CN105866758B - 基于块白化杂波抑制的时频双特征海面小目标检测方法 - Google Patents
基于块白化杂波抑制的时频双特征海面小目标检测方法 Download PDFInfo
- Publication number
- CN105866758B CN105866758B CN201610194960.5A CN201610194960A CN105866758B CN 105866758 B CN105866758 B CN 105866758B CN 201610194960 A CN201610194960 A CN 201610194960A CN 105866758 B CN105866758 B CN 105866758B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mover
- training
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 89
- 239000013598 vector Substances 0.000 claims abstract description 45
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 10
- 230000009977 dual effect Effects 0.000 claims description 21
- 230000002087 whitening effect Effects 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000009499 grossing Methods 0.000 claims description 14
- 230000001629 suppression Effects 0.000 claims description 5
- 230000021615 conjugation Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 abstract 3
- 230000010287 polarization Effects 0.000 description 15
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000013179 statistical model Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000034699 Vitreous floaters Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于块白化杂波抑制的时频双特征海面小目标检测方法,主要解决现有技术在较短观测时间内对海面小目标检测概率较低的问题。其实现过程是:1对纯杂波数据的训练单元时间序列和参考单元时间序列进行块白化;2提取训练单元的时频双特征向量;3利用提取的特征向量组成凸包,并利用凸包学习算法得到判决区域;4提取待检测单元的时频双特征向量;5根据构成判决区域的凸包和待检测单元的时频双特征向量,计算检测统计量;6根据检测统计量判断是否存在目标,若检测统计量大于零,判定目标存在,反之,判定目标不存在。本发明在较短观测时间内可对海杂波背景下漂浮小目标进行有效检测,可用于对海面漂浮、慢速小目标的识别与跟踪。
Description
技术领域
本发明属于信号处理技术领域,具体涉及一种目标检测方法,可用于对海面漂浮、慢速小目标的识别与跟踪。
背景技术
海杂波是雷达接收到的从海表面反射回来的雷达回波,海面搜索雷达在对海探测时,特别是对海面上诸如小船、浮冰、漂浮物等漂浮小目标进行检测时,难免会受到海杂波的影响。海杂波的强度会随雷达参数、雷达照射方向、海况等的不同而发生改变。在高分辨海杂波背景下,杂波呈现出较强的非高斯特性,海尖峰的存在导致利用时域能量累积的目标检测方法出现大量虚警,因此,漂浮小目标很难通过传统能量累积的方法进行检测。
为解决这一难题,很多学者对此做出了大量的研究。随着海杂波统计模型的不断完善,许多自适应检测方法被提出,该类方法将海杂波建模为复合高斯模型,由于海杂波的空时非平稳特性,该类方法需要先对海杂波进行抑制,具有一定的局限性。文献“Hu,J.,Tung,W.W.and Gao,J.B.:Detection of low observable targets within sea clutterby structure function based multifractal analysis,IEEE Trans.AntennasPropag.,54(1):136-143,2006.”中提出基于海面分形特征的检测方法,可在观测时间较长时有效的检测目标,然而雷达通常无法对单一波位进行长时间的驻留观测,因此基于分形特征的检测器很难推广到实际应用中。
对海面漂浮小目标的检测,很多方法以海杂波满足某种统计模型为假设前提,然而现有统计模型很难描述海杂波的复杂特性,这导致检测结果具有一定的局限性;自适应检测方法在海况较复杂时,即当目标与杂波在多普勒域无法区分时,无法对海面漂浮或低速小目标进行检测;基于分形的目标检测方法在观测时间较长时能达到很好的检测结果,当观测时间缩短时,检测性能会有明显下降,无法满足对海搜索雷达的要求。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种基于块白化杂波抑制的时频双特征海面小目标检测方法,以提高对海面漂浮小目标的检测性能,满足雷达对海搜索的要求。
为实现上述目的,本发明的技术方案包括如下:
(1)从回波数据中选取训练单元、参考单元和待检测单元:
利用雷达发射机对海面发送信号,利用雷达接收机接收由海面反射回来的回波数据,该回波数据分为纯杂波数据和包含目标的回波数据;
从纯杂波数据中选取部分距离单元作为一组训练单元,该训练单元时间序列z为:z=[z(1),z(2),…,z(N)],从训练单元周围选取Q个临近单元作为参考单元,该参考单元时间序列zp为:zp=[zp(1),zp(2),…,zp(N)],p=1,2,…,Q,Q为参考单元数,N为时间序列的长度;
从包含目标的回波数据中选取部分距离单元作为待检测单元T;
(2)对纯杂波回波数据的训练单元时间序列z和参考单元时间序zp进行块白化,得到白化后的训练单元时间序列和白化后的参考单元时间序列
(3)利用白化后的训练单元时间序列和白化后的参考单元时间序列提取训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z)这两种特征,构造纯杂波数据的时频双特征向量ξ:ξ=[ξ1(z),ξ2(z)]T,其中[·]T表示对矩阵进行转置;
(4)利用纯杂波数据的时频双特征向量ξ,在二维特征空间中获得二维凸包CH(S),并在给定虚警概率PF下,利用贪婪凸包学习算法对二维凸包CH(S)进行收缩,并将收缩后的凸包作为检测判决区域Ω;
(5)对待检测单元T提取相对脊能量ξ1(T)和相对脊全变差ξ2(T)这两种特征,构造待检测单元的时频双特征向量:ξT=[ξ1(T),ξ2(T)]T;
(6)根据构成检测判决区域Ω的凸包特性和待检测单元的时频双特征向量ξT=[ξ1(T),ξ2(T)]T,计算检测统计量ω:
其中,min{·}表示取最小值,det(·)表示求矩阵行列式,r为组成凸包的顶点的个数,xj表示第j个凸包顶点的相对脊能量,yj表示第j个凸包顶点的相对脊全变差,j=1,2,...,r;
(7)根据检测统计量ω的大小判断目标是否存在:如果检测统计量ω大于零,表明待检测单元的时频双特征向量ξT在检测判决区域Ω外,则判定目标存在,反之,判定目标不存在。
本发明与现有技术比较具有以下优点:
1)本发明从海杂波序列中提取出两种不同的时频特征,并联合利用这两种时频特征对纯海杂波数据与含有目标的回波数据的区分能力完成对海面目标的检测,相比利用单一特征的传统检测方法,可以在较短观测时间内获得更好的检测效果。
2)本发明利用了贪婪凸包学习算法,由于计算量小,可以迅速的得到检测判决区域,提高了检测器的训练速度,更适合运用于实际应用中。
3)本发明利用块白化来抑制杂波,同时增强目标回波,利用平均散斑协方差矩阵来代替直接估计得到的协方差矩阵,有效减小了白化过程中目标能量的分块效应。
附图说明
图1是本发明的实现流程图;
图2是在观测时间为512ms时,用本发明与现有两种检测方法在四种极化下的检测性能比较图。
图3是在观测时间为1024ms时,用本发明与现有两种检测方法在四种极化下的检测性能比较图。
具体实施方式
参照图1,本发明分为两部分,第一部分为训练部分,第二部分为检测部分,其具体步骤如下:
一.训练部分
步骤1,获取回波数据,并从回波数据中选取训练单元、参考单元和待检测单元。
利用雷达发射机对海面发送信号,利用雷达接收机接收由海面反射回来的回波数据,该回波数据分为纯杂波数据和包含目标的回波数据;
从纯杂波数据中选取部分距离单元作为一组训练单元,该训练单元时间序列z为:z=[z(1),z(2),…,z(N)],从训练单元周围选取Q个临近单元作为参考单元,该参考单元时间序列zp为:zp=[zp(1),zp(2),…,zp(N)],p=1,2,…,Q,Q为参考单元数,N为时间序列的长度;
从包含目标的回波数据中选取部分距离单元作为待检测单元T。
步骤2,对纯杂波回波数据的训练单元时间序列z和参考单元时间序zp进行块白化。
块白化是指:将时间序列分为互不重叠的短向量块,利用参考单元时间序列估计出的每一短向量块的散斑协方差矩阵,对每个短向量块进行白化,其步骤如下:
(2a)将训练单元时间序列z和参考单元时间序列zp分别平均分成长度为M的互不重叠的短向量,即:
z=[z1,z2,…,zm,…,zN/M],
zp=[zp,1,zp,2,…,zp,m,…,zp,N/M],p=1,2,…,Q
其中,zm表示训练单元时间序列的第m个短向量,zp,m表示参考单元时间序列的第m个短向量,m=1,2,…,N/M;
(2b)利用上述每个短向量,对训练单元时间序列z和参考单元时间序zp进行块白化,得到白化后的训练单元时间序列和白化后的参考单元时间序列
其中,表示白化后的训练单元时间序列的第m个短向量,表示白化后的参考单元时间序列的第m个短向量,表示参考单元时间序列的第m个短向量zp,m的散斑协方差矩阵估计;
参考单元时间序列的第m个短向量zp,m的散斑协方差矩阵估计可通过现有的最大似然估计法、归一化样本协方差矩阵估计法、近似最大似然估计法中的任意一种方法估计得到,本实例采用近似最大似然估计法得到zp,m的散斑协方差矩阵估计
步骤3,利用上述白化后的训练单元时间序列和白化后的参考单元时间序列提取训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z)这两种特征,构造纯杂波数据的时频双特征向量ξ。
(3a)计算训练单元的平滑维格纳-威利分布和参考单元的平滑维格纳-威利分布
其中,上标*表示共轭,g(m')为时间平滑窗,m'表示时间窗取值点,其取值范围为-E到E,h(k)为频率平滑窗,k表示频率窗取值点,其取值范围为-F到F,E表示时间平滑窗长的一半,F表示频率平滑窗长的一半,Δfd为归一化多普勒频率的采样间隔,n=1,2,…,N,l=1,2,…,N;
这里的时间平滑窗和频率平滑窗采用但不限于汉宁窗,海明窗,布莱克曼窗,凯瑟窗,本实例采用长度为31的凯瑟窗作为时间平滑窗,长度为63的凯瑟窗作为频率平滑窗;
(3b)利用训练单元的平滑维格纳-威利分布和参考单元的平滑维格纳-威利分布计算训练单元的时频脊Rd(n),训练单元的脊全变差TV(z),参考单元的时频脊Rd(n,p)以及参考单元的脊全变差TV(zp):
其中,表示取最大值时对应l的值;
(3c)利用训练单元的时频脊Rd(n)和参考单元的时频脊Rd(n,p),计算训练单元的脊能量RE(z)和参考单元的脊能量RE(zp):
(3d)计算训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z):
(3e)利用训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z),构造纯杂波数据的时频双特征向量ξ:
ξ=[ξ1(z),ξ2(z)]T,
其中,[·]T表示对矩阵进行转置。
步骤4,利用纯杂波数据的时频双特征向量ξ,通过凸包学习算法确定检测判决区域Ω。
现有的凸包学习算法有:快速凸包学习算法,贪婪凸包学习算法,Graham扫描法,礼品包裹法,本实例采用贪婪凸包学习算法确定检测判决区域Ω。
(4a)利用纯杂波数据的时频双特征向量ξ,组成训练样本集合S:
其中ξi表示第i个训练样本的时频双特征向量,表示第i个训练样本的相对脊能量,表示第i个训练样本的相对脊全变差,I为训练样本数目,本实例取训练样本数为20000个;
(4b)利用训练样本集合S,得到一个属于特征平面的集合Ψ:
其中,表示训练样本的相对脊能量的平均值,表示训练样本的相对脊全变差的平均值;
(4c)计算训练样本集合S组成的凸包
其中,polygon{·}表示由·组成的凸多边形,vj为组成凸包的第j个顶点,j=1,2,…,r,r为组成凸包的所有顶点的个数;
(4d)计算在凸包中去掉一个凸包顶点vj后的凸包面积减小量Δ(vj):
其中,area表示凸包的面积,∩表示集合的取交运算,表示从凸包中删除凸包顶点vj后的集合;
(4e)找出使凸包面积减少量Δ(vj)最大的顶点v*:
其中表示Δ(vj)取最大值时对应j的取值;
(4f)将上述顶点v*从训练样本集合S中去除,得到新的训练样本集合S'=S-{v*};
(4g)重复步骤4a)至4f),总共去除C=[I×PF]个相应的凸包顶点,最终得到收缩后的凸包即为满足虚警概率PF的检测判决区域Ω,其中,[I×PF]表示取I×PF的整数部分。
二.检测部分
步骤5,提取待检测单元T的时频双特征向量ξT。
在训练环节中,利用贪婪凸包学习算法得到判决区域Ω后,即可进行检测,检测时需先对待检测单元T提取相对脊能量ξ1(T)和相对脊全变差ξ2(T)这两种特征,构造待检测单元的时频双特征向量:ξT=[ξ1(T),ξ2(T)]T。
5a)待检测单元T的时间序列为:T=[T(1),T(2),…,T(N)],在待检测单元T的周围选取Q个临近单元作为参考单元,该参考单元时间序列为:Tp=[Tp(1),Tp(2),…,Tp(N)],p=1,2,…,Q;N为时间序列的长度;
5b)对待检测单元T的时间序列和参考单元时间序Tp进行块白化,得到白化后的待检测单元时间序列和白化后的参考单元时间序列;
5c)利用白化后的待检测单元时间序列和白化后的参考单元时间序列,提取待检测单元的相对脊能量ξ1(T)和待检测单元的相对脊全变差ξ2(T)这两种特征,得到待检测单元T的时频双特征向量:ξT=[ξ1(T),ξ2(T)]T。
步骤6,根据构成检测判决区域Ω的凸包特性和待检测单元的时频双特征向量ξT,计算检测统计量ω。
(6a)利用待检测单元的时频双特征向量ξT和凸包顶点计算矩阵行列式:
其中,det(·)表示求矩阵行列式,xj表示第j个凸包顶点的相对脊能量,yj表示第j个凸包顶点的相对脊全变差,j=1,2,...,r;
(6b)取上述矩阵行列式的最小值,得到检测统计量ω:
其中,min{·}表示取最小值。
步骤7,根据检测统计量ω的大小判断目标是否存在:如果检测统计量ω大于零,表明待检测单元的时频双特征向量ξT在检测判决区域Ω外,则判定目标存在,反之,判定目标不存在。
下面结合仿真实验对本发明的效果做进一步说明。
一.实验数据
本实例所用数据为12组IPIX雷达获取的实测海杂波数据,雷达架设高度为30m,脉冲重复频率为1000Hz,距离分辨率为30m;每组数据包含四种极化数据,其中两种为同极化数据HH、VV,两种为交叉极化数据HV、VH。其中有10组数据是在93年采集的海杂波数据,每种极化数据包括14个距离单元,数据长度为217,目标是直径为1米的圆球,表面用金属丝包裹;剩余2组数据是98年采集的海杂波数据,每种极化数据包括28个距离单元,数据长度为60000,目标是一艘小漂浮艇。
二.仿真实验
仿真1,在观测时间为512ms时,利用本发明与基于分形的检测方法和基于三特征的检测方法,在四种极化数据下对雷达检测性能进行仿真对比,结果如图2所示。其中图2(a)为同向HH极化数据下的雷达检测性能比较图;图2(b)为同向VV极化数据下的雷达检测性能比较图;图2(c)为异向HV极化数据下的雷达检测性能比较图;图2(d)为异向VH极化数据下的雷达检测性能比较图;
从图2可以看出,本发明对海面漂浮小目标的检测性能优于现有两种检测方法的检测性能。
仿真2,在观测时间为1024ms时,利用本发明与基于分形的检测方法和基于三特征的检测方法,在四种极化数据下对雷达检测性能进行仿真对比,结果如图3所示。其中图3(a)为同向HH极化数据下的雷达检测性能比较图;图3(b)为同向VV极化数据下的雷达检测性能比较图;图3(c)为异向HV极化数据下的雷达检测性能比较图;图3(d)为异向VH极化数据下的雷达检测性能比较图;
从图3可以看出,本发明与现有两种检测方法相比,对海面漂浮小目标的检测性能更好。
Claims (4)
1.一种基于块白化杂波抑制的时频双特征海面小目标检测方法,包括:
(1)从回波数据中选取训练单元、参考单元和待检测单元:
利用雷达发射机对海面发送信号,利用雷达接收机接收由海面反射回来的回波数据,该回波数据分为纯杂波数据和包含目标的回波数据;
从纯杂波数据中选取部分距离单元作为一组训练单元,该训练单元时间序列z为:z=[z(1),z(2),…,z(N)],从训练单元周围选取Q个临近单元作为参考单元,该参考单元时间序列zp为:zp=[zp(1),zp(2),…,zp(N)],p=1,2,…,Q,Q为参考单元数,N为时间序列的长度;
从包含目标的回波数据中选取部分距离单元作为待检测单元T;
(2)对纯杂波回波数据的训练单元时间序列z和参考单元时间序zp进行块白化,得到白化后的训练单元时间序列和白化后的参考单元时间序列
<mfenced open = "" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<mo>&lsqb;</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>N</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>=</mo>
<mo>&lsqb;</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>N</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
<mo>;</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
(3)利用白化后的训练单元时间序列和白化后的参考单元时间序列提取训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z)这两种特征,构造纯杂波数据的时频双特征向量ξ:ξ=[ξ1(z),ξ2(z)]T,其中[·]T表示对矩阵进行转置;
(4)利用纯杂波数据的时频双特征向量ξ,在二维特征空间中获得二维凸包CH(S),并在给定虚警概率PF下,利用贪婪凸包学习算法对二维凸包进行收缩,并将收缩后的凸包作为检测判决区域Ω;
(5)对待检测单元T提取相对脊能量ξ1(T)和相对脊全变差ξ2(T)这两种特征,构造待检测单元的时频双特征向量:ξT=[ξ1(T),ξ2(T)]T;
(6)根据构成检测判决区域Ω的凸包特性和待检测单元的时频双特征向量ξT=[ξ1(T),ξ2(T)]T,计算检测统计量ω:
<mrow>
<mi>&omega;</mi>
<mo>=</mo>
<munder>
<mrow>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>&le;</mo>
<mi>j</mi>
<mo>&le;</mo>
<mi>r</mi>
</mrow>
</munder>
<mo>{</mo>
<mi>det</mi>
<mrow>
<mo>(</mo>
<mfenced open = "[" close = "]">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>&xi;</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mi>&xi;</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</mrow>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>x</mi>
<mi>j</mi>
</msub>
</mtd>
<mtd>
<msub>
<mi>y</mi>
<mi>j</mi>
</msub>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>x</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mtd>
<mtd>
<msub>
<mi>y</mi>
<mrow>
<mi>j</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msub>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>)</mo>
</mrow>
<mo>}</mo>
<mo>,</mo>
</mrow>
其中,min{·}表示取最小值,det(·)表示求矩阵行列式,r为组成凸包的顶点的个数,xj表示第j个凸包顶点的相对脊能量,yj表示第j个凸包顶点的相对脊全变差,j=1,2,...,r;
(7)根据检测统计量ω的大小判断目标是否存在:如果检测统计量ω大于零,表明待检测单元的时频双特征向量ξT在检测判决区域Ω外,则判定目标存在,反之,判定目标不存在。
2.如权利要求1所述的基于块白化杂波抑制的时频双特征海面小目标检测方法,其特征在于,步骤(2)中对纯杂波回波数据的训练单元时间序列z和参考单元时间序zp进行块白化,按如下步骤进行:
2a)将训练单元时间序列z和参考单元时间序列zp分别平均分成长度为M的互不重叠的短向量,即:
z=[z1,z2,…,zm,…,zN/M],
zp=[zp,1,zp,2,…,zp,m,…,zp,N/M],p=1,2,…,Q,
其中,zm表示训练单元时间序列的第m个短向量,zp,m表示参考单元时间序列的第m个短向量,m=1,2,…,N/M;
2b)利用上述每个短向量,对训练单元时间序列z和参考单元时间序zp进行块白化,得到白化后的训练单元时间序列和白化后的参考单元时间序列
<mrow>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>=</mo>
<mo>&lsqb;</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>N</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
<mo>=</mo>
<mo>&lsqb;</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mn>2</mn>
</msub>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>m</mi>
</msub>
<mo>,</mo>
<mn>...</mn>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mi>N</mi>
<mo>/</mo>
<mi>M</mi>
</mrow>
</msub>
<mo>&rsqb;</mo>
<mo>,</mo>
</mrow>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>=</mo>
<mo>&lsqb;</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mn>2</mn>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>N</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
<mo>=</mo>
<mo>&lsqb;</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mi>p</mi>
<mo>,</mo>
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mi>p</mi>
<mo>,</mo>
<mn>2</mn>
</mrow>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mi>p</mi>
<mo>,</mo>
<mi>m</mi>
</mrow>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mi>p</mi>
<mo>,</mo>
<mi>N</mi>
<mo>/</mo>
<mi>M</mi>
</mrow>
</msub>
<mo>&rsqb;</mo>
<mo>,</mo>
</mrow>
其中,表示白化后的训练单元时间序列的第m个短向量,表示白化后的参考单元时间序列的第m个短向量。
3.如权利要求1所述的基于块白化杂波抑制的时频双特征海面小目标检测方法,其特征在于,步骤(3)中提取训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z)这两种特征,构造纯杂波数据的时频双特征向量ξ,按如下步骤进行:
3a)计算训练单元的平滑维格纳-威利分布和参考单元的平滑维格纳-威利分布
<mrow>
<mi>W</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>l</mi>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>=</mo>
<mo>-</mo>
<mi>E</mi>
</mrow>
<mi>F</mi>
</munderover>
<mi>g</mi>
<mrow>
<mo>(</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>)</mo>
</mrow>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mo>-</mo>
<mi>F</mi>
</mrow>
<mi>F</mi>
</munderover>
<mi>h</mi>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>+</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>+</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<msup>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>*</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>+</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>-</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>exp</mi>
<mrow>
<mo>(</mo>
<mo>-</mo>
<mn>4</mn>
<msub>
<mi>j&pi;kl&Delta;f</mi>
<mi>d</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
<mrow>
<mi>D</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>l</mi>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>=</mo>
<mo>-</mo>
<mi>E</mi>
</mrow>
<mi>E</mi>
</munderover>
<mi>g</mi>
<mrow>
<mo>(</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>)</mo>
</mrow>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>k</mi>
<mo>=</mo>
<mo>-</mo>
<mi>F</mi>
</mrow>
<mi>F</mi>
</munderover>
<mi>h</mi>
<mrow>
<mo>(</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>+</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>+</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<msup>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>*</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>+</mo>
<msup>
<mi>m</mi>
<mo>&prime;</mo>
</msup>
<mo>-</mo>
<mi>k</mi>
<mo>)</mo>
</mrow>
<mi>exp</mi>
<mrow>
<mo>(</mo>
<mo>-</mo>
<mn>4</mn>
<msub>
<mi>j&pi;kl&Delta;f</mi>
<mi>d</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
其中,上标*表示共轭,g(m')为时间平滑窗,m'表示时间窗取值点,其取值范围为-E到E,h(k)为频率平滑窗,k表示频率窗取值点,其取值范围为-F到F,E表示时间平滑窗长的一半,F表示频率平滑窗长的一半,Δfd为归一化多普勒频率的采样间隔,n=1,2,…,N,l=1,2,…,N;
3b)利用训练单元的平滑维格纳-威利分布和参考单元的平滑维格纳-威利分布计算训练单元的时频脊Rd(n),训练单元的脊全变差TV(z),参考单元的时频脊Rd(n,p)以及参考单元的脊全变差TV(zp):
<mrow>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munder>
<mi>argmax</mi>
<mi>l</mi>
</munder>
<mo>{</mo>
<mi>W</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>l</mi>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>}</mo>
<mo>,</mo>
</mrow>
<mrow>
<mi>T</mi>
<mi>V</mi>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>&Delta;f</mi>
<mi>d</mi>
</msub>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mi>N</mi>
</munderover>
<mo>|</mo>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
<mo>|</mo>
<mo>,</mo>
</mrow>
<mrow>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>p</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munder>
<mi>argmax</mi>
<mi>l</mi>
</munder>
<mo>{</mo>
<mi>D</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>l</mi>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>}</mo>
<mo>,</mo>
</mrow>
<mrow>
<mi>T</mi>
<mi>V</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>&Delta;f</mi>
<mi>d</mi>
</msub>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mi>N</mi>
</munderover>
<mo>|</mo>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>p</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mi>R</mi>
<mi>d</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>-</mo>
<mn>1</mn>
<mo>,</mo>
<mi>p</mi>
<mo>)</mo>
</mrow>
<mo>|</mo>
<mo>,</mo>
</mrow>
其中,表示取最大值时对应l的值;
3c)利用训练单元的时频脊Rd(n)和参考单元的时频脊Rd(n,p),计算训练单元的脊能量RE(z)和参考单元的脊能量RE(zp):
<mrow>
<mi>R</mi>
<mi>E</mi>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<mi>W</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>R</mi>
<mi>d</mi>
<mo>(</mo>
<mi>n</mi>
<mo>)</mo>
<mo>,</mo>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
<mrow>
<mi>R</mi>
<mi>E</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</munderover>
<mi>D</mi>
<mrow>
<mo>(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>R</mi>
<mi>d</mi>
<mo>(</mo>
<mrow>
<mi>n</mi>
<mo>,</mo>
<mi>p</mi>
</mrow>
<mo>)</mo>
<mo>,</mo>
<msub>
<mover>
<mi>z</mi>
<mo>^</mo>
</mover>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
3d)计算训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z):
<mrow>
<msub>
<mi>&xi;</mi>
<mn>1</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>R</mi>
<mi>E</mi>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mi>Q</mi>
</mfrac>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>p</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>Q</mi>
</munderover>
<mi>R</mi>
<mi>E</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
<mrow>
<msub>
<mi>&xi;</mi>
<mn>2</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>T</mi>
<mi>V</mi>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mfrac>
<mn>1</mn>
<mi>Q</mi>
</mfrac>
<munderover>
<mo>&Sigma;</mo>
<mrow>
<mi>p</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>Q</mi>
</munderover>
<mi>T</mi>
<mi>V</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>z</mi>
<mi>p</mi>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
3e)利用训练单元的相对脊能量ξ1(z)和训练单元的相对脊全变差ξ2(z),构造纯杂波数据的时频双特征向量ξ:
ξ=[ξ1(z),ξ2(z)]T,
其中,[·]T表示对矩阵进行转置。
4.如权利要求1所述的基于块白化杂波抑制的时频双特征海面小目标检测方法,其特征在于,步骤(4)中在给定虚警概率PF下,利用贪婪凸包学习算法对二维凸包CH(S)进行收缩,按如下步骤进行:
4a)利用纯杂波数据的时频双特征向量ξ,组成训练样本集合S:
<mrow>
<mi>S</mi>
<mo>=</mo>
<mo>{</mo>
<msub>
<mi>&xi;</mi>
<mi>i</mi>
</msub>
<mo>=</mo>
<msup>
<mrow>
<mo>&lsqb;</mo>
<msubsup>
<mi>&xi;</mi>
<mn>1</mn>
<mi>i</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msubsup>
<mi>&xi;</mi>
<mn>2</mn>
<mi>i</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>z</mi>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mi>T</mi>
</msup>
<mo>:</mo>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<mi>I</mi>
<mo>}</mo>
<mo>,</mo>
</mrow>
其中,ξi表示第i个训练样本的时频双特征向量,表示第i个训练样本的相对脊能量,表示第i个训练样本的相对脊全变差,I为训练样本数目;
4b)利用训练样本集合S,得到一个属于特征平面的集合Ψ:
<mrow>
<mi>&Psi;</mi>
<mo>=</mo>
<mo>{</mo>
<mi>&xi;</mi>
<mo>=</mo>
<msup>
<mrow>
<mo>&lsqb;</mo>
<msub>
<mi>&xi;</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>&xi;</mi>
<mn>2</mn>
</msub>
<mo>&rsqb;</mo>
</mrow>
<mi>T</mi>
</msup>
<mo>&Element;</mo>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
<mo>:</mo>
<msub>
<mi>&xi;</mi>
<mn>1</mn>
</msub>
<mo>&GreaterEqual;</mo>
<msub>
<mover>
<mi>&xi;</mi>
<mo>&OverBar;</mo>
</mover>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>&xi;</mi>
<mn>2</mn>
</msub>
<mo>&le;</mo>
<msub>
<mover>
<mi>&xi;</mi>
<mo>&OverBar;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>}</mo>
<mo>,</mo>
</mrow>
其中,表示训练样本的相对脊能量的平均值,表示训练样本的相对脊全变差的平均值;
4c)计算训练样本集合S组成的凸包
<mrow>
<mi>C</mi>
<mi>H</mi>
<mrow>
<mo>(</mo>
<mi>S</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>p</mi>
<mi>o</mi>
<mi>l</mi>
<mi>y</mi>
<mi>g</mi>
<mi>o</mi>
<mi>n</mi>
<mo>{</mo>
<msub>
<mi>v</mi>
<mn>1</mn>
</msub>
<mo>,</mo>
<msub>
<mi>v</mi>
<mn>2</mn>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>v</mi>
<mi>j</mi>
</msub>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<msub>
<mi>v</mi>
<mi>r</mi>
</msub>
<mo>}</mo>
<mo>,</mo>
</mrow>
其中,polygon{·}表示由·组成的凸多边形,vj为组成凸包的第j个顶点,j=1,2,…,r,r为组成凸包的顶点的个数;
4d)计算在凸包中去掉一个凸包顶点vj后的凸包面积减小量Δ(vj):
<mrow>
<mi>&Delta;</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>v</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mi>r</mi>
<mi>e</mi>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mi>C</mi>
<mi>H</mi>
<mo>(</mo>
<mi>S</mi>
<mo>)</mo>
</mrow>
<mo>&cap;</mo>
<mi>&Psi;</mi>
<mo>)</mo>
<mo>-</mo>
<mi>a</mi>
<mi>r</mi>
<mi>e</mi>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mi>C</mi>
<mi>H</mi>
<mo>(</mo>
<mi>S</mi>
<mo>-</mo>
<mo>{</mo>
<msub>
<mi>v</mi>
<mi>j</mi>
</msub>
<mo>}</mo>
<mo>)</mo>
</mrow>
<mo>&cap;</mo>
<mi>&Psi;</mi>
<mo>)</mo>
<mo>,</mo>
</mrow>
其中,area表示凸包的面积,∩表示集合的取交运算,表示从凸包中删除凸包顶点vj后的集合;
4e)找出使凸包面积减少量Δ(vj)最大的顶点v*:
<mrow>
<msub>
<mi>v</mi>
<mo>*</mo>
</msub>
<mo>=</mo>
<mi>arg</mi>
<munder>
<mrow>
<mi>m</mi>
<mi>a</mi>
<mi>x</mi>
</mrow>
<mrow>
<mi>j</mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mn>2</mn>
<mo>,</mo>
<mo>...</mo>
<mo>,</mo>
<mi>r</mi>
</mrow>
</munder>
<mo>{</mo>
<mi>&Delta;</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>v</mi>
<mi>j</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>}</mo>
<mo>,</mo>
</mrow>
其中表示Δ(vj)取最大值时对应j的取值;
4f)将上述顶点v*从训练样本集合S中去除,得到新的训练样本集合S'=S-{v*};
4g)重复步骤4a)至4f),总共去除C=[I×PF]个相应的凸包顶点,最终得到收缩后的凸包即为满足虚警概率PF的检测判决区域Ω,其中,[I×PF]表示取I×PF的整数部分。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610194960.5A CN105866758B (zh) | 2016-03-31 | 2016-03-31 | 基于块白化杂波抑制的时频双特征海面小目标检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610194960.5A CN105866758B (zh) | 2016-03-31 | 2016-03-31 | 基于块白化杂波抑制的时频双特征海面小目标检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105866758A CN105866758A (zh) | 2016-08-17 |
CN105866758B true CN105866758B (zh) | 2018-06-05 |
Family
ID=56627649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610194960.5A Active CN105866758B (zh) | 2016-03-31 | 2016-03-31 | 基于块白化杂波抑制的时频双特征海面小目标检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105866758B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106501787B (zh) * | 2016-11-02 | 2019-03-08 | 西安电子科技大学 | 基于平滑伪魏格纳分布的二相编码信号参数估计方法 |
CN111505643B (zh) * | 2020-04-22 | 2022-07-05 | 南京信息工程大学 | 基于时频图深度学习的海面小目标检测方法 |
CN111505598B (zh) * | 2020-04-27 | 2023-07-28 | 南京邮电大学 | 一种基于frft域三特征联合检测装置及方法 |
CN111707999B (zh) * | 2020-06-15 | 2023-03-31 | 西安电子科技大学 | 一种基于多特征与集成学习结合的海面漂浮小目标检测方法 |
CN113064133B (zh) * | 2021-03-29 | 2022-06-28 | 南京信息工程大学 | 一种基于时频域深度网络的海面小目标特征检测方法 |
CN113419228A (zh) * | 2021-06-02 | 2021-09-21 | 中国人民解放军海军航空大学航空作战勤务学院 | 基于时频脊-Radon变换的海面小目标检测方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914769A (zh) * | 2012-10-19 | 2013-02-06 | 南京信息工程大学 | 基于联合分形的海杂波背景下小目标检测方法 |
CN105738888A (zh) * | 2016-03-31 | 2016-07-06 | 西安电子科技大学 | 基于海杂波抑制的双特征海面漂浮小目标检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9348021B2 (en) * | 2013-03-14 | 2016-05-24 | Raytheon Company | Methods and apparatus for adaptive motion compensation to remove translational movement between a sensor and a target |
-
2016
- 2016-03-31 CN CN201610194960.5A patent/CN105866758B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914769A (zh) * | 2012-10-19 | 2013-02-06 | 南京信息工程大学 | 基于联合分形的海杂波背景下小目标检测方法 |
CN105738888A (zh) * | 2016-03-31 | 2016-07-06 | 西安电子科技大学 | 基于海杂波抑制的双特征海面漂浮小目标检测方法 |
Non-Patent Citations (2)
Title |
---|
Tri-Feature-Based Detection of Floating Small Targets in Sea clutter;PENG-LANG SHUI et al.;《IEEE Transactions on Aerospace and Electronic Systems》;20140430;第50卷(第2期);全文 * |
基于杂波白化处理的海面低速弱目标检测;王党卫等;《现代雷达》;20130630(第6期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN105866758A (zh) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105738888B (zh) | 基于海杂波抑制的双特征海面漂浮小目标检测方法 | |
CN105866758B (zh) | 基于块白化杂波抑制的时频双特征海面小目标检测方法 | |
Shui et al. | Tri-feature-based detection of floating small targets in sea clutter | |
CN107728115B (zh) | 一种雷达目标成像后基于svm的背景干扰抑制方法 | |
CN111580064B (zh) | 一种基于多域多维特征融合的海面小目标检测方法 | |
CN104076355B (zh) | 基于动态规划的强杂波环境中弱小目标检测前跟踪方法 | |
CN104076350B (zh) | 基于归一化多普勒谱的海面漂浮目标检测方法 | |
CN104316914B (zh) | 依赖形状参数的雷达目标自适应检测方法 | |
CN104330787B (zh) | 水下运动阵列多目标检测和方位估计一体化方法 | |
CN103454624A (zh) | 基于降维稀疏重构空时谱的直接数据域动目标检测方法 | |
CN106569193A (zh) | 基于前‑后向收益参考粒子滤波的海面小目标检测方法 | |
CN107507209A (zh) | 极化sar图像的素描图提取方法 | |
CN111681272B (zh) | 一种基于奇异性功率谱的sar图像处理方法 | |
CN111707999B (zh) | 一种基于多特征与集成学习结合的海面漂浮小目标检测方法 | |
CN111707998B (zh) | 一种基于连通区域特征的海面漂浮小目标检测方法 | |
CN105447867A (zh) | 基于isar图像的空间目标姿态估计方法 | |
CN103116740B (zh) | 一种水下目标识别方法及其装置 | |
CN105334507B (zh) | 基于极化多特征的对海面漂浮雷达目标的检测方法 | |
Sun et al. | A Wave Texture Difference Method for Rainfall Detection Using X‐Band Marine Radar | |
CN112859007B (zh) | 一种基于极化分解的海杂波背景下弱小目标检测识别方法 | |
CN106204664B (zh) | 基于sar-lark特征的sar舰船目标检测方法 | |
CN105044697A (zh) | 基于广义特征分解的全极化高分辨距离像目标检测方法 | |
Tan et al. | A ship detection method based on YOLOv7 in range-compressed SAR data | |
Li et al. | Small boat detection via time-frequency analysis and densenet | |
CN105548986A (zh) | 海杂波背景下基于预白化比率中值检测器的目标检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |