CN105854812A - 一种液相汞吸附剂、制备方法及其应用 - Google Patents

一种液相汞吸附剂、制备方法及其应用 Download PDF

Info

Publication number
CN105854812A
CN105854812A CN201610248773.0A CN201610248773A CN105854812A CN 105854812 A CN105854812 A CN 105854812A CN 201610248773 A CN201610248773 A CN 201610248773A CN 105854812 A CN105854812 A CN 105854812A
Authority
CN
China
Prior art keywords
adsorbent
liquid phase
preparation
magnetic
phase mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610248773.0A
Other languages
English (en)
Inventor
谢江坤
关正文
周军
樊广萍
董璐
黄亚继
王烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GCL ENGINEERING Ltd
Southeast University
China Construction Electric Power Construction Co Ltd
Original Assignee
GCL ENGINEERING Ltd
Southeast University
China Construction Electric Power Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GCL ENGINEERING Ltd, Southeast University, China Construction Electric Power Construction Co Ltd filed Critical GCL ENGINEERING Ltd
Priority to CN201610248773.0A priority Critical patent/CN105854812A/zh
Publication of CN105854812A publication Critical patent/CN105854812A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B43/00Obtaining mercury
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种液相汞吸附剂及其制备和使用方法,首先采用共沉淀法制备磁性纳米粒子,然后通过自组装法将官能基团修饰到磁性粒子表面,制备出对Hg2+具有较强吸附能力的磁性吸附剂。将吸附剂分散到废水中吸附汞,吸附饱和后,采用磁分离手段将材料从废液中分离出来,一方面脱除液相中的汞,实现污染物脱除,另一方面将汞从废水中吸附到固相吸附剂表面,富集回收汞。所述液相汞吸附剂适用于涉汞行业废水中汞的脱除,比如电厂脱硫废水中汞的脱除等。

Description

一种液相汞吸附剂、制备方法及其应用
技术领域
本发明涉及一种液相汞吸附剂及其制备和使用方法,特别是对废液中汞离子的脱除,属纳米功能材料及环境修复技术领域。
背景技术
二十世纪五十年代,水俣病的爆发让人们认识道路汞的危害。随着工业的发展和社会的进步,汞的高毒性、易迁移性和生物累积性引起了越来越多的关注。2013年10月10日,《水俣公约》的签订标志着汞排放控制在世界范围内提上日程。汞在医疗器械、电器电子设备、电镀等行业均有广泛应用。生产过程中汞会以废水、废气等形式释放到水体或大气中来。如不加治理,进入水体中的汞易被鱼类吸收进入食物链,为水俣病的爆发埋下隐患,因此,废水中汞的治理具有重要意义。我国也早已出台相关标准,为废水汞排放设定了具体限值(《污水综合排放标准》(GB8978-1996)规定总汞的最高允许排放浓度为0.05 mg/L)。
目前含汞废水的治理一般采用硫化物吸附、活性炭吸附、硫化物沉淀絮凝等方式处理,如专利CN103623771A公开了一种废液除汞吸附剂及其制备方法和使用方法,制备了金属硫化物或金属硒化物负载的纳米吸附剂并用于废液中汞离子的脱除,展示了材料较好的脱汞性能。然而,专利和文献中的吸附剂大多不具磁性,需要过滤等手段实现分离,操作较为繁琐。因此,开发高效、廉价、易分离汞吸附剂具有重要意义。
发明内容
本发明公开了一种有机无机复合材料及其制备和使用方法,旨在提高汞吸附剂的性价比,降低分离难度。首先合成廉价的纳米载体,然后在其表面组装一层官能组分,制备了磁性汞吸附剂,并通过实验验证了材料的吸汞性能。
本发明内容如下:
一种液相汞吸附剂,其特征在于,该吸附剂通过磁性载体与官能组分自组装制备获得,其中,官能组分与磁性载体的摩尔比为:1:1~5:1。
所述的一种液相汞吸附剂,其特征在于,所述磁性载体为磁性纳米材料,包括纳米Fe3O4、MnxFe3-xO4、CoxFe3-xO4
所述的一种液相汞吸附剂,其特征在于,所述官能组分包括3-巯丙基乙氧基硅烷、巯基丙酸、巯基乙酸。
所述的液相汞吸附剂的制备方法,其特征在于,按如下步骤实现:
(1)磁性纳米粒子的制备:将Fe2+盐、Mn2+盐或Co2+盐与Fe3+盐混合置于反应容器中,加去离子水溶解,超声过程中向反应容器中滴加碱液,反应后借助外加磁场将所得沉淀分离出来,分别用乙醇和去离子水洗涤后,将所得产物分散到乙醇中,得到磁性吸附剂载体分散液;
(2)官能组分的自组装:将官能组分,倒入上述磁性吸附剂载体分散液中,震荡反应1~8h,完成官能组分在载体表面的自组装过程;
(3)分离洗涤,利用外加磁场分离,分别用去离子水和乙醇洗涤,并在70~85 oC条件下烘干,即得到所述液相汞吸附剂。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(1)所述的碱液为NH4OH或NaOH,所述的Fe2+ 、Mn2+或Co2+:Fe3+:OH-的摩尔比为1:2:8;反应温度为30~80 oC,反应时间为10~60 min。所述二价铁盐可为FeCl2、Fe(NO3)2或Fe(SO4)2等,所述三价铁盐可为FeCl3、Fe(NO3)3或Fe2(SO4)3等。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分为3-巯丙基乙氧基硅烷、巯基丙酸、巯基乙酸。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分与磁性载体的摩尔比为:1:1~5:1。
所述的液相汞吸附剂的应用,其特征在于,包括以下步骤:
(1)将所述吸附剂加入废水中,分散均匀;
(2)分散的吸附剂将溶液中的汞吸附到其表面;
(3)吸附剂分离,吸附完成后,通过外加磁场将吸附剂分离出来,完成汞净化任务;
(4)汞回收,将分离出来的吸附剂置于管式炉中煅烧,释放出吸收的汞,含汞尾气先经换热设备回收热量,然后进入冷凝装置回收汞。
所述的液相汞吸附剂的应用,其特征在于,步骤(1)中所述吸附剂投加量控制在0.5~5 g/L;步骤(2)所述的吸附反应时间为5~30 min;步骤(3)中所述的外加磁场包括永久磁场和电磁场;步骤(4)中的煅烧温度为350~500 oC,冷凝温度为-60~-20 oC。
有益效果
1、吸附效果好,0.5~5 g/L的吸附剂投加量即可满足排放要求;
2、吸附反应快,吸附剂投入5~30 min即可满足排放要求;
3、易分离,在磁场作用下吸附剂很容易从液相中分离;
4、方便回收汞,吸附剂表面富集了大量汞,可脱附回收。
附图说明
图1为吸附时间对汞脱除效果的影响,吸附剂投加量1 g/L,0 min为空白样,指未投加吸附剂,其溶液汞浓度等于初始汞浓度(100 μg/L)。
图2为吸附剂投加量对汞脱除效果的影响,吸附时间为20 min,0.0 g/L为空白样,指未投加吸附剂,其溶液汞浓度等于初始汞浓度(100 μg/L)。
图3为不同吸附剂投加量对两种共存重金属离子(Hg2+、Cd2+)的吸附效果,吸附时间为20 min,0.0 g/L为空白样,指未投加吸附剂,其溶液汞浓度等于初始汞浓度(100 μg/L),镉浓度等于初始镉浓度(200 μg/L)。
图4A吸附剂在废水中的分散效果图,图4B为吸附剂在磁场作用下的分离效果图。
图5为本发明反应示意图。
具体实施方式
本发明通过以下实施例结合附图进行详细说明。本实施例在本发明技术方案下实施,阐述了详细的实施方式和操作过程,但本发明的保护范围不限于下述实施例。
实施例1
所述的液相汞吸附剂的制备方法,其特征在于,按如下步骤实现:
(1)磁性纳米粒子的制备:将Fe2+盐与Fe3+盐,其中所述二价铁盐可为FeCl2、Fe(NO3)2或Fe(SO4)2,所述三价铁盐可为FeCl3、Fe(NO3)3或Fe2(SO4)3;混合置于反应容器中,加去离子水溶解,超声过程中向反应容器中滴加碱液,反应后借助外加磁场将所得沉淀分离出来,分别用乙醇和去离子水洗涤后,将所得产物分散到乙醇中,得到磁性吸附剂载体分散液;
(2)官能组分的自组装:将官能组分,倒入上述磁性吸附剂载体分散液中,震荡反应1~8h,完成官能组分在载体表面的自组装过程;
(3)分离洗涤,利用外加磁场分离,分别用去离子水和乙醇洗涤,并在70~85 oC条件下烘干,即得到所述液相汞吸附剂。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(1)所述的碱液为NH4OH或NaOH,所述的Fe2+:Fe3+:OH-的摩尔比为1:2:8;反应温度为30~80 oC,反应时间为10~60 min;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分为3-巯丙基乙氧基硅烷;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分与磁性载体的摩尔比为:1:1;
实施例2
所述的液相汞吸附剂的制备方法,其特征在于,按如下步骤实现:
(1)磁性纳米粒子的制备:将Mn2+盐与Fe3+盐混合置于反应容器中,加去离子水溶解,超声过程中向反应容器中滴加碱液,反应后借助外加磁场将所得沉淀分离出来,分别用乙醇和去离子水洗涤后,将所得产物分散到乙醇中,得到磁性吸附剂载体分散液;
(2)官能组分的自组装:将官能组分,倒入上述磁性吸附剂载体分散液中,震荡反应1~8h,完成官能组分在载体表面的自组装过程;
(3)分离洗涤,利用外加磁场分离,分别用去离子水和乙醇洗涤,并在70~85 oC条件下烘干,即得到所述液相汞吸附剂;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(1)所述的碱液为NH4OH或NaOH,所述的Mn2+:Fe3+:OH-的摩尔比为1:2:8;反应温度为30~80 oC,反应时间为10~60 min;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分为巯基丙酸;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分与磁性载体的摩尔比为 :5:1。
实施例3
一种液相汞吸附剂的制备方法,其特征在于,按如下步骤实现:
(1)磁性纳米粒子的制备:将Fe2+盐与Fe3+盐混合置于反应容器中,加去离子水溶解,超声过程中向反应容器中滴加碱液,反应后借助外加磁场将所得沉淀分离出来,分别用乙醇和去离子水洗涤后,将所得产物分散到乙醇中,得到磁性吸附剂载体分散液;
(2)官能组分的自组装:将官能组分,倒入上述磁性吸附剂载体分散液中,震荡反应1~8h,完成官能组分在载体表面的自组装过程;
(3)分离洗涤,利用外加磁场分离,分别用去离子水和乙醇洗涤,并在70~85 oC条件下烘干,即得到所述液相汞吸附剂。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(1)所述的碱液为NH4OH或NaOH,所述的Fe2+ 、Mn2+或Co2+:Fe3+:OH-的摩尔比为1:2:8;反应温度为30~80 oC,反应时间为10~60 min。
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分为巯基乙酸;
所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分与磁性载体的摩尔比为 :4:1。
实施例5:吸附时间对汞脱除效果的影响
(1)配制0.1 mg/L汞溶液(以Hg2+计)100 mL,分别取10 mL置于A、B、C、D、E、F六只带盖的反应管中;
(2)分别向B、C、D、E、F反应管中加入10 mg上述吸附剂(按实施例1制备获得)(A管作为空白参比管,不加吸附剂),盖紧震荡使吸附剂分散均匀;
(3)分别控制B、C、D、E、F管中吸附时间为5、10、15、20、25 min,反应结束将吸附剂分离出来;
(4)采用Hydra Ⅱ AA测量A、B、C、D、E、F反应管中清液Hg2+浓度。
结果分析:由图1可以看出,投加所述的吸附剂5 min后,液相汞浓度已经降至40.3μg/L,低于排放标准要求(50μg/L),吸附20 min时,汞浓度更是降至13.6μg/L,验证了本发明所述吸附剂与汞之间具有较快的反应速度,能够用于液相汞的脱除。
实施例2:吸附剂(按实施例2制备获得)投加量汞吸附效果的影响
(1)配制0.1 mg/L汞溶液(以Hg2+计)100 mL,分别取10 mL置于A、B、C、D、E、F六只带盖的反应管中;
(2)分别向A、B、C、D、E、F反应管中加入0、5、10、15、20、25 mg上述吸附剂(A管作为空白参比管,不加吸附剂),盖紧震荡使吸附剂分散均匀;
(3)吸附20 min后将吸附剂分离出来;
(4)采用Hydra Ⅱ AA测量A、B、C、D、E、F管中清液Hg2+浓度。
结果分析:由图2可以看出,当投加吸附剂浓度达到0.5 g/L时已满足排放要求,1.0 g/L时效果更佳。
实施例3:吸附剂(实施例3制备获得) Cd2+存在对汞吸附效果的影响
(1)配制0.1 mg/L Hg2+、0.2 mg/L Cd2+混合溶液200 mL,分别取20 mL置于A、B、C、D、E、F六只带盖的反应管中;
(2)分别向A、B、C、D、E、F反应管中加入0、5、10、15、20、25 mg上述吸附剂(实施例3)(A管作为空白参比管,不加吸附剂),盖紧震荡使吸附剂分散均匀;
(3)吸附20 min后将吸附剂分离出来;
(4)采用Hydra Ⅱ AA测量A、B、C、D、E、F管中清液Hg2+浓度,采用WA2081原子吸收分光光度计测量A、B、C、D、E、F管中清液Cd2+浓度。
结果分析:如图3所示,吸附剂不仅对Hg2+具有较好的吸附性能,对Cd2+同样具有不错的吸附能力。对比图2图3可以看出,虽然Cd2+的存在一定程度地降低了吸附剂对Hg2+的吸附效果,但是1.0 g/L的吸附剂投加量依然能够保证汞镉达标(Hg2+:0.05 mg/L,Cd2+:0.1mg/L)排放,验证了所述吸附剂可以用于废水中多种重金属同时脱除。
实施例4:实施例1制备的吸附剂磁性分离效果
(1)配制0.1 mg/L汞溶液(以Hg2+计)100 mL,取10 mL置于带盖的反应管中;
(2)向反应管中加入10 mg上述吸附剂,盖紧震荡使吸附剂分散均匀(见图4A);
(3)吸附20 min后,将磁铁置于反应管侧壁处,观察吸附剂在液相中的磁性分离效果(见图4B)。
结果分析:由图4可以看出,无外加磁场条件下吸附剂在液相中具有较好分散效果,而在外加磁场的作用下吸附剂可以很容易地从液相中分离出来。实际应用过程可采用电磁铁作为磁源,将吸附剂从液相中分离出来。

Claims (9)

1.一种液相汞吸附剂,其特征在于,该吸附剂通过磁性载体与官能组分自组装制备获得,其中,官能组分与磁性载体的摩尔比为:1:1~5:1。
2.根据权利要求1所述的一种液相汞吸附剂,其特征在于,所述磁性载体为磁性纳米材料,包括纳米Fe3O4、MnxFe3-xO4、CoxFe3-xO4
3.根据权利要求1所述的一种液相汞吸附剂,其特征在于,所述官能组分包括3-巯丙基乙氧基硅烷、巯基丙酸、巯基乙酸。
4.一种如权利要求1所述的液相汞吸附剂的制备方法,其特征在于,按如下步骤实现:
(1)磁性纳米粒子的制备:将Fe2+盐、Mn2+盐或Co2+盐与Fe3+盐混合置于反应容器中,加去离子水溶解,超声过程中向反应容器中滴加碱液,反应后借助外加磁场将所得沉淀分离出来,分别用乙醇和去离子水洗涤后,将所得产物分散到乙醇中,得到磁性吸附剂载体分散液;
(2)官能组分的自组装:将官能组分,倒入上述磁性吸附剂载体分散液中,震荡反应1~8h,完成官能组分在载体表面的自组装过程;
(3)分离洗涤,利用外加磁场分离,分别用去离子水和乙醇洗涤,并在70~85 oC条件下烘干,即得到所述液相汞吸附剂。
5.根据权利要求4所述的液相汞吸附剂的制备方法,其特征在于,步骤(1)所述的碱液为NH4OH或NaOH,所述的Fe2+ 、Mn2+或Co2+:Fe3+:OH-的摩尔比为1:2:8;反应温度为30~80 oC,反应时间为10~60 min。
6.根据权利要求4所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分为3-巯丙基乙氧基硅烷、巯基丙酸、巯基乙酸。
7.根据权利要求4所述的液相汞吸附剂的制备方法,其特征在于,步骤(2)中所述的官能组分与磁性载体的摩尔比为:1:1~5:1。
8.一种如权利要求1所述的液相汞吸附剂的应用,其特征在于,包括以下步骤:
(1)将所述吸附剂加入废水中,分散均匀;
(2)分散的吸附剂将溶液中的汞吸附到其表面;
(3)吸附剂分离,吸附完成后,通过外加磁场将吸附剂分离出来,完成汞净化任务;
(4)汞回收,将分离出来的吸附剂置于管式炉中煅烧,释放出吸收的汞,含汞尾气先经换热设备回收热量,然后进入冷凝装置回收汞。
9.根据权利要求7所述的液相汞吸附剂的应用,其特征在于,步骤(1)中所述吸附剂投加量控制在0.5~5 g/L;步骤(2)所述的吸附反应时间为5~30 min;步骤(3)中所述的外加磁场包括永久磁场和电磁场;步骤(4)中的煅烧温度为350~500 oC,冷凝温度为-60~-20 oC。
CN201610248773.0A 2016-04-20 2016-04-20 一种液相汞吸附剂、制备方法及其应用 Pending CN105854812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610248773.0A CN105854812A (zh) 2016-04-20 2016-04-20 一种液相汞吸附剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610248773.0A CN105854812A (zh) 2016-04-20 2016-04-20 一种液相汞吸附剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN105854812A true CN105854812A (zh) 2016-08-17

Family

ID=56633661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610248773.0A Pending CN105854812A (zh) 2016-04-20 2016-04-20 一种液相汞吸附剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN105854812A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142031A (zh) * 2019-05-20 2019-08-20 东南大学 一种用于吸附汞离子的磁性纳米吸附剂及其制备和应用
CN110152614A (zh) * 2019-05-09 2019-08-23 常熟理工学院 一种表面改性铁基汞吸附剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670266A (zh) * 2009-11-10 2010-03-17 北京林业大学 一种磁性纳米吸附材料去除废水中阳离子有机染料的方法
CN102258981A (zh) * 2011-05-27 2011-11-30 清华大学 磁性壳聚糖纳米微粒的制备及其处理重金属废水的方法
US20130152788A1 (en) * 2011-12-15 2013-06-20 Sud-Chemie Inc. Composition and process for mercury removal
CN103623771A (zh) * 2013-12-02 2014-03-12 上海交通大学 一种废液除汞吸附剂及其制备方法和使用方法
CN103623772A (zh) * 2013-12-02 2014-03-12 上海交通大学 一种用于去除和回收液相汞的吸附剂及其制备方法和使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670266A (zh) * 2009-11-10 2010-03-17 北京林业大学 一种磁性纳米吸附材料去除废水中阳离子有机染料的方法
CN102258981A (zh) * 2011-05-27 2011-11-30 清华大学 磁性壳聚糖纳米微粒的制备及其处理重金属废水的方法
US20130152788A1 (en) * 2011-12-15 2013-06-20 Sud-Chemie Inc. Composition and process for mercury removal
CN103623771A (zh) * 2013-12-02 2014-03-12 上海交通大学 一种废液除汞吸附剂及其制备方法和使用方法
CN103623772A (zh) * 2013-12-02 2014-03-12 上海交通大学 一种用于去除和回收液相汞的吸附剂及其制备方法和使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彭凌: ""巯基功能化磁性SiO2颗粒的制备及其对水中汞的吸附研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
贺全国等: ""表面巯基化修饰的磁性Fe3O4 纳米粒子合成与表征"", 《精细化工中间体》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152614A (zh) * 2019-05-09 2019-08-23 常熟理工学院 一种表面改性铁基汞吸附剂的制备方法
CN110152614B (zh) * 2019-05-09 2022-02-11 常熟理工学院 一种表面改性铁基汞吸附剂的制备方法
CN110142031A (zh) * 2019-05-20 2019-08-20 东南大学 一种用于吸附汞离子的磁性纳米吸附剂及其制备和应用
CN110142031B (zh) * 2019-05-20 2022-03-08 东南大学 一种用于吸附汞离子的磁性纳米吸附剂及其制备和应用

Similar Documents

Publication Publication Date Title
Shan et al. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas
Jia et al. Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar
Liu et al. Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb (II) from water
Qu et al. Multi-component adsorption of Pb (II), Cd (II) and Ni (II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification
Wang et al. Simultaneous removal of Sb (III) and Cd (II) in water by adsorption onto a MnFe 2 O 4–biochar nanocomposite
Nejadshafiee et al. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent
Lv et al. Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb (II) and Cu (II) removal from aqueous solutions
Yang et al. Removal of elemental mercury from flue gas using red mud impregnated by KBr and KI reagent
Meng et al. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method
Wang et al. Functional nanomaterials: Study on aqueous Hg (II) adsorption by magnetic Fe3O4@ SiO2-SH nanoparticles
Yin et al. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes
Wu et al. Arsenic sorption by red mud-modified biochar produced from rice straw
Liu et al. Enhancement of As (V) adsorption from aqueous solution by a magnetic chitosan/biochar composite
Shi et al. Using H2S plasma to modify activated carbon for elemental mercury removal
Rahimi et al. Removal of toxic metal ions from sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal–organic framework
CN103920461B (zh) 磁性生物炭量子点复合物吸附剂及其制备和使用方法
Zhu et al. Hydrothermal synthesis of a magnetic adsorbent from wasted iron mud for effective removal of heavy metals from smelting wastewater
Phiri et al. Simultaneous removal of cationic, anionic and organic pollutants in highly acidic water using magnetic nanocomposite alginate beads
Liu et al. Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination
Shan et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation
Luo et al. Efficient removal of Pb (II) through recycled biochar-mineral composite from the coagulation sludge of swine wastewater
CN102432085A (zh) 一种去除水中汞离子的方法及其吸附剂的再生方法
Zhao et al. Removal of p-Nitrophenol from simulated sewage using steel slag: Capability and mechanism
Li et al. High-efficient phosphate removal from wastewater by weak magnetic La (OH) 3 modified platanus biochar
Li et al. Eco-utilization of steel slag: preparation of Fe-based calcium silicate hydrate and its application in As (V) removal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160817

WD01 Invention patent application deemed withdrawn after publication