CN105855564A - 一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 - Google Patents
一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 Download PDFInfo
- Publication number
- CN105855564A CN105855564A CN201610365466.0A CN201610365466A CN105855564A CN 105855564 A CN105855564 A CN 105855564A CN 201610365466 A CN201610365466 A CN 201610365466A CN 105855564 A CN105855564 A CN 105855564A
- Authority
- CN
- China
- Prior art keywords
- silver nitrate
- silver
- activated sludge
- grain
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,涉及银纳米颗粒。对取自污水厂的污泥进行驯化处理,驯化进水由实验室配制模拟废水添加,根据元素质量比C:N:P=100:5:1,其中碳源为葡萄糖,氮源为氯化铵,磷为磷酸二氢钾,按氨氮浓度50~100mg/L添加,取活性污泥混合液离心,干燥,成粉末后放置冰箱;将AgNO3固体用水溶解,定容,配制成硝酸银溶液;称取0.017~0.68g干菌粉于锥形瓶中,加入水,分散后,依次加入硝酸银溶液和NaOH溶液,分散后,控制OH-和银的浓度,水控制还原系统总体积为50mL,控制反应温度30~70℃,反应时间4~12h,摇床下避光,反应结束后即得银纳米颗粒。
Description
技术领域
本发明涉及银纳米颗粒,尤其是涉及一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法。
背景技术
纳米材料由于其特殊的物理和化学性质,成为当今材料科学的研究热点。金属离子的生物吸附与生物还原由于其在环境保护、纳米材料制备等方面的潜在应用前景也是近年来各国学者广泛开展的科研领域。(Maynard,A.D.,Michelson,E.,2006.The NanotechnologyConsumer Product Inventory./http://www.nanotechproject.org/44S)银纳米作为纳米材料的一种,也具备纳米材料的性质。(周全法.贵金属深加工及其应用[M].北京:化学工业出版社,2002.)银纳米颗粒结合了银独特的理化特性和纳米材料的特殊性能,具有着异乎寻常的表面化学性质和良好的生物相容性。使其在光学、传感、生物医药、科研等领域倍受青睐。
纳米银的制备方法分为物理法、化学法、生物法,其中物理法对仪器设备要求高生产费用较为昂贵;化学法采用的化学试剂有毒,对环境有害;生物法的原料来源广泛,环境友好,反应条件温和,操作简单,所合成的纳米颗粒又具有较好的稳定性,不失为最佳选择。微生物还原法是利用菌体细胞来还原金属离子制备纳米颗粒的一种方法,在反应过程中不添加其它的还原剂或保护剂。根据所采用的菌体是否具有活性,微生物还原法可以分为活菌还原和死菌还原。活菌还原依赖于细胞的新陈代谢过程,纳米颗粒的形成位点与菌体种类有关,不同微生物参与金属离子的催化还原过程的酶也不同。生物还原的位点可以在细胞周质中,细胞外表面上和细胞外。而且能够在胞外合成金属纳米材料的菌体种类很少;失活的菌类还原金属离子不依赖于细胞的新陈代谢,反应条件的操控方面更加灵活,还原所制得的颗粒大都位于胞外或者细胞表面。专利CN103305700A对生物法提取含银废水中银,利用曲霉摇瓶培养,最后接种到硝酸银废水中制备得到纳米级颗粒银。
发明内容
本发明的目的是利用污水处理厂废弃污泥,提供一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法。
本发明包括以下步骤:
1)对取自污水厂的污泥进行驯化处理,驯化进水由实验室配制模拟废水添加,根据元素质量比C:N:P=100:5:1,其中碳源为葡萄糖,氮源为氯化铵,磷为磷酸二氢钾,按氨氮浓度50~100mg/L添加,取活性污泥混合液50mL离心,干燥,成粉末后放置冰箱备用;
2)将AgNO3固体用水溶解,定容,配制成40g/L的硝酸银溶液,置棕色试剂瓶于4℃冰箱保存备用。
3)称取0.017~0.68g干菌粉于锥形瓶中,加入水,分散后,依次加入步骤2)配制好的硝酸银溶液和NaOH溶液,分散后,控制OH-和银的浓度,水控制还原系统总体积为50mL,控制反应温度30~70℃,反应时间4~12h,摇床下避光,反应结束后即可得到银纳米颗粒。
在步骤1)中,所述离心的条件可在6000r/min下离心15min;所述干燥可于真空冷冻干燥机中干燥24h;所述冰箱的温度可为-20℃。
在步骤3)中,所述水可采用蒸馏水或超纯水等;所述硝酸银溶液的质量浓度可为0.005~0.05g/L,NaOH溶液的摩尔浓度可为0.01~0.1mol/L;所述摇床可采用125rpm摇床。
本发明将现有污水处理厂废弃的活性污泥,通过驯化培养后,经冷冻干燥处理令其失活,然后将活性污泥干菌粉加入到硝酸银溶液的锥形瓶摇床恒温振荡,经活性污泥微生物吸附还原得到银纳米颗粒。本发明提供了一种以冻干的好氧污泥菌粉,选用硝酸银溶液在锥形瓶里摇床反应,通过微生物细胞丰富的有机官能团吸附银离子并将其还原得到银纳米颗粒。整个实验过程简单易得,无需多步反应条件,也不需要引入外来还原剂或保护剂,绿色无公害,对纳米银的制备方法是一条新的路径。
附图说明
图1为本发明实施例1制备的纳米银颗粒的Uv-vis图。
图2为本发明实施例1制备得到纳米银颗粒的XRD图。
图3为本发明实施例1制备的纳米银颗粒的透射电镜(TEM)图。
具体实施方式
下面通过附图和实施例对本发明做进一步说明。
实施例1
取0.05g污泥干菌粉、0.01mol/L硝酸银溶液和0.02mol/L的[OH-],在250mL的锥形瓶中搅拌混合,控制摇床反应温度60℃,125rpm。反应结束得到银纳米颗粒,其分散性好,粒径分布较均匀,通过紫外可见吸收光谱(UV-Vis)、低倍透射电镜(TEM)、高倍透射电镜(HRTEM)及XRD验证了纳米银结构。
本发明实施例1制备的纳米银颗粒的Uv-vis图参见图1,本发明实施例1制备得到纳米银颗粒的XRD图参见图2,本发明实施例1制备的纳米银颗粒的透射电镜(TEM)图参见图3。
实施例2
按照实施例1所述的取0.05g污泥干菌粉,控制硝酸银溶液浓度为0.05mol/L,其他条件和操作步骤同实施例1,反应后得到平均粒径为24.73nm的银纳米颗粒。
Claims (7)
1.一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于包括以下步骤:
1)对取自污水厂的污泥进行驯化处理,驯化进水由实验室配制模拟废水添加,根据元素质量比C:N:P=100:5:1,其中碳源为葡萄糖,氮源为氯化铵,磷为磷酸二氢钾,按氨氮浓度50~100mg/L添加,取活性污泥混合液50mL离心,干燥,成粉末后放置冰箱备用;
2)将AgNO3固体用水溶解,定容,配制成40g/L的硝酸银溶液,置棕色试剂瓶于4℃冰箱保存备用;
3)称取0.017~0.68g干菌粉于锥形瓶中,加入水,分散后,依次加入步骤2)配制好的硝酸银溶液和NaOH溶液,分散后,控制OH-和银的浓度,水控制还原系统总体积为50mL,控制反应温度30~70℃,反应时间4~12h,摇床下避光,反应结束后即可得到银纳米颗粒。
2.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤1)中,所述离心的条件是在6000r/min下离心15min。
3.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤1)中,所述干燥是于真空冷冻干燥机中干燥24h。
4.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤1)中,所述冰箱的温度为-20℃。
5.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤3)中,所述水采用蒸馏水或超纯水。
6.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤3)中,所述硝酸银溶液的质量浓度为0.005~0.05g/L,NaOH溶液的摩尔浓度为0.01~0.1mol/L。
7.如权利要求1所述一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法,其特征在于在步骤3)中,所述摇床采用125rpm摇床。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610365466.0A CN105855564A (zh) | 2016-05-27 | 2016-05-27 | 一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610365466.0A CN105855564A (zh) | 2016-05-27 | 2016-05-27 | 一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105855564A true CN105855564A (zh) | 2016-08-17 |
Family
ID=56642457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610365466.0A Pending CN105855564A (zh) | 2016-05-27 | 2016-05-27 | 一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105855564A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113607666A (zh) * | 2021-07-27 | 2021-11-05 | 陕西师范大学 | 一种利用改进银镜反应生成银纳米粒子进行水中氨氮含量测定的方法 |
CN114506999A (zh) * | 2022-02-23 | 2022-05-17 | 山东大学 | 一种基于巯基改性海藻酸调理纳米银污泥及污泥再生利用的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101445277A (zh) * | 2008-11-14 | 2009-06-03 | 东北大学 | 具有高吸附能力的纳米晶体Fe3O4微粒及制备方法 |
JP2010024501A (ja) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Mining Co Ltd | 銀粉の製造方法 |
CN104624054A (zh) * | 2013-11-08 | 2015-05-20 | 中国科学院城市环境研究所 | 一种控制膜生物污染杀菌剂的制备方法 |
CN104860370A (zh) * | 2015-05-25 | 2015-08-26 | 宁波绿凯节能科技有限公司 | 一种基于表面活性剂和银纳米颗粒的染料废水净化方法 |
CN104909449A (zh) * | 2015-05-29 | 2015-09-16 | 厦门大学 | 一种利用活性污泥生物还原制备银纳米颗粒的方法 |
-
2016
- 2016-05-27 CN CN201610365466.0A patent/CN105855564A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024501A (ja) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Mining Co Ltd | 銀粉の製造方法 |
CN101445277A (zh) * | 2008-11-14 | 2009-06-03 | 东北大学 | 具有高吸附能力的纳米晶体Fe3O4微粒及制备方法 |
CN104624054A (zh) * | 2013-11-08 | 2015-05-20 | 中国科学院城市环境研究所 | 一种控制膜生物污染杀菌剂的制备方法 |
CN104860370A (zh) * | 2015-05-25 | 2015-08-26 | 宁波绿凯节能科技有限公司 | 一种基于表面活性剂和银纳米颗粒的染料废水净化方法 |
CN104909449A (zh) * | 2015-05-29 | 2015-09-16 | 厦门大学 | 一种利用活性污泥生物还原制备银纳米颗粒的方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113607666A (zh) * | 2021-07-27 | 2021-11-05 | 陕西师范大学 | 一种利用改进银镜反应生成银纳米粒子进行水中氨氮含量测定的方法 |
CN113607666B (zh) * | 2021-07-27 | 2024-05-17 | 陕西师范大学 | 一种利用改进银镜反应生成银纳米粒子进行水中氨氮含量测定的方法 |
CN114506999A (zh) * | 2022-02-23 | 2022-05-17 | 山东大学 | 一种基于巯基改性海藻酸调理纳米银污泥及污泥再生利用的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rao et al. | Synthesis and characterization of ZnO nanoflowers using C hlamydomonas reinhardtii: A green approach | |
Palomo et al. | Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts | |
Shen et al. | Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange | |
Xia et al. | Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material | |
Das et al. | Disinfection of the water borne pathogens Escherichia coli and Staphylococcus aureus by solar photocatalysis using sonochemically synthesized reusable Ag@ ZnO core-shell nanoparticles | |
Dzido et al. | Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy | |
Ashrafi et al. | Influence of external factors on the production and morphology of biogenic silver nanocrystallites | |
Shen et al. | A cruciform petal-like (ZIF-8) with bactericidal activity against foodborne gram-positive bacteria for antibacterial food packaging | |
Zhang et al. | Preparation of polyvinyl alcohol/bacterial-cellulose-coated biochar–nanosilver antibacterial composite membranes | |
CN103331454A (zh) | 一种纳米银制造工艺 | |
Liang et al. | Adsorption behaviors of cationic methylene blue and anionic reactive blue 19 dyes onto nano-carbon adsorbent carbonized from small precursors | |
Lu et al. | Metal organic framework@ polysilsesequioxane core/shell-structured nanoplatform for drug delivery | |
Wang et al. | Sliver nanoparticles@ carbon dots for synergistic antibacterial activity | |
Zhang et al. | Ag/H-ZIF-8 nanocomposite as an effective antibacterial agent against pathogenic bacteria | |
Pandey et al. | Organotrialkoxysilane-functionalized Prussian Blue nanoparticles-mediated fluorescence sensing of arsenic (III) | |
Fan et al. | Photocatalytic removal of harmful algae in natural waters by Ag/AgCl@ ZIF-8 coating under sunlight | |
CN105855564A (zh) | 一种利用活性污泥吸附还原硝酸银制备银纳米颗粒的方法 | |
Huang et al. | Microfluidic Synthesis of the Tumor Microenvironment-Responsive Nanosystem for Type-I Photodynamic Therapy | |
CN105838740B (zh) | 一种茶树内生草螺菌制备纳米红色元素硒的方法 | |
Joy et al. | Fungi-templated silver nanoparticle composite: synthesis, characterization, and its applications | |
Silvestri et al. | The use of a biopolymer conjugate for an eco-friendly one-pot synthesis of palladium-platinum alloys | |
Lesnichaya et al. | Starch‐capped sulphur nanoparticles synthesised from bulk powder sulphur and their anti‐phytopathogenic activity against Clavibacter sepedonicus | |
Habib et al. | Bi-Polymer electrospun nanofibers embedding Ag3PO4/P25 composite for efficient photocatalytic degradation and anti-microbial activity | |
Fang et al. | Removal of tetracycline hydrochloride from water by visible-light photocatalysis using BiFeO3/BC materials | |
Xin et al. | Rational design of monodisperse mesoporous silica nanoparticles for phytase immobilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160817 |