an efficient catalyst for hydrodeoxygenation of palmitic acid
CN109985666A (zh) 一种表面修饰的MoS2催化剂在压电催化产氢中的应用
CN112774692B (zh) 一种Ru@Ni2V2O7高效光热协同催化剂及其制备方法和应用
Tsou et al. Hydrophobic copper catalysts derived from copper phyllosilicates in the hydrogenation of levulinic acid to γ-valerolactone
CN110624550A (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
Jia et al. Selective photothermal reduction of CO2 to CO over Ni-nanoparticle/N-doped CeO2 nanocomposite catalysts
Liu et al. Biomass-assisted synthesis of CeO2 nanorods for CO2 photoreduction under visible light
CN108940308A (zh) 一种铂钴复合金属光热催化剂的制备及其在甲烷二氧化碳重整中的应用
CN105887196B (zh) 一种Pt3Co纳米晶体及其催化剂、制备方法和应用
Wang et al. A novel graphdiyne (C n H 2n− 2) synthesis strategy: design and application of an organic/inorganic conjugated system for photocatalytic hydrogen production
Mansoorsamaei et al. Sustainable biodiesel production from waste cooking oil using banana peel biochar-Fe2O3/Fe2K6O5 magnetic catalyst
Razuki et al. Revolutionizing biodiesel production: A breakthrough synthesis and characterization of bismuth ferrite nanocatalysts for transesterification of palm and waste cooking oil
Foroutan et al. Investigation of kinetics, thermodynamics, and environmental factors of biodiesel generation from sunflower and castor oil using rice husk ash/CuO/K2CO3 heterogeneous catalyst
Cai et al. Direct production of isomerized biodiesel over MoS2/ZrPOx under solvent-free conditions
Zhao et al. Nanoscale Ni enveloped in hydrochar prepared by one-step hydrothermal method for dry reforming of CH4 with CO2
CN111701596B (zh) 一种在温和条件下合成氨的原子级活性位点催化剂制备方法
Dutta et al. Polyoxometalate based mesoporous acidic catalyst from biogenic silica for vegetable oil methanolysis: Structure activity relationship study
Ren et al. Phyllosilicate-derived Ni catalysts with small nanoparticle size and strong metal-support interaction for efficient and robust decomposition of ammonia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant