CN105867301A - 一种基于误差适应的数控机床温度补偿方法 - Google Patents
一种基于误差适应的数控机床温度补偿方法 Download PDFInfo
- Publication number
- CN105867301A CN105867301A CN201610236120.0A CN201610236120A CN105867301A CN 105867301 A CN105867301 A CN 105867301A CN 201610236120 A CN201610236120 A CN 201610236120A CN 105867301 A CN105867301 A CN 105867301A
- Authority
- CN
- China
- Prior art keywords
- error
- temperature difference
- current
- numerical control
- control machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37509—Intelligent sensor, incorporation temperature compensation
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种基于误差适应的数控机床温度补偿方法,包括以下步骤:S1、建立温差计算模型;S2、获得机床目标运动轴运动状态,根据运动状态结合温差计算模型计算当前温差;S3、根据当前温差计算当前形变量;S4、获得误差允许范围;S5、判断当前形变量是否超出误差允许范围;S6、根据判断结果对目标运动轴进行误差补偿。本发明提供的一种基于误差适应的数控机床温度补偿方法,通过误差补偿,有利于保证机床加工精度,同时,通过误差允许范围比较,避免了大量的误差补偿的冗余工作,有利于提高机床工作效率。
Description
技术领域
本发明涉及机床技术领域,尤其涉及一种基于误差适应的数控机床温度补偿方法。
背景技术
数控机床作为一种半自动化批量生产工具,在制造业中占有举足轻重的地位。但是,机床在运转时,传动部件之间存在相对运动,机床丝杆、螺母座、轴承等摩擦产生发热而导致热胀冷缩,从而造成机床三轴位移的变化,导致加工工件出现误差。要解决以上问题就需要监测各传动部件的温度变化,然后根据各传动部件形变与温度变化的相对关系,计算出机床位移的误差值,然后补偿到数控系统中,达到对机床温升补偿的目的。
目前,出现了很多在机床上预装温度传感器监控温差的技术,但是大部分安装位置易与机床运行产生干涉,影响机床工作,而且如果发生损坏很难维修更换。
发明内容
基于背景技术存在的技术问题,本发明提出了一种基于误差适应的数控机床温度补偿方法。
本发明提出的一种基于误差适应的数控机床温度补偿方法,包括以下步骤:
S1、建立温差计算模型;
S2、获得机床目标运动轴运动状态,根据运动状态结合温差计算模型计算当前温差;
S3、根据当前温差计算当前形变量;
S4、获得误差允许范围;
S5、判断当前形变量是否超出误差允许范围;
S6、根据判断结果对目标运动轴进行误差补偿。
优选地,步骤S1中,温差计算模型为:其中,Ti为当前温差,Ti-1为运动轴最近变速时的温差,Vi为运动轴当前运动速度,Vi-1为运动轴最近变速前的运动速度,Δt为当前运动速度下运动时间;
当Vi>Vi-1G,G(Vi)>1;当Vi<Vi-1G,0<G(Vi)<1;
f(Δt)=k×Δt,k为计算常数并为正数。
优选地,当Vi>Vi-1,G(Vi)=Vi/(Vi-Vi-1);当Vi<Vi-1,G(Vi)=(Vi-1-Vi)/Vi-1。
优选地,还包括步骤S7、预设形变温差映射集合,形变温差映射集合包括多个子集,每一个子集包括一个温差值和一个形变值;步骤S3具体为:根据当前温差获得对应的形变值作为目标运动轴当前形变量。
优选地,步骤S4中误差允许范围包括舍量值和增量值,舍量值为工件允许最大缺失量,增量值为工件允许最大延伸量;步骤S5中,根据运动轴形变方向将当前形变量与舍量值或增量值进行比较,并根据比较结果判断当前形变量是否超出误差允许范围。
优选地,步骤S6中,当当前形变量超出误差允许范围,根据当前形变量对目标运动轴进行运动补偿。
本发明提供的一种基于误差适应的数控机床温度补偿方法,通过误差补偿,有利于保证机床加工精度,同时,通过误差允许范围比较,避免了大量的误差补偿的冗余工作,有利于提高机床工作效率。
本发明中,通过在同型号的机床上预装温度传感器,然后通过温度传感器获得各种运动状态下的温差,并根据运动状态和温差的对应关系推算温差计算模型。然后根据温差计算模型实时计算当前温差,解决了没有预装温度传感器的机床的温差获取问题。
本发明中,通过温差计算模型相当于可间接从运动状态获得机床形变量,而运动状态可直接从机床数控系统获得。故而,本发明将机床形变量的计算实现了自动化和智能化。
附图说明
图1为本发明提出的一种基于误差适应的数控机床温度补偿方法流程图。
具体实施方式
参照图1,本发明提出的一种基于误差适应的数控机床温度补偿方法,包括以下步骤。
S1、建立温差计算模型。
本实施方式中,温差计算模型的获得,可首先在同型号的机床上预装温度传感器,然后通过温度传感器获得各种运动状态下的温差,并根据运动状态和温差的对应关系推算温差计算模型。
温差计算模型为:其中,Ti为当前温差,Ti-1为运动轴最近变速时的温差,Vi为运动轴当前运动速度,Vi-1为运动轴最近变速前的运动速度,Δt为当前运动速度下运动时间;
当Vi>Vi-1,G(Vi)=Vi/(Vi-Vi-1);当Vi<Vi-1,G(Vi)=(Vi-1-Vi)/Vi-1;
f(Δt)=k×Δt,k为计算常数并为正数。
由于温差是机床运动摩擦生热导致的,故而其恒大于0。且,机床温度不可能无限上升,故而温差推算模块中预设有温差上限值Tmax,0≤Ti≤Tmax。
机床运动过程中,每一个恒定速度下,运动轴遭受的摩擦力都不相等,故而,各运动轴每一个运动速度Vi均对应有一个温差上限值Ti-max,运动速度Vi下当前温差0<Ti≤Ti-max。
值得注意的是,运动轴变速时,如果Vi<Vi-1,则减速后,运动轴有一个较短暂的散热过程,该过程中当Ti=Ti-max,运动轴温差趋于稳定。即,Vi<Vi-1时,
S2、获得机床目标运动轴运动状态,根据运动状态结合温差计算模型计算当前温差。
本实施方式中,在计算起始温差T1(i=1)时,T0=0,在每一次变速时,i逐渐递增,根据公式计算当前温差。值得注意的时,本实施方式中对温差Ti进行实时计算,且,在机床变速时保存变速时刻各运动轴的温度Ti-1故而,每一次机床变速后,都可根据当前运动速度和当前运动速度持续时间直接计算当前温差Ti。
S7、预设形变温差映射集合,形变温差映射集合包括多个子集,每一个子集包括一个温差值和一个形变值。
S3、根据当前温差计算当前形变量。具体地,获得当前温差后,选择与当前温差相等或者相近的温差值对应的形变值作为当前形变量。
本步骤中,温差值和形变值的对应关系可通过实验测量获得,需要消耗大量的人力成本和时间成本收集排列形变温差映射集合,如此,获得地形变值的精度更高。但是,由于人力有限,很难获得每一个温度差下的当前形变量,而且,当相邻两个温差差值为0.1或者0.01时,两个温差值对应的形变值实际上不可能有区别。故而,根据温差差值较小情况下,形变量不变的特性,本实施方式中,可跳跃性选择温差值,然后获得与当前温差差值最小的温差值对应的形变值作为当前形变量。如果,与当前温差差值最小的温差值有两个,则计算该两个温差值对应的形变值的均值作为当前形变值。
S4、获得误差允许范围。本步骤中,误差允许范围包括舍量值和增量值,舍量值为工件允许最大缺失量,增量值为工件允许最大延伸量。
S5、判断当前形变量是否超出误差允许范围。
本步骤中可先根据形变量方向确定形变导致工件缺失还是增加,当工件缺失时与舍量值比较,当工建增加时与增量值比较。只有当工件缺失时形变量小于舍量值或者当工作增加时形变量小于增量值,才可判断当前形变量未超出误差允许范围。
S6、根据判断结果对目标运动轴进行误差补偿。
本步骤中,当当前形变量未超出误差允许范围,不对目标运动轴做误差补偿;只有当当前形变量超出误差允许范围,才对目标运动轴进行误差补偿。
本步骤中,进行误差补偿的可通过机床数控系统完成,例如机床数控系统获得当前形变量,然后根据当前形变量对待输出的运动量进行修正后输出。
本实施方式中,通过误差补偿,有利于保证机床加工精度,同时,通过误差允许范围比较,避免了大量的误差补偿的冗余工作,有利于提高机床工作效率。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (6)
1.一种基于误差适应的数控机床温度补偿方法,其特征在于,包括以下步骤:
S1、建立温差计算模型;
S2、获得机床目标运动轴运动状态,根据运动状态结合温差计算模型计算当前温差;
S3、根据当前温差计算当前形变量;
S4、获得误差允许范围;
S5、判断当前形变量是否超出误差允许范围;
S6、根据判断结果对目标运动轴进行误差补偿。
2.如权利要求1所述的基于误差适应的数控机床温度补偿方法,其特征在于,步骤S1中,温差计算模型为:其中,Ti为当前温差,Ti-1为运动轴最近变速时的温差,Vi为运动轴当前运动速度,Vi-1为运动轴最近变速前的运动速度,Δt为当前运动速度下运动时间;
当Vi>Vi-1G,G(Vi)>1;当Vi<Vi-1G,0<G(Vi)<1;
f(Δt)=k×Δt,k为计算常数并为正数。
3.如权利要求2所述的基于误差适应的数控机床温度补偿方法,其特征在于,当Vi>Vi-1,G(Vi)=Vi/(Vi-Vi-1);当Vi<Vi-1,G(Vi)=(Vi-1-Vi)/Vi-1。
4.如权利要求1所述的基于误差适应的数控机床温度补偿方法,其特征在于,还包括步骤S7、预设形变温差映射集合,形变温差映射集合包括多个子集,每一个子集包括一个温差值和一个形变值;步骤S3具体为:根据当前温差获得对应的形变值作为目标运动轴当前形变量。
5.如权利要求1所述的基于误差适应的数控机床温度补偿方法,其特征在于,步骤S4中误差允许范围包括舍量值和增量值,舍量值为工件允许最大缺失量,增量值为工件允许最大延伸量;步骤S5中,根据运动轴形变方向将当前形变量与舍量值或增量值进行比较,并根据比较结果判断当前形变量是否超出误差允许范围。
6.如权利要求5所述的基于误差适应的数控机床温度补偿方法,其特征在于,步骤S6中,当当前形变量超出误差允许范围,根据当前形变量对目标运动轴进行运动补偿。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610236120.0A CN105867301B (zh) | 2016-04-18 | 2016-04-18 | 一种基于误差适应的数控机床温度补偿方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610236120.0A CN105867301B (zh) | 2016-04-18 | 2016-04-18 | 一种基于误差适应的数控机床温度补偿方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105867301A true CN105867301A (zh) | 2016-08-17 |
CN105867301B CN105867301B (zh) | 2018-05-15 |
Family
ID=56632266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610236120.0A Expired - Fee Related CN105867301B (zh) | 2016-04-18 | 2016-04-18 | 一种基于误差适应的数控机床温度补偿方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105867301B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107168243A (zh) * | 2017-06-26 | 2017-09-15 | 安徽省捷甬达智能机器有限公司 | 一种基于分时间温度检测的机床运动补偿系统 |
CN107219819A (zh) * | 2017-06-26 | 2017-09-29 | 安徽省捷甬达智能机器有限公司 | 一种基于平均温差分析的机床运动补偿方法 |
CN107219820A (zh) * | 2017-06-26 | 2017-09-29 | 安徽省捷甬达智能机器有限公司 | 一种基于时间分析的机床运动补偿方法 |
CN107315390A (zh) * | 2017-06-26 | 2017-11-03 | 安徽省捷甬达智能机器有限公司 | 一种基于多机床温差分析的机床运动补偿系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0878267A4 (en) * | 1996-11-11 | 2004-04-21 | Fanuc Ltd | CORRECTION METHOD FOR MACHINE TOOL THERMAL DISPLACEMENT |
JP2006065716A (ja) * | 2004-08-30 | 2006-03-09 | Mitsubishi Heavy Ind Ltd | 変形誤差の補正方法 |
CN1762655A (zh) * | 2004-10-22 | 2006-04-26 | 山崎马扎克公司 | 机床的热位移修正方法和热位移修正装置 |
CN101530974A (zh) * | 2008-03-13 | 2009-09-16 | 兄弟工业株式会社 | 机床的热位移修正方法和热位移修正装置 |
CN104972360A (zh) * | 2014-04-08 | 2015-10-14 | 发那科株式会社 | 机床的热位移补偿装置 |
CN105094053A (zh) * | 2014-05-22 | 2015-11-25 | 山东理工大学 | 一种基于蚁群神经网络的机床热误差建模方法 |
CN105415092A (zh) * | 2016-01-07 | 2016-03-23 | 宁波天瑞精工机械有限公司 | 数控机床的电主轴的温度补偿方法 |
-
2016
- 2016-04-18 CN CN201610236120.0A patent/CN105867301B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0878267A4 (en) * | 1996-11-11 | 2004-04-21 | Fanuc Ltd | CORRECTION METHOD FOR MACHINE TOOL THERMAL DISPLACEMENT |
JP2006065716A (ja) * | 2004-08-30 | 2006-03-09 | Mitsubishi Heavy Ind Ltd | 変形誤差の補正方法 |
CN1762655A (zh) * | 2004-10-22 | 2006-04-26 | 山崎马扎克公司 | 机床的热位移修正方法和热位移修正装置 |
CN101530974A (zh) * | 2008-03-13 | 2009-09-16 | 兄弟工业株式会社 | 机床的热位移修正方法和热位移修正装置 |
CN104972360A (zh) * | 2014-04-08 | 2015-10-14 | 发那科株式会社 | 机床的热位移补偿装置 |
CN105094053A (zh) * | 2014-05-22 | 2015-11-25 | 山东理工大学 | 一种基于蚁群神经网络的机床热误差建模方法 |
CN105415092A (zh) * | 2016-01-07 | 2016-03-23 | 宁波天瑞精工机械有限公司 | 数控机床的电主轴的温度补偿方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107168243A (zh) * | 2017-06-26 | 2017-09-15 | 安徽省捷甬达智能机器有限公司 | 一种基于分时间温度检测的机床运动补偿系统 |
CN107219819A (zh) * | 2017-06-26 | 2017-09-29 | 安徽省捷甬达智能机器有限公司 | 一种基于平均温差分析的机床运动补偿方法 |
CN107219820A (zh) * | 2017-06-26 | 2017-09-29 | 安徽省捷甬达智能机器有限公司 | 一种基于时间分析的机床运动补偿方法 |
CN107315390A (zh) * | 2017-06-26 | 2017-11-03 | 安徽省捷甬达智能机器有限公司 | 一种基于多机床温差分析的机床运动补偿系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105867301B (zh) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105867301A (zh) | 一种基于误差适应的数控机床温度补偿方法 | |
CN108454626B (zh) | 一种车辆的自适应巡航纵向调节控制方法及系统 | |
CN107869383B (zh) | 汽车发动机热管理系统建模及控制方法 | |
CN109656198B (zh) | 一种进给轴热误差自适应补偿方法 | |
CN105867303A (zh) | 一种参考误差的机床温差补偿系统 | |
CN105798695B (zh) | 一种机床温升补偿方法 | |
CN1244032C (zh) | 原料工业设备或原料加工工业设备的控制系统 | |
CN105892401A (zh) | 一种基于温差的机床运动补偿方法 | |
CN106979061A (zh) | 一种发动机电子水泵控制方法及系统 | |
CN111522230B (zh) | Mimo异因子紧格式无模型控制方法 | |
CN111522232B (zh) | Mimo异因子全格式无模型控制方法 | |
CN103934278A (zh) | 一种热轧精轧带钢厚度控制方法 | |
CN108594761A (zh) | 一种基于初始温度保持策略的电主轴热误差主动控制方法 | |
WO2024051389A1 (zh) | 一种光伏跟踪轴的控制方法、装置及光伏跟踪系统 | |
CN111058911A (zh) | 基于环境湿球温度的火力发电机组冷端背压实时控制方法 | |
CN103362738A (zh) | 变速变桨风力发电机组基于前馈解耦控制的最大功率追踪控制方法 | |
CN102540884A (zh) | 工具机热误差智能调适装置及其方法 | |
CN105189990A (zh) | 用于发动机控制设备的异常检测设备及用于发动机控制设备的异常检测方法 | |
CN105910816A (zh) | 一种高速滚珠丝杠副双螺母预紧力控制装置及方法 | |
CN108452895B (zh) | 一种球磨机节能控制方法 | |
CN1908382A (zh) | 一种汽轮机转子等效应力安全裕度系数在线监控方法 | |
Feng et al. | Self-tuning-parameter fuzzy PID temperature control in a large hydraulic system | |
CN113357036B (zh) | 一种发动机转速调节方法及装置 | |
CN112799350A (zh) | 一种机床热机状态监测反馈系统、方法及机床 | |
CN110018669A (zh) | 五轴数控机床解耦的轮廓误差控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 241100 No. 379, New Wuhu Economic Development Zone, Wuhu County, Anhui Province Patentee after: Anhui Jieyongda Intelligent Machinery Co., Ltd. Address before: 241100 Jing Er Road, New Wuhu Economic Development Zone, Wuhu County, Wuhu City, Anhui Province Patentee before: ANHUI JIEYONGDA INTELLIGENT MACHINE CO., LTD. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180515 Termination date: 20200418 |