CN105868711B - 一种基于稀疏低秩的人体行为识别方法 - Google Patents
一种基于稀疏低秩的人体行为识别方法 Download PDFInfo
- Publication number
- CN105868711B CN105868711B CN201610184336.7A CN201610184336A CN105868711B CN 105868711 B CN105868711 B CN 105868711B CN 201610184336 A CN201610184336 A CN 201610184336A CN 105868711 B CN105868711 B CN 105868711B
- Authority
- CN
- China
- Prior art keywords
- rank
- low
- value
- motion
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2136—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on sparsity criteria, e.g. with an overcomplete basis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610184336.7A CN105868711B (zh) | 2016-03-28 | 2016-03-28 | 一种基于稀疏低秩的人体行为识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610184336.7A CN105868711B (zh) | 2016-03-28 | 2016-03-28 | 一种基于稀疏低秩的人体行为识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105868711A CN105868711A (zh) | 2016-08-17 |
CN105868711B true CN105868711B (zh) | 2020-04-17 |
Family
ID=56625069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610184336.7A Active CN105868711B (zh) | 2016-03-28 | 2016-03-28 | 一种基于稀疏低秩的人体行为识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105868711B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107092875B (zh) * | 2017-04-11 | 2020-02-07 | 福州大学 | 一种新的场景识别方法 |
CN107766790B (zh) * | 2017-08-31 | 2021-04-30 | 电子科技大学 | 一种基于局部约束低秩编码的人体行为识别方法 |
TWI662514B (zh) | 2018-09-13 | 2019-06-11 | 緯創資通股份有限公司 | 跌倒偵測方法以及使用此方法的電子系統 |
CN111414868B (zh) * | 2020-03-24 | 2023-05-16 | 北京旷视科技有限公司 | 时序动作片段的确定方法、动作检测方法及装置 |
CN111639674B (zh) * | 2020-04-29 | 2023-10-31 | 安徽师范大学 | 一种基于半监督学习图像聚类的数据处理方法和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103440471A (zh) * | 2013-05-05 | 2013-12-11 | 西安电子科技大学 | 基于低秩表示的人体行为识别方法 |
CN104036287A (zh) * | 2014-05-16 | 2014-09-10 | 同济大学 | 一种基于人类运动显著轨迹的视频分类方法 |
CN104298977A (zh) * | 2014-10-24 | 2015-01-21 | 西安电子科技大学 | 一种基于不相关性约束的低秩表示人体行为识别方法 |
-
2016
- 2016-03-28 CN CN201610184336.7A patent/CN105868711B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103440471A (zh) * | 2013-05-05 | 2013-12-11 | 西安电子科技大学 | 基于低秩表示的人体行为识别方法 |
CN104036287A (zh) * | 2014-05-16 | 2014-09-10 | 同济大学 | 一种基于人类运动显著轨迹的视频分类方法 |
CN104298977A (zh) * | 2014-10-24 | 2015-01-21 | 西安电子科技大学 | 一种基于不相关性约束的低秩表示人体行为识别方法 |
Non-Patent Citations (1)
Title |
---|
"基于结构化低秩表示的人体行为识别方法";贾航华;《中国优秀硕士学位论文全文数据库信息科技辑》;20160315;第I138-6657页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105868711A (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109344736B (zh) | 一种基于联合学习的静态图像人群计数方法 | |
CN108108751B (zh) | 一种基于卷积多特征和深度随机森林的场景识别方法 | |
CN105868711B (zh) | 一种基于稀疏低秩的人体行为识别方法 | |
CN107085716A (zh) | 基于多任务生成对抗网络的跨视角步态识别方法 | |
CN104123560B (zh) | 基于相位编码特征和多度量学习的模糊人脸图像验证方法 | |
CN103136516B (zh) | 可见光与近红外信息融合的人脸识别方法及系统 | |
CN104298977B (zh) | 一种基于不相关性约束的低秩表示人体行为识别方法 | |
CN103699874B (zh) | 基于surf流和lle稀疏表示的人群异常行为识别方法 | |
CN110097029B (zh) | 基于Highway网络多视角步态识别的身份认证方法 | |
CN109376787B (zh) | 流形学习网络及基于其的计算机视觉图像集分类方法 | |
CN109241813B (zh) | 基于判别稀疏保持嵌入的非约束人脸图像降维方法 | |
CN103177265B (zh) | 基于核函数与稀疏编码的高清图像分类方法 | |
CN104298974A (zh) | 一种基于深度视频序列的人体行为识别方法 | |
CN105069478A (zh) | 基于超像素张量稀疏编码的高光谱遥感地物分类方法 | |
CN111414958B (zh) | 一种视觉词袋金字塔的多特征图像分类方法及系统 | |
Puthenputhussery et al. | A sparse representation model using the complete marginal fisher analysis framework and its applications to visual recognition | |
CN103761537A (zh) | 基于低秩优化特征字典模型的图像分类方法 | |
CN107316005A (zh) | 基于稠密轨迹核协方差描述子的行为识别方法 | |
CN108280421A (zh) | 基于多特征深度运动图的人体行为识别方法 | |
CN105160290A (zh) | 一种基于改进型稠密轨迹的移动边界采样的行为识别方法 | |
CN113095305A (zh) | 一种医药异物高光谱分类检测方法 | |
CN108875448B (zh) | 一种行人再识别方法及装置 | |
CN108985161A (zh) | 一种基于拉普拉斯正则化的低秩稀疏表征图像特征学习方法 | |
Sheng et al. | Action recognition using direction-dependent feature pairs and non-negative low rank sparse model | |
CN103310208A (zh) | 基于局部几何视觉短语描述的鉴别性人脸姿态识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210518 Address after: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041 Patentee after: Houpu clean energy Co.,Ltd. Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan) Patentee before: University of Electronic Science and Technology of China |
|
TR01 | Transfer of patent right | ||
CP01 | Change in the name or title of a patent holder |
Address after: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041 Patentee after: Houpu clean energy (Group) Co.,Ltd. Address before: No.3, 11th floor, building 6, no.599, shijicheng South Road, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610041 Patentee before: Houpu clean energy Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |