CN105879907B - 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用 - Google Patents

一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用 Download PDF

Info

Publication number
CN105879907B
CN105879907B CN201610117813.8A CN201610117813A CN105879907B CN 105879907 B CN105879907 B CN 105879907B CN 201610117813 A CN201610117813 A CN 201610117813A CN 105879907 B CN105879907 B CN 105879907B
Authority
CN
China
Prior art keywords
catalyst
acid
liquid
ionic
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610117813.8A
Other languages
English (en)
Other versions
CN105879907A (zh
Inventor
王晓波
王亚南
赵改青
李维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Lubemater Lubrication Materials Technology Co ltd
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201610117813.8A priority Critical patent/CN105879907B/zh
Publication of CN105879907A publication Critical patent/CN105879907A/zh
Application granted granted Critical
Publication of CN105879907B publication Critical patent/CN105879907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/74Esters of polyhydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种固载化离子液体催化剂,该催化剂通过以下方法制备得到:1)将离子液体、无水乙醇、正硅酸四乙酯在40oC~70oC恒温搅拌至离子液体溶解、溶液澄清,然后加入盐酸溶液,继续搅拌1 h~3 h后静置陈化12 h~24 h,即得介孔二氧化硅固载化离子液体催化剂的初产物;2)将所述介孔二氧化硅固载化离子液体催化剂的初产物在80oC~100oC真空干燥3 h~6 h,即得介孔二氧化硅固载化离子液体催化剂。本发明还公开了该催化剂在合成酯类润滑油制备中的应用。本发明涉及的催化剂合成方法简单,催化剂活性高,大大加快了其工业化应用的进程。

Description

一种固载化离子液体催化剂及其在合成酯类润滑油制备中的 应用
技术领域
本发明涉及一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用。
背景技术
合成酯类基础油由于其具有优异的高低温性能、润滑性能及其它良好的综合性能,一直作为航空润滑油料的关键组分在航空领域发挥着不可或缺的作用;同时又由于其具有性能可调、原料来源可再生、环境友好等特点,从而在汽车、冶金、水泥等行业具有重要潜在应用。国际方面在合成酯构效关系、制备工艺、性能及应用等方面开展了大量的研究工作,但其研究深度和系统性等方面仍需进一步加深和完善。国内合成酯基础理论与关键技术匮乏,合成酯工业基本处于空白,制约了我国航空等高新技术工业的突破和交通运输等行业节能技术的发展。因此,发展符合要求的高性能合成酯类润滑基础油是解决上述问题关键因素。
合成酯是有机醇与有机酸通过酯化反应得到的产物,酯化反应本身简单,反应物在热和催化剂的作用下生成酯类化合物和水。酯化反应可以在无催化剂下进行,但反应速度较慢,所以在生产实践中,酯化反应一般都有加入催化剂。在酯类润滑油的发展过程中催化剂起着至关重要的作用,然而用于酯化反应的无机强酸、固体酸以及酸性离子交换树脂等传统酸催化剂均存在一些不足之处,如腐蚀设备、难分离、易失活等,效果均不十分理想。酸性离子液体作为一种新型环境友好液体酸催化剂,它同时拥有液体酸的高密度反应活性位点和固体酸的不挥发性,其分子结构和酸性可调,与产物易分离,热稳定性高,是真正意义上可设计的催化剂。然而均相的离子液体在催化的过程中也存在着很多缺点:用量大且具有一定的腐蚀性、能耗大、成本高,从而限制了离子液体作为一类新型高效的催化剂在工业中的应用。
与均相催化剂相比,固载化的离子液体催化剂具有分离和再生简单、腐蚀性小、成本低等优点,因此本发明将离子液体固载化,使得均相的离子液体转变为多相的状态。本发明选择介孔二氧化硅作为离子液体的载体,通过溶胶-凝胶的方法将离子液体成功负载到载体二氧化硅上。介孔材料负载的多相催化剂具有大的比表面积和孔容、丰富的纳米孔结构,有利于催化反应过程中底物和产物的扩散和传输,进而大大提高催化剂的催化活性,因此多相化的离子液体催化剂具有重要的应用前景。
发明内容
本发明的目的是提供一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用。本发明以正硅酸四乙酯为硅源、无水乙醇为溶剂、离子液体为催化剂活性物种、盐酸溶液为成胶剂,采用溶胶-凝胶的方法制备得到介孔二氧化硅固载的离子液体催化剂,并将该催化剂用于季戊四醇多元醇酯润滑油的合成。
一种固载化离子液体催化剂,其特征在于该催化剂通过以下方法制备得到:
1)将离子液体、无水乙醇、正硅酸四乙酯在40 oC ~ 70 oC恒温搅拌至离子液体溶解、溶液澄清,然后加入盐酸溶液,继续搅拌1 h ~ 3 h后静置陈化12 h ~ 24 h,即得介孔二氧化硅固载化离子液体催化剂的初产物;
2)将所述介孔二氧化硅固载化离子液体催化剂的初产物在80 oC ~ 100 oC真空干燥3 h ~ 6 h,即得介孔二氧化硅固载化离子液体催化剂。
所述离子液体为1-丁基磺酸-3-甲基咪唑硫酸氢盐、1-丁基磺酸-3-甲基咪唑磷酸二氢盐或1-丁基磺酸-3-甲基咪唑三氟乙酸盐。
所述无水乙醇与正硅酸四乙酯的摩尔比为 1 ~ 8:1。
所述离子液体与正硅酸四乙酯的质量比为 7:500 ~ 23:330。
所述盐酸溶液的摩尔浓度为 3 ~ 8 mol/L;盐酸溶液与无水乙醇的体积比为2:15~ 5:4。
如上所述催化剂在合成酯类润滑油制备中的应用,其特征在于以季戊四醇、有机酸为原料,以介孔二氧化硅固载化离子液体为催化剂,以甲苯为除水剂,在155 oC ~ 170 oC反应10 h后经离心分离、旋转蒸发即得季戊四醇多元醇酯。
所述季戊四醇与有机酸的摩尔比为4:1。
所述介孔二氧化硅固载化离子液体与季戊四醇的质量比为1:9。
所述有机酸为正戊酸、正己酸、正庚酸、正辛酸、正壬酸或正癸酸。
与现有技术相比,本发明具有以下优点:本发明采用溶胶-凝胶的方法通过改变离子液体的用量调控二氧化硅固载离子液体催化剂的孔容、孔径和比表面积,使得其孔容在0.9 ~ 4 cm3/g、孔径在7 ~ 35 nm、比表面积在300 ~ 700 m3/g范围内可调。
本发明涉及的催化剂合成方法简单,催化剂活性高,大大加快了其工业化应用的进程。
通过表征发现,该催化剂孔径分布在7 ~ 35 nm之间,是典型的介孔材料。
本发明中催化合成季戊四醇多元醇酯润滑油是按照在化学计量比进行的,该催化反应可在较低的反应温度和较短的反应时间内完成,且可得到高纯产物。
附图说明
图1为本发明实施例5制得的IL1/SiO2-5%催化剂的氮气吸附等温线。
图2为本发明实施例5制得的IL1/SiO2-5%催化剂的TG/DTA图。
图3 为本发明实施例5制得的IL1/SiO2-5%催化剂的透射电镜图。
具体实施方式
下面通过实施例对本发明作进一步说明,其目的在于更好的理解本发明的研究内容。
实施例1
1-丁基磺酸-3-甲基咪唑硫酸氢盐([BHSO3MIm]HSO4)的合成
步骤一. 将1 mol甲基咪唑、等摩尔的4-丁烷磺内酯和100 mL丙酮混合于三口烧瓶中,25 oC下用机械搅拌反应3天。有白色固体析出时将反应温度提高到50 oC,继续反应3天,有大量的白色固体析出,过滤所得白色固体即为BMImSO3,蒸馏后可以再次结晶出BMImSO3,将产物用丙酮洗涤纯化。
步骤二. 在冰浴搅拌的条件下,将1 mol上述产物缓慢滴加到1.02 mol浓硫酸(98%)中,生成液体产物,将产物中的水蒸干,得到无色粘稠液体 [BHSO3MIm]+[HSO4]-
实施例2
1-丁基磺酸-3-甲基咪唑磷酸二氢盐的合成
在冰浴搅拌的条件下,将1 mol实施例1步骤一中产物缓慢滴加到1.18 mol浓磷酸(85%)中,生成液体产物,将产物中的水蒸干,得到无色粘稠液体[BHSO3MIm]+[H2PO4]-
实施例3
1-丁基磺酸-3-甲基咪唑三氟乙酸盐的合成
在冰浴搅拌的条件下,将1 mol实施例1步骤一中产物缓慢滴加到等摩尔量的三氟乙酸中,生成固体产物,将产物中的水蒸干,得到白色固体[BHSO3MIm]+[CF3CO2]-
实施例4
分别量取4 mL无水乙醇、5 mL正硅酸四乙酯于100 mL圆底烧瓶中,60 oC水浴中搅拌至溶液澄清。量取2.5 mL已配置好的6 mol/L的盐酸溶液慢慢滴加至上述溶液中成胶,滴加完毕继续搅拌1 h后陈化。陈化24 h后80 oC真空干燥4 h即可得到二氧化硅,标记为SiO2,产率为90%,
实施例 5
首先将0.066 g离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐加入到100 mL圆底烧瓶中,再加入4 mL无水乙醇磁力搅拌下将离子液体溶解后,取5 mL正硅酸四乙酯滴加到上述溶液中,60 oC水浴中继续搅拌30 min至溶液澄清。量取2.5 mL已配置好的6 mol/L的盐酸溶液慢慢滴加至上述溶液中成胶,滴加完毕继续搅拌1 h后陈化。陈化24 h后80 oC真空干燥4 h即可得到负载量为5%(质量分数)离子液体催化剂,标记为IL1/SiO2-5%,产率为80%,孔径在35 nm,比表面积为700 m3/g。
图1是本发明实施例5制得的IL1/SiO2-5%催化剂的氮气吸附等温线。如图1所示,该材料具有明显的IV型吸附等温线,说明材料具有典型的介孔结构。
图2是本发明实施例5制得的IL1/SiO2-5%催化剂TG/DTA图。从图中可以看出该催化剂的热分解分为两个部分,首先,从室温到200 oC范围内的失重对应于催化剂吸附的水分和其表面羟基缩和所失去的水的质量。其次,200-490 ºC 范围内的失重则对应于硅胶孔内表面与羟基直接相互作用的离子液体层的受热分解和硅胶中离子液体聚集主体的热分解阶段。
图3 是本发明实施例5制得的IL1/SiO2-5%催化剂透射电镜图。从图中可以看出,该催化材料具有丰富的孔道且分布比较均匀,与BET表征的结果一致,而丰富的纳米多孔结构有利于物质的扩散和传输,进一步提高了本发明制备催化剂的催化活性。
实施例6
除了将离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐的用量改为0.14 g,其它的步骤与实施例5相同,得到是离子液体负载量为10%(质量分数)的催化剂,标记为IL1/SiO2-10%,产率为85%,孔径在26 nm,比表面积600 m3/g。
实施例7
除了将离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐的用量改为0.22 g,其它的步骤与实施例5相同,得到是离子液体负载量为15%(质量分数)的催化剂,标记为IL1/SiO2-15%,产率为85%,孔径在15 nm,比表面积400 m3/g。
实施例8
除了将离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐的用量改为0.32 g,其它的步骤与实施例5相同,得到是离子液体负载量为20%(质量分数)的催化剂,标记为IL1/SiO2-20%,产率为85%,孔径在8 nm,比表面积300 m3/g。
实施例 9
除了将离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐改为1-丁基磺酸-3-甲基咪唑磷酸二氢盐,其它的步骤与实施例5相同,得到是离子液体负载量为5%(质量分数)的催化剂,标记为IL2/SiO2-5%,产率为85%。
实施例 10
除了将离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐改为1-丁基磺酸-3-甲基咪唑三氟乙酸盐,其它的步骤与实施例5相同,得到是离子液体负载量为5%(质量分数)的催化剂,标记为IL3/SiO2-5%,产率为85%。
实施例11
分别称取5.01 g异丙醇铝、25.5 g异丙醇、2.7 g十六烷基三甲基溴化铵和0.066g离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐于100 mL圆底烧瓶中,经搅拌均匀后向其中滴加13 mL 3 mol/L的盐酸溶液,滴加完毕后25 oC继续搅拌4 h,然后升温至80 oC搅拌2 h,110 oC真空干燥12 h即可得到氧化铝负载离子液体催化剂的初产物,将上述进一步在550oC焙烧5 h即可得到最终产物即氧化铝负载离子液体催化剂(负载质量百分数为5%),标记为IL1/Al2O3-5%,产率为75%。
实施例12
称取2.3 g正丙醇锆溶液(质量分数为70%)、0.032 g离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐于100 mL圆底烧瓶中,再加入3.1 mL无水乙醇40 oC水浴中搅拌至离子液体溶解后,向其中滴加2 mol/L的硝酸溶液,继续搅拌1 h后陈化24 h,150 oC真空干燥即可得到氧化锆负载离子液体催化剂的初产物。将上述初产物在550 oC条件下焙烧5 h即可得到最终产物(离子液体负载量为5%),标记为IL1/ZrO2-5%,产率为85%。
实施例13
首先称取0.066 g 离子液体1-丁基磺酸-3-甲基咪唑硫酸氢盐于100 mL圆底烧瓶中,量取26 mL无水乙醇将其搅拌溶解,然后将5.30 g钛酸四丁酯加入其中60 oC搅拌。分别量取5 mL去离子水、25 mL无水乙醇和8.5 mL乙酸于滴液漏斗中,混合均匀后滴加入烧瓶中,滴加完毕继续搅拌1 h,静置陈化24 h,80 oC真空干燥 4 h即可得到二氧化钛固载离子液体催化剂的初产物。将上述初产物550 oC焙烧5 h即可得到二氧化钛固载离子液体催化剂(负载质量百分数为5%),标记为IL1/TiO2-5%,产率为80%。
实施例14
催化反应:以季戊四醇和正己酸酯化反应得到季戊四醇四正己酸酯为模型反应,按照化学计量比4:1(摩尔比)分别称取1.8 g季戊四醇和6.13 g正己酸于100 mL三口烧瓶中以,加入0.2 g固载化的离子液体催化剂,2 mL 甲苯作为除水剂,158 oC反应10 h,产物经离心分离、旋转蒸发后参考国标GB/T4945-2002测量产物酸值,通过酸值对产物的酯化程度进行分析。其中酯化率的计算公式如下:
酯化率(%)= [ ( 1 – 产物酸值/初始酸值) × 酸醇摩尔比 ÷ 4 ] × 100%
表格1 不同催化剂催化季戊四醇与正己酸酯化反应性能测试
表格1中给出了不同载体负载的离子液体催化剂的催化活性区别,从表格中我们可以知道在二氧化硅负载的[BHSO3MIm]HSO4、[BSO3HMIm]H2PO4、[BSO3HMIm]CF3CO2这三种离子液体催化剂中,离子液体[BHSO3MIm]HSO4即IL1具有相对较好的催化活性,因此选用IL1作为活性中心对催化剂的载体进行筛选,结果表明载体二氧化硅固载的IL1催化剂具有最好的催化活性。
实施例15
催化反应:按照季戊四醇与正戊酸的摩尔比为4:1分别称取1.8 g季戊四醇和5.45g正戊酸于100 mL三口烧瓶中,加入0.2 g IL1/SiO2,2 mL 甲苯作为除水剂,155 oC反应10h,产物经离心分离、旋转蒸发后加入一定质量的三苯甲烷作为内标,通过核磁共振对产物进行定量分析。
实施例16
催化反应:除了将正戊酸改为等摩尔量的正己酸,反应温度为158 oC,其它均与实施例15相同。
实施例17
催化反应:除了将正戊酸改为等摩尔量的正庚酸,反应温度为160 oC,其它均与实施例15相同。
实施例18
催化反应:除了将正戊酸改为等摩尔量的正辛酸,反应温度为160 oC,其它均与实施例15相同。
实施例19
催化反应:除了将正戊酸改为等摩尔量的正壬酸,反应温度为165 oC,其它均与实施例15相同。
实施例20
催化反应:除了将正戊酸改为等摩尔量的正癸酸,反应温度为170 oC,其它均与实施例15相同。
表格2 离子液体催化剂IL1/SiO2催化合成酯类润滑基础油性能研究
表格2中列出了IL1/SiO2催化合成几种酯类基础润滑油的测试结果。从表格中我们看到该催化剂对于催化合成多元醇酯类基础润滑油表现出了优异的性能,在相对较低反应温度及较短时间内获得高于92%的酯化反应收率,且催化剂较易分离。对于其它结构季戊四醇酯的合成也表现出较好的催化性能,产物收率最高可达98%。

Claims (7)

1.一种固载化离子液体催化剂在合成酯类润滑油制备中的应用,其特征在于以季戊四醇、有机酸为原料,以介孔二氧化硅固载化离子液体为催化剂,以甲苯为除水剂,在155 oC ~170 oC反应10 h后经离心分离、旋转蒸发即得季戊四醇多元醇酯;
所述催化剂通过以下方法制备得到:
1)将离子液体、无水乙醇、正硅酸四乙酯在40 oC~70 oC恒温搅拌至离子液体溶解、溶液澄清,然后加入盐酸溶液,继续搅拌1 h ~ 3 h后静置陈化12 h ~ 24 h,即得介孔二氧化硅固载化离子液体催化剂的初产物;所述的离子液体为1-丁基磺酸-3-甲基咪唑硫酸氢盐、1-丁基磺酸-3-甲基咪唑磷酸二氢盐或1-丁基磺酸-3-甲基咪唑三氟乙酸盐;
2)将所述介孔二氧化硅固载化离子液体催化剂的初产物在80 oC ~ 100 oC真空干燥3h ~ 6 h,即得介孔二氧化硅固载化离子液体催化剂。
2.如权利要求1所述的应用,其特征在于所述无水乙醇与正硅酸四乙酯的摩尔比为 1~ 8:1。
3.如权利要求1所述的应用,其特征在于所述离子液体与正硅酸四乙酯的质量比为 7:500 ~ 23:330。
4.如权利要求1所述的应用,其特征在于所述盐酸溶液的摩尔浓度为 3 ~ 8 mol/L;盐酸溶液与无水乙醇的体积比为2:15 ~ 5:4。
5.如权利要求1所述的应用,其特征在于所述季戊四醇与有机酸的摩尔比为4:1。
6.如权利要求1所述的应用,其特征在于所述介孔二氧化硅固载化离子液体与季戊四醇的质量比为1:9。
7.如权利要求1所述的应用,其特征在于所述有机酸为正戊酸、正己酸、正庚酸、正辛酸、正壬酸或正癸酸。
CN201610117813.8A 2016-03-02 2016-03-02 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用 Active CN105879907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610117813.8A CN105879907B (zh) 2016-03-02 2016-03-02 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610117813.8A CN105879907B (zh) 2016-03-02 2016-03-02 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用

Publications (2)

Publication Number Publication Date
CN105879907A CN105879907A (zh) 2016-08-24
CN105879907B true CN105879907B (zh) 2019-06-14

Family

ID=57014148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610117813.8A Active CN105879907B (zh) 2016-03-02 2016-03-02 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用

Country Status (1)

Country Link
CN (1) CN105879907B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355650A (zh) * 2018-02-05 2018-08-03 南通龙翔新材料科技股份有限公司 一种用离子液体一步法合成介孔氧化硅负载钌的制备方法
CN109868177A (zh) * 2019-02-20 2019-06-11 张丹 一种高性能润滑脂及其制备方法
CN111672489A (zh) * 2020-06-01 2020-09-18 中国科学院兰州化学物理研究所 一种纳米二氧化钛催化剂及其在合成酯类润滑油制备中的应用
CN114405292B (zh) * 2022-03-01 2023-10-27 苏州仕净科技股份有限公司 采用离子液体修饰的复合纳滤膜及其制备方法与应用
CN115232045A (zh) * 2022-08-19 2022-10-25 松原百孚化工(唐山)有限公司 一种硫代酯类抗氧化剂生产工艺与硫代酯类抗氧化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381437A (zh) * 2002-04-29 2002-11-27 王伟松 季戊四醇油酸酯的合成方法
CN101024612A (zh) * 2007-03-16 2007-08-29 广东工业大学 一种酸性离子液体催化醇酸酯化方法
CN101147877A (zh) * 2007-10-26 2008-03-26 广东工业大学 一种负载离子液体的制备及其在催化醇酸酯化中的应用
CN101456813A (zh) * 2007-12-13 2009-06-17 中国科学院兰州化学物理研究所 一种合成多元醇脂肪酸酯的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201024259A (en) * 2008-12-24 2010-07-01 China Petrochemical Dev Corp Method for preparing organic carboxylic acid ester
CN101979143B (zh) * 2010-09-15 2012-07-04 湖南科茂林化有限公司 一种松香或其衍生物的酯化催化剂及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381437A (zh) * 2002-04-29 2002-11-27 王伟松 季戊四醇油酸酯的合成方法
CN101024612A (zh) * 2007-03-16 2007-08-29 广东工业大学 一种酸性离子液体催化醇酸酯化方法
CN101147877A (zh) * 2007-10-26 2008-03-26 广东工业大学 一种负载离子液体的制备及其在催化醇酸酯化中的应用
CN101456813A (zh) * 2007-12-13 2009-06-17 中国科学院兰州化学物理研究所 一种合成多元醇脂肪酸酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"固体超强酸催化合成季戊四醇油酸酯及其防锈性能研究";刘毅飞 等;《润滑油》;20110705;第26卷(第S1期);第33-36页 *

Also Published As

Publication number Publication date
CN105879907A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105879907B (zh) 一种固载化离子液体催化剂及其在合成酯类润滑油制备中的应用
Zhang et al. SO42−/ZrO2 supported on γ‐Al2O3 as a catalyst for CO2 desorption from CO2‐loaded monoethanolamine solutions
Zhang et al. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production
Shi et al. Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance
Wu et al. A solvent-free, one-step synthesis of sulfonic acid group-functionalized mesoporous organosilica with ultra-high acid concentrations and excellent catalytic activities
CN109603912B (zh) 一种金属有机框架结构催化剂及其应用
CN104822628A (zh) 具有改进形态的zsm-58晶体的合成
Das et al. Development of mesoscopically assembled sulfated zirconia nanoparticles as promising heterogeneous and recyclable biodiesel catalysts
CN105801615B (zh) 二氧化硅固载型双酸功能化离子液体及其制备方法和应用
Chang et al. Screening of optimum condition for combined modification of ultra-stable Y zeolites using multi-hydroxyl carboxylic acid and phosphate
CN105271294B (zh) 锡硅分子筛及其合成方法和应用以及一种苯酚羟基化的方法
CN102698812A (zh) 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN107188849B (zh) 用于苯羟基化反应的介孔离子液体杂多酸盐催化剂及其制备方法和应用
CN106669841B (zh) 一种具有介孔结构的基于磷钨酸及磺酸功能化的有机硅复合材料及制备方法
Aneu et al. Porous silica modification with sulfuric acids and potassium fluorides as catalysts for biodiesel conversion from waste cooking oils
CN103964459A (zh) 一种分子筛的改性方法
CN104528743A (zh) 一种高比表面积介孔一维二氧化硅纳米纤维的制备方法
Tabrizi et al. Synthesis of hexyl levulinate as a potential fuel additive from levulinic acid over a solid acid catalyst
CN101024187A (zh) 一锅合成的超强酸介孔材料及制备方法
CN106905150B (zh) 一种乙酸正丁酯的合成方法
CN101759190A (zh) 强酸性条件下用硅酸钠和阳离子表面活性剂合成有序介孔二氧化硅
CN100534904C (zh) 采用熔盐煅烧法制备纳米Al2O3的方法
US9062081B1 (en) Preparation of phenol- or thiophenyl-sulfonic acid functionalized solid acids
CN106748731B (zh) 一种具有MIL-88B(Fe)结构的配合物纳米棒的制备方法
Wang et al. Preparation, characterization and application of ordered mesoporous sulfated zirconia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240219

Address after: No. 36 Jinshui Road, Laoshan District, Qingdao City, Shandong Province, 266199

Patentee after: QINGDAO LUBEMATER LUBRICATION MATERIALS TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 730000 No. 18 Tianshui Middle Road, Chengguan District, Gansu, Lanzhou

Patentee before: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences

Country or region before: China

TR01 Transfer of patent right