CN105860065A - 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法 - Google Patents

一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法 Download PDF

Info

Publication number
CN105860065A
CN105860065A CN201610252725.9A CN201610252725A CN105860065A CN 105860065 A CN105860065 A CN 105860065A CN 201610252725 A CN201610252725 A CN 201610252725A CN 105860065 A CN105860065 A CN 105860065A
Authority
CN
China
Prior art keywords
graphene
graphene oxide
laminated film
pyrrole monomer
polypyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610252725.9A
Other languages
English (en)
Other versions
CN105860065B (zh
Inventor
赵崇军
邵肖肖
邓丽娟
王圣琪
李朋威
蔡云霄
钱秀珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201610252725.9A priority Critical patent/CN105860065B/zh
Publication of CN105860065A publication Critical patent/CN105860065A/zh
Application granted granted Critical
Publication of CN105860065B publication Critical patent/CN105860065B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法。内容包括利用吡咯单体的挥发性特点,让蒸气相的吡咯单体与氧化石墨烯溶液相接触,从而在两相界面上发生氧化还原反应,使吡咯单体氧化聚合成聚吡咯,同时将氧化石墨烯还原为石墨烯,最终在气液界面生成石墨烯/导电聚吡咯复合薄膜。制备出的这种复合材料具有优良的防腐性能,可用于金属防腐蚀领域。

Description

一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法
技术领域
本发明涉及一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法,具体涉及蒸气相的吡咯单体与氧化石墨烯溶液在气液界面发生氧化还原反应合成可用于金属防腐蚀领域的石墨烯/导电聚吡咯复合薄膜。
背景技术
近些年,金属腐蚀逐渐成为全球各国重视的经济问题。金属腐蚀是由于金属与周围环境发生化学反应而使材料的性能变差,在各种环境中都会发生,包括雾气、海水、酸性或碱性土壤中,而且金属腐蚀会导致很大的损失。但是,如果采用合理的防腐方法,每年将节省25%-30%由腐蚀造成的损失。因此,寻找有效的技术手段来实现金属防腐成为世界各国研究者共同关注的目标。
众多传统技术手段中,使用防腐涂料是一种有效且经济的方法。这种方法通常是用无机或高分子涂料将金属表面与腐蚀环境分隔开,以避免金属的腐蚀,其中,导电高分子由于具有优良的防腐性能而成为研究的热门之一。因为导电高分子膜层不但结合了导电性、环境稳定性及可逆的氧化还原特性等物理化学性能,而且能使金属表面活性钝化而防腐;导电高分子膜不但对腐蚀介质物理隔离,而且能有效地把金属腐蚀限制在膜基界面上,并改变金属的腐蚀电位,所以具有重要的应用。
在众多的导电高分子中,聚吡咯以其单体无毒、易合成、导电率高、稳定性好并且即使分解后也不会象聚苯胺那样可能产生致癌物质等优点,成为导电高分子在腐蚀防护领域中研究的重点之一。目前,制备导电高分子聚吡咯防腐层的方法主要有化学氧化法和电化学氧化法两种,其中化学氧化法是使聚吡咯的单体在氧化剂存在的介质中发生聚合。经常用到的氧化剂有高锰酸钾、过硫酸铵、双氧水、铁盐(氯化铁、硫酸铁)等,介质有水、醇、醚、氯仿等。与电化学聚合方法相比较,化学氧化法合成工艺简单,对生产设备要求较低,所以成本低,适于大量生产。但同时,化学氧化法容易使氧化剂分解产物残留在聚合物中,影响聚吡咯的电导率及微观形貌,从而对聚吡咯的防腐性能造成影响。
石墨烯这一新兴材料的问世,使金属防腐问题的解决有了新的进展。石墨烯是一种由碳原子组成新型单层片状结构的二维材料,它拥有许多独特的性能,如高透明度、高导电性以及优良的抗渗性。在防腐领域中,石墨烯可以作为一种超薄的物理阻隔层,防止金属与周围环境的直接接触,所以,石墨烯也是一种理想的防腐材料。
氧化石墨烯作为石墨烯的一种衍生材料,其结构层中含有一定量不同种类的含氧官能团,具有一定的氧化性,因此,氧化石墨烯也可用作化学氧化法合成聚吡咯时的氧化剂,氧化石墨烯与吡咯单体间能够发生氧化还原反应,形成石墨烯/聚吡咯复合材料。但目前为止,合成石墨烯/聚吡咯复合材料的方法大多是采用液相反应,这种方法制备的产物多为粉末状而且生成的聚吡咯具有颗粒尺寸较大、易团聚等缺点,这就限制了聚吡咯的使用性能。
发明内容
针对上述导电聚吡咯和石墨烯在防腐领域的优点,以及液相法制备石墨烯/聚吡咯复合材料的不足。本发明从气液相氧化还原反应的角度出发,利用吡咯单体的挥发性特点,让蒸气相的吡咯单体与氧化石墨烯溶液相接触,从而在两相界面上发生氧化还原反应,使吡咯单体氧化聚合成聚吡咯,同时将氧化石墨烯还原为石墨烯,最终在气液界面生成石墨烯/导电聚吡咯复合薄膜。
本发明的技术解决方案如下:
(1)量取一定量的氧化石墨烯溶液(浓度介于1mg/mL~5mg/mL),超声使其分散均匀,然后将之置于一敞口容器内;再取一定量的吡咯单体倒入另一敞口容器中;将以上两个容器共同置于一密闭罩内;
(2)在密闭罩内吡咯单体挥发,形成的蒸汽相单体与氧化石墨烯溶液相接触,在两相界面上发生氧化还原反应;一直反应至原先的氧化石墨烯溶液表面生成一层黑色薄膜,该黑色薄膜即为石墨烯/导电聚吡咯复合薄膜。
本发明制备出的这种复合薄膜结合了导电聚吡咯与石墨烯的防腐性能,可以用于金属防腐蚀领域;以氧化石墨烯作为氧化剂克服了因聚合时残留氧化剂分解产物等杂质而影响聚吡咯防腐性能的缺点,因为生成的石墨烯反而会增强其防腐性能;采用气液相氧化还原反应生成的聚吡咯颗粒尺寸较小、不易团聚,具有小尺寸效应,大大提高了防腐性能。本发明制备方法简单,易于实现,而且可采用不同浓度的氧化石墨烯溶液,可应用的范围较广,且成本较低。
附图说明
图1 制备石墨烯/导电聚吡咯复合薄膜的装置图
图2 反应前的氧化石墨烯溶液的数码照片
图3 发生反应的氧化石墨烯溶液的数码照片
图4 制备的石墨烯/导电聚吡咯复合薄膜的数码照片
具体实施方法
以下介绍本发明制备防腐用的石墨烯/导电聚吡咯复合薄膜的具体实施方式,但是应该指出,本发明的实施不限于以下的实施方式。
实施例1
采用图1所示的装置,取5mg的氧化石墨烯溶于5mL的水中,超声使其分散均匀,置于一烧杯中(如图2);然后在另一烧杯中加入2mL的吡咯单体;将这两个烧杯盖在一密闭罩内;整个装置处于静置条件下,一直反应至原先的氧化石墨烯溶液表面出现一层黑色薄膜,该黑色薄膜就是石墨烯/导电聚吡咯复合薄膜(如图3)。
实施例2
采用图1所示的装置,取10mg的氧化石墨烯溶于5mL的水中,超声使其分散均匀,置于一烧杯中;然后在另一烧杯中加入2mL的吡咯单体;将这两个烧杯盖在一密闭罩内;整个装置处于静置条件下,一直反应至原先的氧化石墨烯溶液表面出现一层黑色薄膜,该黑色薄膜就是石墨烯/导电聚吡咯复合薄膜。
实施例3
采用图1中的装置,取15mg的氧化石墨烯溶于5ml的水中,超声使其分散均匀,置于一烧杯中;然后在另一烧杯中加入2ml的吡咯单体;将这两个烧杯盖在一密闭罩内;整个装置处于静置条件下,一直反应至原先的氧化石墨烯溶液表面出现一层黑色薄膜,该黑色薄膜就是石墨烯/导电聚吡咯复合薄膜。
实施例4
采用图1中的装置,取25mg的氧化石墨烯溶于5ml的水中,超声使其分散均匀,置于一烧杯中;然后在另一烧杯中加入2ml的吡咯单体;将这两个烧杯盖在一密闭罩内;整个装置处于静置条件下,一直反应至原先的氧化石墨烯溶液表面出现一层黑色薄膜,该黑色薄膜就是石墨烯/导电聚吡咯复合薄膜。

Claims (2)

1.一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法,主要基于气液两相界面上发生氧化还原反应,合成可用于金属防腐蚀领域的石墨烯/导电聚吡咯复合薄膜,包括如下步骤:
(1)量取一定量的氧化石墨烯溶液(浓度为1mg/mL~5mg/mL),超声使其分散均匀,然后将之置于一敞口容器内;再取一定量的吡咯单体倒入另一敞口容器中;将以上两个容器共同置于一密闭罩内;
(2)在密闭罩内吡咯单体挥发,形成的蒸汽相单体与氧化石墨烯溶液相接触,在两相界面上发生氧化还原反应;一直反应至原先的氧化石墨烯溶液表面生成一层黑色薄膜,该黑色薄膜即为石墨烯/导电聚吡咯复合薄膜。
2.根据权利要求1所述的制备复合薄膜的方法,其特征在于,通过利用吡咯单体挥发性的特点,让蒸气相的单体与氧化石墨烯溶液相接触,从而在两相界面上发生氧化还原反应,使吡咯单体氧化聚合成聚吡咯,同时将氧化石墨烯还原为石墨烯,最终在气液界面生成石墨烯/导电聚吡咯复合薄膜。
CN201610252725.9A 2016-04-22 2016-04-22 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法 Expired - Fee Related CN105860065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610252725.9A CN105860065B (zh) 2016-04-22 2016-04-22 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610252725.9A CN105860065B (zh) 2016-04-22 2016-04-22 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105860065A true CN105860065A (zh) 2016-08-17
CN105860065B CN105860065B (zh) 2018-05-01

Family

ID=56633873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610252725.9A Expired - Fee Related CN105860065B (zh) 2016-04-22 2016-04-22 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105860065B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603225A (zh) * 2017-10-27 2018-01-19 成都新柯力化工科技有限公司 一种可粘贴的石墨烯防腐薄膜及制备方法
CN110294901A (zh) * 2019-06-27 2019-10-01 湖南华菱线缆股份有限公司 一种耐腐蚀零收缩阻燃电缆材料
CN110551393A (zh) * 2019-08-30 2019-12-10 武汉工程大学 一种导电高分子/氧化石墨烯复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201924A (ja) * 1986-02-28 1987-09-05 Nitto Electric Ind Co Ltd 導電性有機薄膜の製造方法
CN105482138A (zh) * 2016-01-15 2016-04-13 电子科技大学 一种导电聚合物复合纳米薄膜材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201924A (ja) * 1986-02-28 1987-09-05 Nitto Electric Ind Co Ltd 導電性有機薄膜の製造方法
CN105482138A (zh) * 2016-01-15 2016-04-13 电子科技大学 一种导电聚合物复合纳米薄膜材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEFANG ZHANG ET AL: "Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603225A (zh) * 2017-10-27 2018-01-19 成都新柯力化工科技有限公司 一种可粘贴的石墨烯防腐薄膜及制备方法
CN107603225B (zh) * 2017-10-27 2018-11-06 泉州嘉德利电子材料有限公司 一种可粘贴的石墨烯防腐薄膜及制备方法
CN110294901A (zh) * 2019-06-27 2019-10-01 湖南华菱线缆股份有限公司 一种耐腐蚀零收缩阻燃电缆材料
CN110551393A (zh) * 2019-08-30 2019-12-10 武汉工程大学 一种导电高分子/氧化石墨烯复合材料的制备方法

Also Published As

Publication number Publication date
CN105860065B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
Hosseini et al. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: potentiodynamic and electrochemical impedance spectroscopy study
Liang et al. Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets
Nagarajan et al. Electrochemical capacitance of MnOx films
Wang et al. Preparation and performances of electrically conductive Nb-doped TiO2 coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells
Chen et al. Corrosion protection of carbon steels by electrochemically synthesized V-TiO2/polypyrrole composite coatings in 0.1 M HCl solution
Patil et al. An Mn doped polyaniline electrode for electrochemical supercapacitor
Dhibar et al. Transition metal doped poly (aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials
Olad et al. Enhanced corrosion protective coating based on conducting polyaniline/zinc nanocomposite
Mahmoudian et al. Effect of narrow diameter polyaniline nanotubes and nanofibers in polyvinyl butyral coating on corrosion protective performance of mild steel
JPWO2016035321A1 (ja) 共有結合性有機構造体を含む導電性ハイブリッド材料
Zhang et al. Ni (OH) 2 derived Ni-MOF supported on carbon nanowalls for supercapacitors
CN105860065A (zh) 一种防腐用的石墨烯/导电聚吡咯复合薄膜的制备方法
Patil et al. Silver incorporated PEDOT: PSS for enhanced electrochemical performance
Easton et al. Magnetron sputtered Fe–C–N, Fe–C, and C–N based oxygen reduction electrocatalysts
Chen et al. Two composites based on CoMoO4 nanorods and PPy nanoparticles: Fabrication, structure and electrochemical properties
CN108485467A (zh) 一种海洋防腐复合涂料及其制备方法
Dhibar et al. Copper chloride‐doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications
Chen et al. Structural and electrochemical study of polypyrrole/ZnO nanocomposites coating on nickel sheet synthesized by electrochemical method
Aravinda et al. Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2
CN110294901A (zh) 一种耐腐蚀零收缩阻燃电缆材料
Jadhav et al. Tungstate and vanadate-doped polypyrrole/aluminum flake composite coatings for the corrosion protection of aluminum 2024-T3
Feng et al. Influences of Zn-Sn-Al-hydrotalcite additive on the electrochemical performances of ZnO for zinc-nickel secondary cells
Muthusamy et al. High efficient corrosion inhibitor of water‐soluble polypyrrole–sulfonated melamine formaldehyde nanocomposites for 316 L stainless steel
CN103642365B (zh) 一种船用铝合金腐蚀自修复智能涂层及其制备方法
Hou et al. Comparison study on anticorrosion performances of the epoxy coatings with two different nano‐polyanilines for Q235 steel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180501

CF01 Termination of patent right due to non-payment of annual fee