CN105885323A - 一种复合磁性水凝胶的制备方法 - Google Patents

一种复合磁性水凝胶的制备方法 Download PDF

Info

Publication number
CN105885323A
CN105885323A CN201610144371.6A CN201610144371A CN105885323A CN 105885323 A CN105885323 A CN 105885323A CN 201610144371 A CN201610144371 A CN 201610144371A CN 105885323 A CN105885323 A CN 105885323A
Authority
CN
China
Prior art keywords
beaker
hydrogel
moved
composite magnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610144371.6A
Other languages
English (en)
Inventor
叶先龙
王志慧
宋国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd filed Critical NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201610144371.6A priority Critical patent/CN105885323A/zh
Publication of CN105885323A publication Critical patent/CN105885323A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种复合磁性水凝胶的制备方法,属于水凝胶领域。本发明将活化后的玛瑙石颗粒与壳聚糖、丙烯酸混合,并加入交联剂和引发剂,在紫外灯照射下进行反应得到的凝胶溶液,再与四氧化三铁磁性颗粒进行共混,混合后放入冰箱中冷冻再解冻,即可,本发明制得的复合磁性水凝胶性能稳定,磁性粒子在水凝胶中分布均匀,不易产生团聚和沉淀现象,得到的磁性水凝胶力学性能好,而且工艺简单,易于操作,产品重复性好。

Description

一种复合磁性水凝胶的制备方法
技术领域
本发明公开了一种复合磁性水凝胶的制备方法,属于水凝胶领域。
背景技术
磁性水凝胶在磁场作用下可以表现出伸长、收缩或弯曲等多种形变,但凝胶的网络结构不会损坏,磁性凝胶以其独特的柔韧性和渗透性在靶向药物释放、细胞分离与标记、蛋白质吸附和分离等方面有着广泛的应用。以天然高分子为原料合成的智能型水凝胶因良好的生物相容性和对外界刺激的敏感性,在化学转换器、化学存储器、记忆原件开关、传感器、人造肌肉、酶固定、组织工程、药物释放、分子分离体系方面都有着良好的应用前景,与普通水凝胶相比,天然高分子水凝胶越来越受到研究人员的重视。
目前,磁性水凝胶的合成方法通常是将水凝胶浸没在一定浓度Fe2+和Fe3+混合溶液中,以在水凝胶的界面形成Fe3O4,该类磁性水凝胶对环境条件的耐受性不够。
Fe3O4由于其具有的良好的磁性及生物相容性,通常被作为磁性组分而应用于磁性高分子水凝胶材料中。目前,Fe3O4磁性高分子水凝胶材料的合成方法可分为两类,其中最常用的是包埋法,即将事先合成好的磁性颗粒通过物理共混的方法分散到高分子凝胶单体溶液中,然后通过高分子交联反应形成磁性水凝胶,但是该方法存在由于磁性纳米粒子在形成凝胶过程中易发生团聚和沉淀而引起磁性分布不均的问题。另一种为原位合成法,即将制备好的高分子水凝胶材料浸泡于磁性材料前驱体溶液中,然后通过下一步化学反应在水凝胶材料中原位形成无机磁性纳米粒子,该方法虽对磁性分布不 均匀的情况有所改善,但在由于在高分子水凝胶中原位合成磁性颗粒,较难控制其尺寸及形貌从而难于得到Fe3O4磁性颗粒形貌规则且分布均匀的磁性高分子水凝胶。
发明内容
本发明主要解决的技术问题:针对目前磁性水凝胶对环境条件的耐受性不够,人工合成的水凝胶的力学性能普遍比较差,不能达到所需要的机械强度指标,磁性粒子在形成凝胶过程中易发生团聚和沉淀而引起磁性分布不均的问题的问题,提供了一种复合磁性水凝胶的制备方法,本发明将活化后的玛瑙石颗粒与壳聚糖、丙烯酸混合,并加入交联剂和引发剂,在紫外灯照射下进行反应得到的凝胶溶液,再与四氧化三铁磁性颗粒进行共混,混合后放入冰箱中冷冻再解冻,即可,本发明制得的复合磁性水凝胶性能稳定,磁性粒子在水凝胶中分布均匀,不易产生团聚和沉淀现象,得到的磁性水凝胶力学性能好,而且工艺简单,易于操作,产品重复性好。
为了解决上述技术问题,本发明所采用的技术方案是:
(1)称取600~800g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入720~800mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至70~80℃,以150r/min搅拌1~2h后过滤,使用无水乙醇冲洗过滤物3~4次;
(2)将上述冲洗后的过滤物放入煅烧炉中,在500~600℃下煅烧30~40min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入120~150g色氨酸,搅拌均匀后向烧杯中加入800~900mL质量分数为8%的盐酸溶液;
(3)待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为80~90℃,再分别向烧杯中加入600~900g壳聚糖和650~750mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温30~40min后将烧杯移至超声清洗器中,在频率22KHz下振荡1~2h;
(4)待上述振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入30~50gN,N-二甲基双丙烯酰胺及70~90g过硫酸钾,设定温度为60~70℃,在紫外灯照射下,以转速180r/min搅拌1~3h后静置30~40min;
(5)在上述静置结束后向烧杯中加入130~190g四氧化三铁,以转速220r/min搅拌10~15min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-25~-20℃下冷冻过夜,随后将玻璃管取出,在室温下解冻2~3h,即可得到复合磁性水凝胶。
本发明制备得到的复合磁性水凝胶的饱和磁性强度为45.6~46.8emu/g,拉伸强度为620~700kPa,断裂生长率可到600~800%,溶胀率为120~150,对Pb2+、Cd2+、Cu2+和Cr3+金属溶液具有良好的吸附性。
本发明的有益效果是:
(1)本发明制得的复合磁性水凝胶性能稳定,磁性粒子在水凝胶中分布均匀,不易产生团聚和沉淀现象;
(2)本发明得到的磁性水凝胶力学性能好,而且工艺简单,易于操作,产品重复性好。
具体实施方式
首先称取600~800g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入720~800mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至70~80℃,以150r/min搅拌1~2h后过滤,使用无水乙醇冲洗过滤物3~4次;将冲洗后的过滤物放入煅烧炉中,在500~600℃下煅烧30~40min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入120~150g色氨酸,搅拌均匀后向烧杯中加入800~900mL质量分数为8%的盐酸溶液;待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为80~90℃,再分别向烧杯中加入600~900g壳聚糖和650~750mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温30~40min后将烧杯移至超声清洗器中,在频率22KHz下振荡1~2h;待振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入30~50gN,N-二甲基双丙烯酰胺及70~90g过硫酸钾,设定温度为60~70℃,在紫外灯照射下,以转速180r/min搅拌1~3h后静置30~40min;在静置结束后向烧杯中加入130~190g四氧化三铁,以转速220r/min搅拌10~15min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-25~-20℃下冷冻过夜,随后将玻璃管取出,在室温下解冻2~3h,即可得到复合磁性水凝胶。
实例1
首先称取600g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入720mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至70℃,以150r/min搅拌1h后过滤,使用无水乙醇冲洗过滤物3次;将冲洗后的过滤物放入煅烧炉中,在500℃下煅烧30min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入120g色氨酸,搅拌均匀后向烧杯中加入800mL质量分数为8%的盐酸溶液;待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为80℃,再分别向烧杯中加入600g壳聚糖和650mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温30min后将烧杯移至超声清洗器中,在频率22KHz下振荡1h;待振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入30gN,N-二甲基双丙烯酰胺及70g过硫酸钾,设定温度为60℃,在紫外灯照射下,以转速180r/min搅拌1h后静置30min;在静置结束后向烧杯中加入130g四氧化三铁,以转速220r/min搅拌10min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-25℃下冷冻过夜,随后将玻璃管取出,在室温下解冻2h,即可得到复合磁性水凝胶。
本发明制备得到的复合磁性水凝胶的饱和磁性强度为45.6emu/g,拉伸强度为620kPa,断裂生长率可到600%,溶胀率为120,对Pb2+、Cd2+、Cu2+和Cr3+金属溶液具有良好的吸附性。
实例2
首先称取700g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入760mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至75℃,以150r/min搅拌1.5h后过滤,使用无水乙醇冲洗过滤物3.5次;将冲洗后的过滤物放入煅烧炉中,在550℃下煅烧35min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入135g色氨酸,搅拌均匀后向烧杯中加入850mL质量分数为8%的盐酸溶液;待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为85℃,再分别向烧杯中加入750g壳聚糖和700mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温35min后将烧杯移至超声清洗器中,在频率22KHz下振荡1.5h;待振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入40gN,N-二甲基双丙烯酰胺及80g过硫酸钾,设定温度为65℃,在紫外灯照射下,以转速180r/min搅拌2h后静置35min;在静置结束后向烧杯中加入160g四氧化三铁,以转速220r/min搅拌13min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-23℃下冷冻过夜,随后将玻璃管取出,在室温下解冻2~3h,即可得到复合磁性水凝胶。
本发明制备得到的复合磁性水凝胶的饱和磁性强度为46.2emu/g,拉伸强度为656Pa,断裂生长率可到756%,溶胀率为146,对Pb2+、Cd2+、Cu2+和Cr3+金属溶液具有良好的吸附性。
实例3
首先称取800g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入800mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至80℃,以150r/min搅拌2h后过滤,使用无水乙醇冲洗过滤物4次;将冲洗后的过滤物放入煅烧炉中,在600℃下煅烧40min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入150g色氨酸,搅拌均匀后向烧杯中加入900mL质量分数为8%的盐酸溶液;待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为90℃,再分别向烧杯中加入900g壳聚糖和750mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温40min后将烧杯移至超声清洗器中,在频率22KHz下振荡2h;待振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入50gN,N-二甲基双丙烯酰胺及90g过硫酸钾,设定温度为70℃,在紫外灯照射下,以转速180r/min搅拌3h后静置40min;在静置结束后向烧杯中加入190g四氧化三铁,以转速220r/min搅拌15min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-20℃下冷冻过夜,随后将玻璃管取出,在室温下解冻3h,即可得到复合磁性水凝胶。
本发明制备得到的复合磁性水凝胶的饱和磁性强度为46.8emu/g,拉伸强度为700kPa,断裂生长率可到800%,溶胀率为150,对Pb2+、Cd2+、Cu2+和Cr3+金属溶液具有良好的吸附性。

Claims (1)

1. 一种复合磁性水凝胶的制备方法,其特征在于具体制备步骤为:
(1)称取600~800g玛瑙石放入碾磨机中进行研磨,过200目筛,将过筛后的颗粒放入烧杯中,再向烧杯中加入720~800mL质量分数为30%氢氧化钠溶液,对烧杯进行加热至70~80℃,以150r/min搅拌1~2h后过滤,使用无水乙醇冲洗过滤物3~4次;
(2)将上述冲洗后的过滤物放入煅烧炉中,在500~600℃下煅烧30~40min后自然冷却至室温,将煅烧物取出放入粉碎机中粉碎,过200目筛,得活化玛瑙石颗粒,随后将其放入烧杯中,向烧杯中加入120~150g色氨酸,搅拌均匀后向烧杯中加入800~900mL质量分数为8%的盐酸溶液;
(3)待盐酸溶液添加完成后将烧杯移至水浴锅中,设定温度为80~90℃,再分别向烧杯中加入600~900g壳聚糖和650~750mL质量分数为60%丙烯酸水溶液,搅拌均匀,保温30~40min后将烧杯移至超声清洗器中,在频率22KHz下振荡1~2h;
(4)待上述振荡结束后将烧杯移至油浴锅中,分别向烧杯中加入30~50gN,N-二甲基双丙烯酰胺及70~90g过硫酸钾,设定温度为60~70℃,在紫外灯照射下,以转速180r/min搅拌1~3h后静置30~40min;
(5)在上述静置结束后向烧杯中加入130~190g四氧化三铁,以转速220r/min搅拌10~15min后将烧杯中的混合物倒入玻璃管中,再将玻璃管移至冰箱中,在-25~-20℃下冷冻过夜,随后将玻璃管取出,在室温下解冻2~3h,即可得到复合磁性水凝胶。
CN201610144371.6A 2016-03-15 2016-03-15 一种复合磁性水凝胶的制备方法 Pending CN105885323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610144371.6A CN105885323A (zh) 2016-03-15 2016-03-15 一种复合磁性水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610144371.6A CN105885323A (zh) 2016-03-15 2016-03-15 一种复合磁性水凝胶的制备方法

Publications (1)

Publication Number Publication Date
CN105885323A true CN105885323A (zh) 2016-08-24

Family

ID=57014814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610144371.6A Pending CN105885323A (zh) 2016-03-15 2016-03-15 一种复合磁性水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN105885323A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278216A (zh) * 2016-08-28 2017-01-04 仇颖超 一种高吸收率太阳能陶瓷材料的制备方法
CN110229271A (zh) * 2019-06-19 2019-09-13 哈尔滨工业大学(深圳) 一种可用于测定微量液体粘度的微型磁性棒状凝胶的制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224021A1 (en) * 2003-04-25 2004-11-11 Hossein Omidian Formation of strong superporous hydrogels
CN101280048A (zh) * 2008-05-23 2008-10-08 北京联合大学生物化学工程学院 具有抗菌作用的透明水凝胶及其制备方法
CN103724633A (zh) * 2012-10-15 2014-04-16 中国科学院兰州化学物理研究所 一种粒状水凝胶

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224021A1 (en) * 2003-04-25 2004-11-11 Hossein Omidian Formation of strong superporous hydrogels
CN101280048A (zh) * 2008-05-23 2008-10-08 北京联合大学生物化学工程学院 具有抗菌作用的透明水凝胶及其制备方法
CN103724633A (zh) * 2012-10-15 2014-04-16 中国科学院兰州化学物理研究所 一种粒状水凝胶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALEXANDRE T. PAULINO等: "One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 *
TE-HSING WU等: "The Synthesis and Characteristic of PAA-Ch/SiO2 Hydrogel Nanocomposites by Radiation Methods for Bone Materials", 《APPLIED MECHANICS AND MATERIALS》 *
杨金艳等: "壳聚糖水凝胶制备及其对Pb2+吸附性能研究", 《环境工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278216A (zh) * 2016-08-28 2017-01-04 仇颖超 一种高吸收率太阳能陶瓷材料的制备方法
CN110229271A (zh) * 2019-06-19 2019-09-13 哈尔滨工业大学(深圳) 一种可用于测定微量液体粘度的微型磁性棒状凝胶的制备和应用
CN110229271B (zh) * 2019-06-19 2021-06-29 哈尔滨工业大学(深圳) 一种可用于测定微量液体粘度的微型磁性棒状凝胶的制备和应用

Similar Documents

Publication Publication Date Title
Mahdavinia et al. Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery
Jiang et al. Magnetic NiFe2O4/MWCNTs functionalized cellulose bioadsorbent with enhanced adsorption property and rapid separation
Lozinsky A brief history of polymeric cryogels
Zhou et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II)
Liang et al. Ampholytic microspheres constructed from chitosan and carrageenan in alkali/urea aqueous solution for purification of various wastewater
Lan et al. Synthesis and characterization of hyaluronic acid-supported magnetic microspheres for copper ions removal
CN102391603B (zh) 一种磁性高分子水凝胶的制备方法
WO2019119568A1 (zh) 一种磁性高分子吸附材料、制备方法和应用
Gao et al. A hollow mesoporous silica and poly (diacetone acrylamide) composite with sustained-release and adhesion properties
CN102489716B (zh) 木质素磺酸盐纳米银溶胶的制备方法
Liu et al. Magnetic responsive cellulose nanocomposites and their applications
CN103613348A (zh) 低粘度、易泵送的平均强度120MPa超高强混凝土
CN104479174A (zh) 一种基于纤维素的磁性气凝胶材料及其制备方法
CN102245528B (zh) 具有可控空隙尺寸的自支撑的纳米微粒网络/骨架
JP7253849B2 (ja) 磁性繊維材料の製造方法
CN101921443B (zh) 纳米粒子均相掺杂的高强度智能化水凝胶的制备方法
CN101238166A (zh) 制备多孔网状复合材料的方法
US20190092687A1 (en) Cementitious mixtures, compositions for use in cementitious mixtures, and methods of producing cementitious mixtures
Li et al. Controlling the morphology of BaCO3 aggregates by carboxymethyl cellulose through polymer induced needle-stacking self-assembly
CN110201613B (zh) 一种聚苯乙烯磁性微球及其制备方法
CN105885323A (zh) 一种复合磁性水凝胶的制备方法
Ji et al. Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides
Jo et al. Diffusion-controlled crystallization of calcium carbonate in a hydrogel
Markovic et al. Green pH-and magnetic-responsive hybrid hydrogels based on poly (methacrylic acid) and Eucalyptus wood nanocellulose for controlled release of ibuprofen
Xing et al. Effect and mechanism of calcium carbonate whisker on asphalt binder

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824