CN105859302B - 原位生成碳纳米线的陶瓷材料的制备方法 - Google Patents

原位生成碳纳米线的陶瓷材料的制备方法 Download PDF

Info

Publication number
CN105859302B
CN105859302B CN201610217597.4A CN201610217597A CN105859302B CN 105859302 B CN105859302 B CN 105859302B CN 201610217597 A CN201610217597 A CN 201610217597A CN 105859302 B CN105859302 B CN 105859302B
Authority
CN
China
Prior art keywords
preparation
ceramic material
carbon nanocoils
ball milling
polysilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610217597.4A
Other languages
English (en)
Other versions
CN105859302A (zh
Inventor
李金平
侯心
侯一心
孟松鹤
杨程
牛加宏
胡兆财
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610217597.4A priority Critical patent/CN105859302B/zh
Publication of CN105859302A publication Critical patent/CN105859302A/zh
Application granted granted Critical
Publication of CN105859302B publication Critical patent/CN105859302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

原位生成碳纳米线的陶瓷材料的制备方法,涉及陶瓷材料的制备方法。本发明是要解决现有碳纳米线制备工艺繁琐,条件要求高的问题。方法1:一、树脂固化;二、球磨得粉体;三、预压成型;四、高温裂解;五、冷却得原位生成碳纳米线的陶瓷材料。方法2:一、树脂固化;二、球磨得粉体;三、热压烧结;四、冷却得原位生成碳纳米线的陶瓷材料。本发明方法简便不需复杂的设备以及实验步骤,成本低,可在陶瓷材料内部原位生成碳纳米线。对材料的导电性有促进作用。本发明用于陶瓷材料领域。

Description

原位生成碳纳米线的陶瓷材料的制备方法
技术领域
本发明涉及陶瓷材料的制备方法。
背景技术
纳米线材料在径向属纳米级的微观尺度范畴,在轴向上则可达微米,甚至厘米级的宏观尺度范畴,被认为是连接微观与宏观的纽带。纳米线的这种特性使其在纳米器件的组装和原位表征方面有着其他纳米材料(如纳米颗粒)所不具有的独特优势。
一维碳纳米纤维在结晶度、取向度、导电性能、导热性能、密度、模量、强度、热稳定性、比表面积等很多方面具有鲜明特点。碳纳米线材料由于其独特的化学、物理性质,因此它可以被广泛的应用到复合材料、电极材料、储氢材料、催化剂载体、吸波材料、高效吸附等方面,已深深吸引了全球的研究机构对其的兴趣。目前的努力集中在一维碳纳米线材料的制造技术,以及其形态相关性质的探索。其合成方法包括电弧放电合成方法,模板沉积,激光烧蚀,和化学气相沉积(CVD)法。
传统一维碳纳米纤维制造困难,方法复杂,对设备要求高,因而寻求一种更为简单快捷的,可以原位生成的方法,以期在材料内部实现定点位置的碳纳米线复合强化,此方法具有很高实用价值。
发明内容
本发明是要解决现有碳纳米线制备工艺繁琐,条件要求高的问题,提供一种原位生成碳纳米线的陶瓷材料的制备方法。
本发明原位生成碳纳米线的陶瓷1材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中,放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h,然后过60目标准筛,得粉体;
三、预压成型:在常温下将粉体预压成Ф12.5-20mm,厚度4-7mm的块体,压力为10-18MPa,预压时间5~8min;
四、高温裂解:在管式炉中氮气保护下加热裂解,得样品;
五、冷却:将步骤四得到的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
其中,步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
步骤四中加热裂解的加热速率为1~5℃/min,加热至1000~1400℃,裂解时间为2小时。
本发明另一种原位生成碳纳米线的陶瓷材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中,放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h,然后过60目标准筛,得粉体;
三、热压烧结:将步骤二得到的粉体进行热压烧结,得样品;
四、冷却:将步骤四中的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
其中步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
步骤三中热压烧结工艺为20-40MPa,温度1200-1400℃,保温时间1-3h。
本发明的原理:
本发明将树脂在氮气中固化交联的目的是防止试样被空气中的氧气氧化,保证最后裂解得到不含氧元素的PDCs-SiCN或PDCs-SiAlCN材料。
球磨的目的在于得到细致粉末,利于之后的预压与陶瓷化。裂解时,升温速率要尽可能慢,以增加陶瓷化产率。
本发明方法中球磨是为了将固化之后的树脂材料原料球墨成细小的粉体,从而有利于烧结以及获得致密的块体。烧制过程中,在惰性气体保护下或是在热压炉中抽真空,目的是防止氧化。
本发明具有以下有益效果:
1、本发明原理简单,操作简便,对于纳米纤维增强复合材料的制备具有很大的现实意义;
2、本发明方法所用原料简单易取得,不需复杂的设备以及实验步骤,成本低;
3、本发明原位生成的碳纳米线对材料的导电性有促进作用。碳纳米管是优良的一维介质,其主要成键结构是管壁上sp2杂化的碳六边形石墨烯网络结构,π电子能在其上高速传递,而且由于碳纳米管的特殊管状结构,管壁上的石墨片经过了一定角度的弯曲,导致量子限域和σ-π再杂化,其中3个σ键稍微偏离平面,而离域的π轨道则更加偏离管的外侧,这使得π电子能集中在碳纳米管管壁外表面上(轴向)高速流动,但在径向上,由于层与层之间存在较大空隙,电子的运动受限,因此它们的波矢是沿轴向的,这种特殊的结构使得碳纳米管具有优异的电学性能,可用于量子导线和晶体管等。由于碳纳米线的导电性能十分优异,当碳纳米线的生成量达到一定程度,相互之间联结接触成网状结构,增加了电子的传递运动路径与通道,使得电导率增加。
同时对材料定点碳纳米线增强有一定效果。当基体材料中掺杂入碳纳米管增强相时,材料受到外界载荷作用,纤维与基体之间会产生相互作用,由于碳纳米管的存在会大大提高纤维与基体之间的机械啮合作用,从而可以提高界面强度及韧性。而外界掺杂往往面临混合不均的现象,纳米尺度的纤维管在混合时容易引起团聚现象,使得增强相的作用不能达到最大,且增强相与基体相之间的界面结合力也是影响材料性能的重要因素。若结合太强,当外加载荷时,界面不能分散应力,吸收应力,导致基体的断裂失效;若界面结合力太弱,则会在载荷的作用下导致纤维拔出,使得增强相失去增强作用。原位生成碳纳米管增强相能够很好解决增强相的混合与界面的结合。
附图说明
图1为实施例1的陶瓷材料内部电镜扫描图;
图2为实施例1陶瓷材料表面裂纹处扫描图;
图3为实施例1的陶瓷材料断面处扫描图;
图4为实施例2内部结构电镜扫描图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式原位生成碳纳米线的陶瓷材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中球磨,然后过60目标准筛,得粉体;
三、预压成型:在常温下将粉体预压成Ф12.5-20mm,厚度4-7mm的块体,压力为10-18MPa,预压时间5~8min;
四、高温裂解:在管式炉中氮气保护下加热裂解,得样品;
五、冷却:将步骤四得到的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
本方法用于复合材料纳米纤维增强,可以在一定程度上增加材料导电性。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二中所述球磨为放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤四中加热裂解的加热速率为1~5℃/min,加热至1000~1400℃,裂解时间为2小时。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至三之一不同的是:步骤四中加热裂解的加热速率为2~4℃/min,加热至1100~1300℃,裂解时间为2小时。其它与具体实施方式一至三之一相同。
具体实施方式六:本实施方式与具体实施方式一至三之一不同的是:步骤四中加热裂解的加热速率为3℃/min,加热至1200℃,裂解时间为2小时。其它与具体实施方式一至三之一相同。
具体实施方式七:本实施方式原位生成碳纳米线的陶瓷材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中球磨,然后过60目标准筛,得粉体;
三、热压烧结:将步骤二得到的粉体进行热压烧结,得样品;
四、冷却:将步骤四中的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
具体实施方式八:本实施方式与具体实施方式七不同的是:步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。其它与具体实施方式七相同。
具体实施方式九:本实施方式与具体实施方式七不同的是:步骤二中所述球磨为放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h。其它与具体实施方式七相同。
具体实施方式十:本实施方式与具体实施方式七不同的是:步骤三中热压烧结工艺为20-40MPa,温度1200-1400℃,保温时间1-3h。其它与具体实施方式七相同。
具体实施方式十一:本实施方式与具体实施方式七不同的是:步骤三中热压烧结工艺为30MPa,温度1300℃,保温时间2h。其它与具体实施方式七相同。
为验证本发明的有益效果,进行以下试验:
实施例1:
本实施例原位生成碳纳米线的陶瓷材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷在充满氮气的管式炉中以3℃升温速率升温至150℃保温4小时,再以相同的升温速率加热到350℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中,放置于高能球磨机中球磨30min,然后过60目标准筛,得粉体;
三、预压成型:在常温下将粉体预压成Ф15mm,厚度6mm的块体,压力为15MPa,预压时间5min;
四、高温裂解:在管式炉中氮气保护下加热裂解,加热速率为3℃/min,加热至1200℃,裂解时间为2小时,得样品;
五、冷却:将步骤四得到的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
其中,步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:0.1称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
实施例2:
原位生成碳纳米线的陶瓷材料的制备方法,按以下步骤进行:
一、树脂固化:将聚硅氮烷在充满氮气的管式炉中以3℃升温速率升温至350℃进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中,放置于高能球磨机中球磨30min,然后过60目标准筛,得粉体;
三、热压烧结:将步骤二得到的粉体进行热压烧结,即将粉体置于石墨模具中以10℃/min升温速率升至1400℃并30MPa保温1h,得样品;
四、冷却:将步骤四中的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
其中步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:0.1称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
对实施例1和2制备得到的块体陶瓷材料进行电子扫描,结果如图1-4所示。其中,图1为实施例1的陶瓷材料内部电镜扫描图;图2为实施例1陶瓷材料表面裂纹处扫描图;图3为实施例1的陶瓷材料断面处扫描图;图4为实施例2内部结构电镜扫描图。
由扫描电镜图片可以看到,陶瓷材料内部出现了纤维状物质,经能谱测定为碳纳米纤维;试样表面的裂纹处,有颗粒状物质,断面处颗粒状物质更为密集,并相互接触,连接为一体。经能谱测定为碳纳米颗粒。实施例1与实施例2的区别在于裂解时是否加压,扫描电镜结果表明,裂解时的压力对于碳纳米线的生成并不起到决定性作用,不论是否加压都会有碳纳米线的生成。

Claims (10)

1.原位生成碳纳米线的陶瓷材料的制备方法,其特征在于该方法按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中球磨,然后过60目标准筛,得粉体;
三、预压成型:在常温下将粉体预压成Ф12.5-20mm,厚度4-7mm的块体,压力为10-18MPa,预压时间5~8min;
四、高温裂解:在管式炉中氮气保护下加热裂解,得样品;
五、冷却:将步骤四得到的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
2.根据权利要求1所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液置于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
3.根据权利要求1所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤二中所述球磨为放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h。
4.根据权利要求1所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤四中加热裂解的加热速率为1~5℃/min,加热至1000~1400℃,裂解时间为2小时。
5.根据权利要求1所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤四中加热裂解的加热速率为2~4℃/min,加热至1100~1300℃,裂解时间为2小时。
6.原位生成碳纳米线的陶瓷材料的制备方法,其特征在于该方法按以下步骤进行:
一、树脂固化:将聚硅氮烷或硅铝碳氮先驱体树脂在充满氮气的管式炉中以1℃-5℃升温速率升温至140~160℃保温4h,再以相同的升温速率加热到340~360℃保温20小时进行固化交联;
二、球磨:将步骤一中交联后的树脂置于球磨罐中球磨,然后过60目标准筛,得粉体;
三、热压烧结:将步骤二得到的粉体进行热压烧结,得样品;
四、冷却:将步骤四中的样品随炉冷却至室温,即得到原位生成碳纳米线的陶瓷材料。
7.根据权利要求6所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤一中所述硅铝碳氮先驱体树脂的制备方法为:
将聚硅氮烷溶解于二甲苯中,按照聚硅氮烷与异丙醇铝的质量比为1:(0.05~0.20)称取异丙醇铝,溶解于二甲苯中,超声震荡15min;将聚硅氮烷与异丙醇铝的二甲苯溶液至于惰性气体保护的手套箱中,升温至120℃反应24小时,得到硅铝碳氮先驱体树脂。
8.根据权利要求6所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤二中所述球磨为放置于高能球磨机中球磨30~40min或者置于行星式球磨机中球磨24~26h。
9.根据权利要求6所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤三中热压烧结工艺为20-40MPa,温度1200-1400℃,保温时间1-3h。
10.根据权利要求6所述的原位生成碳纳米线的陶瓷材料的制备方法,其特征在于步骤三中热压烧结工艺为30MPa,温度1300℃,保温时间2h。
CN201610217597.4A 2016-04-08 2016-04-08 原位生成碳纳米线的陶瓷材料的制备方法 Active CN105859302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610217597.4A CN105859302B (zh) 2016-04-08 2016-04-08 原位生成碳纳米线的陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610217597.4A CN105859302B (zh) 2016-04-08 2016-04-08 原位生成碳纳米线的陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN105859302A CN105859302A (zh) 2016-08-17
CN105859302B true CN105859302B (zh) 2018-07-03

Family

ID=56636569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610217597.4A Active CN105859302B (zh) 2016-04-08 2016-04-08 原位生成碳纳米线的陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN105859302B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109206122A (zh) * 2018-10-30 2019-01-15 苏州佳耐材料科技有限公司 一种改善超低碳镁碳材料显微结构和抗热震性的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603207A (zh) * 2009-07-21 2009-12-16 中国地质大学(北京) 高纯高产率网络状分枝氮化硅单晶纳米结构的制备方法
CN101774814A (zh) * 2010-01-14 2010-07-14 天津大学 陶瓷和碳纳米纤维复合材料及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087656B2 (en) * 2003-08-12 2006-08-08 Cornell Research Foundation, Inc. High temperature SiCN and SiC-type nanostructured ceramic material from block copolymer mesophases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603207A (zh) * 2009-07-21 2009-12-16 中国地质大学(北京) 高纯高产率网络状分枝氮化硅单晶纳米结构的制备方法
CN101774814A (zh) * 2010-01-14 2010-07-14 天津大学 陶瓷和碳纳米纤维复合材料及制备方法

Also Published As

Publication number Publication date
CN105859302A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Zhang et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers
Liu et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness
Chung Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites
Wang et al. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@ f-CNTs networks via self-sacrificing template method
Patton et al. Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites
CN112574468B (zh) 具有多层次连续网络结构的导热高分子复合材料及制备方法
Jiao et al. Pie-rolling-inspired construction of vertical carbon fiber high thermal conductivity hybrid networks
CN104961464B (zh) 沿厚度方向具有高回弹性和高导热系数碳基复合材料及制备方法
Lu et al. Microstructure and mechanical properties of TiAl-based composites prepared by Stereolithography and gelcasting technologies
Shi et al. Carbon fiber/phenolic composites with high thermal conductivity reinforced by a three-dimensional carbon fiber felt network structure
CN109704776A (zh) 高导热金刚石改性碳化硅陶瓷基复合材料的定向导热通道构筑方法
Jiang et al. Highly thermally conductive and negative permittivity epoxy composites by constructing the carbon fiber/carbon networks
CN104876580A (zh) 一种轻质高导热碳基材料的制备方法
CN102010218A (zh) 一种氧化石墨烯掺杂单向c/c复合材料的制备方法
Cho et al. Graphene–carbon–metal composite film for a flexible heat sink
Ouyang et al. Preparation of branched Al2O3 and its synergistic effect with carbon nanotubes on the enhancement of thermal conductive and electrical insulation properties of silicone rubber composites
Mumtaz et al. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials–a review
CN110342497A (zh) 垂直定向碳纳米管阵列和石墨烯复合薄膜材料及其制备方法
CN112280540A (zh) 一种高导热石墨烯—金属粒子复合材料的制备方法
Zou et al. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning
Cao et al. High conductivity thermoelectric insulation composite silicone rubber prepared by carbon nanotubes and silicon carbide composite filler
CN105859302B (zh) 原位生成碳纳米线的陶瓷材料的制备方法
Zheng et al. Practical PBT/PC/GNP composites with anisotropic thermal conductivity
Wang et al. A novel carbon-based fiber aerogel with interfacial thermal resistance: Temperature insulation, oxidation resistance, and mechanical performance
CN112280541A (zh) 一种基于石墨化聚多巴胺包覆金属粒子的高导热复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant